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1. Background

Cayley’s formula counts the number of labeled trees on n vertices.
Put another way, it counts the number of spanning trees of a complete
graph Kn. Note that it does not count the number of nonisomorphic
trees on n vertices. For comparison, there are 6 nonisomorphic trees
on 6 vertices, while there are 64 = 1296 labeled trees on 6 vertices.
The formula was first discovered by Borchardt in 1860, and extended
by Cayley in 1889. Cayley was also the one to use graph theory terms
in his paper. His name was the one associated with the formula since
then.

2. Theorem, Cayley’s Formula (Cayley 1889)

Let Tn denote the number of trees on n labeled vertices. Cayley’s
formula states:

Tn = nn−2

3. Bijection (Prüfer 1918)

Proof. For a tree T, consider its vertex set N = {1, 2, ..., n}. Note that
the number of sequences of length n − 2 from N is nn−2. The goal
is thus to construct a bijection between the set of trees on n labeled
vertices and the set of these sequences.

To convert a labeled tree with vertices {1, 2, ..., n} into a sequence
of length n − 2, continue to remove the lowest labeled leaf until two
vertices remain. Each time a leaf is removed, add its neighbor to the
list.

To convert a sequence S = (t1, t2, ..., tn−2) into a labeled tree T , let s1
the first vertex of N\S, and join s1 to t1. Then let s2 be the first vertex
of N\{s1}\S, and join s2 to t2. Continue until the elements of S have
been exhausting, at which point n − 2 edges have been added. Join
the two vertices of N\{s1, s2, ..., sn−2} to complete the construction of
T . �
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4. Bijection (Joyal 1981)

Proof. Consider the set of all labeled trees together with two distin-
guished vertices: the left end, and the right end, and call this set Tn.
Then in a labeled tree, there are n choices for the left end and n choices
for the right end, so |Tn| = n2Tn, so the goal is to prove |Tn| = nn. The
set NN of all mappings from N into N has size nn, so a bijection from
NN onto Tn will suffice.

Let f : N → N be any map, and represent a graph ~Gf with directed
edges that start at i and end at f(i). Because each vertex has one
edge emanating from it, each component contains an equal number of
edges and vertices, so each contains exactly one directed cycle. Let
M ⊆ N be the union of the vertex sets of all cycles in ~Gf . Now

consider f |M =

(
a b . . . z

f(a) f(b) . . . f(z)

)
where a, b, . . . , z are ordered

naturally. Then let f(a) be the left end and f(z) the right end.
To construct the tree T according to f , draw f(a), . . . , f(z) as a

path from f(a) to f(z), then fill in the remaining vertices from ~Gf

(discarding edge direction).
Given a tree T , observe the unique path P from the left end to the

right end, which gives the set M and the mapping f |M . Then fill in
the remaining correspondences i→ f(i) by the unique paths from i to
P . �

5. Double Counting (Pitman 1999)

Proof. Let Fn,k denote the set of all rooted forests on n vertices with
k rooted trees. Note that Fn,1 is then the set of all rooted trees, and
that |Fn,1| = nTn because every tree has n choices for the root. Then
let Fn,k ∈ Fn,k denote a directed graph with such properties. Say a
forest F contains a forest F ′ if F contains F ′ as a directed graph. If F
contains F ′, F has less components than F ′ (see the figure below: F1

contains F2; F2 contains F3).
Say F1, ..., Fk is a refining sequence if Fi ∈ Fn,i and Fi contains Fi+1

for all i (see the figure below: F1, F2, F3 is a refining sequence). Let
Fk ∈ Fn,k be a fixed forest. Then let N(Fk) denote the number of
rooted trees containing Fk, and N ∗ (Fk) denote the number of refining
sequences ending in Fk. Count N ∗ (Fk) in two ways: first by starting
at an F1 and second by starting at Fk.

If an F1 ∈ Fn,1 contains Fk, then delete the k−1 edges of F1\Fk from
F1 in any order to get a refining sequence from F1 to Fk. Therefore:

(1) N ∗ (Fk) = N(Fk)(k − 1)!

Starting from Fk, to produce an Fk−1, add a directed edge that starts
at any vertex and ends at any of the k − 1 roots that are not in the
same component as the start vertex. This amounts to n(k−1) choices.
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Then going from Fk−1 to Fk−2, add a directed edge that starts at any
vertex and ends at any of the k−1 roots not in the same component as
this start vertex, which is n(k− 2) choices. Continuing until F1 yields:

(2) N ∗ (Fk) = nk−1(k − 1)!

Equating (1) and (2) provides the solution to N(Fk):

N(Fk) = nk−1

Now let k = n. Then Fn consists of n vertices and n components: or
simply n isolated vertices. Therefore N(Fn) counts the number of all
rooted trees (denoted by Fn,1), so |Fn,1| = nn−1 =⇒ Tn = nn−2. �
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