Math 214 - Foundations of Mathematics Homework 11

Due noon Dec 4, 2012

Each problem worths 4 points unless specified otherwise.

1. Let $\emptyset \neq I \subseteq \mathbb{N}$. For each $i \in I, A_{i}$ is denumerable. Show that $\cup_{i \in I} A_{i}$ is denumerable.
2. Let $A=\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right): \alpha_{i} \in\{0,1\}, i \in \mathbb{N}\right\}$, i.e., A is the infinite cartesian product of the set $\{0,1\}$. Show that A is uncountable.
3. Prove that the intervals $[0, \infty)$ and $(-1,4)$ have the same cardinality.
4. (6 points) Determine the cardinality of the following sets (finite, denumerable, or uncountable), and justify your answers:
(a) the set of all open intervals with rational midpoints.
(b) the set of all open intervals with rational endpoints.
5. Show that $|A|<|\mathbb{N}|$ for every finite set A.
6. Use Schröder-Bernstein Theorem to prove that $|(2,5)|=|(0,1]|$.
