Math 214 - Foundations of Mathematics Homework 4

Due Sept 28, 2012

Your name

Solve the following problems. Show all your work. Every problem worths 4 points.

1. Prove that $\sum_{k=1}^{n} \frac{1}{(k+2)(k+3)}=\frac{n}{3 n+9}$ for every positive integer n.
2. Prove that (2012)! $>2^{2012}$. (Hint: prove a general statement in terms of n.)
3. For each of the following sets, determine whether it is well-ordered and show your reasons.
(a) $S=\{n \in \mathbb{N}: n$ is even $\}$.
(b) $T=\{n \in \mathbb{Z}: n$ is odd $\}$.
4. A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{1}=1, a_{2}=4, a_{3}=9$, and

$$
a_{n}=a_{n-1}-a_{n-2}+a_{n-3}+2(2 n-3)
$$

for $n \geq 4$. Conjecture a formula for a_{n} and prove that your conjecture is correct.
5. Use Strong Principle of Mathematical Induction to prove that for each integer $n \geq 10$, there are nonnegative integers a and b such that $n=2 a+7 b$.
6. Prove that $7 \mid\left(3^{2 n}-2^{n}\right)$ for every nonnegative integer n.

