Math 214 - Foundations of Mathematics Homework 10

Due Nov 16, 2012

Your name

Each problem is worth 4 points.

1. Let $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right)$ and $\beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1\end{array}\right)$ be permutations in S_{5}. Determine $\alpha \circ \beta, \beta \circ \alpha$, and β^{-1}.
2. Let $f: A \rightarrow \mathbb{N}$ and $g: B \rightarrow \mathbb{N}$ be bijections. Show that $h: A \times B \rightarrow \mathbb{N}^{2}$ with $h(a, b)=(f(a), g(b))$ is also a bijection. (Remark: this fact was used to show that $A \times B$ is denumerable if A and B are.)
3. Show that if A and B are denumerable sets, then $A \cup B$ is also denumerable (hint: consider the cases when A and B are disjoint or not).
4. Prove that $S=\{(a, b): a, b \in \mathbb{N}, a \geq 2 b\}$ is denumerable.
5. For $k \in \mathbb{N}$, let $S_{k}=\{A \subset \mathbb{N}:|A|=k\}$. Show that $\left|S_{2}\right|=|\mathbb{N}|$ (hint: construct a bijection from S_{2} to a subset of $\left.\mathbb{N}^{2}\right)$.
6. show that $|\mathbb{Q}|=|\mathbb{Q}-\{2\}|$.
7. (Bonus, 4 points) Using the definition of S_{k} from problem 5 , show that
(a) for all $k \in \mathbb{N}, S_{k}$ is denumerable.
(b) $\mathcal{S}=\bigcup_{k=1}^{\infty} S_{k}$ is denumerable.
8. (Bonus, 4 points) In class we mentioned that according to the "diagonal method", the elements in \mathbb{N}^{2} can be listed as

$$
(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1), \ldots
$$

Construct the explicit bijection from \mathbb{N}^{2} to \mathbb{N}.

