Math 214 – Foundations of Mathematics Homework 10 Due Nov 16, 2012

Your name

Each problem is worth 4 points.

- 1. Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix}$ be permutations in S_5 . Determine $\alpha \circ \beta$, $\beta \circ \alpha$, and β^{-1} .
- 2. Let $f : A \to \mathbb{N}$ and $g : B \to \mathbb{N}$ be bijections. Show that $h : A \times B \to \mathbb{N}^2$ with h(a, b) = (f(a), g(b)) is also a bijection. (Remark: this fact was used to show that $A \times B$ is denumerable if A and B are.)
- 3. Show that if A and B are denumerable sets, then $A \cup B$ is also denumerable (hint: consider the cases when A and B are disjoint or not).
- 4. Prove that $S = \{(a, b) : a, b \in \mathbb{N}, a \ge 2b\}$ is denumerable.
- 5. For $k \in \mathbb{N}$, let $S_k = \{A \subset \mathbb{N} : |A| = k\}$. Show that $|S_2| = |\mathbb{N}|$ (hint: construct a bijection from S_2 to a subset of \mathbb{N}^2).
- 6. show that $|\mathbb{Q}| = |\mathbb{Q} \{2\}|$.
- 7. (Bonus, 4 points) Using the definition of S_k from problem 5, show that
 - (a) for all $k \in \mathbb{N}$, S_k is denumerable.
 - (b) $S = \bigcup_{k=1}^{\infty} S_k$ is denumerable.
- 8. (Bonus, 4 points) In class we mentioned that according to the "diagonal method", the elements in \mathbb{N}^2 can be listed as

 $(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1), \dots$

Construct the explicit bijection from \mathbb{N}^2 to \mathbb{N} .