Math 214 – Foundations of Mathematics Homework 5

Due noon Oct 5, 2012

Your name

Solve the following problems. Show all your work. Every problem worths 4 points.

- 1. Let $a, b, c, d \in \mathbb{Z}$ with $a, c \neq 0$. Prove that if a|b and c|d, then ac|(ad + bc).
- 2. Prove that for integers n and m, 3|nm if and only if 3|m or 3|n. (Hint: in one direction, you may want to use Division Theorem to write m, n in some special form)
- 3. Find all primes, p, that can be written as $p = n^3 1$ for some $n \in \mathbb{N}$. (Make sure that you have found all of them.)
- 4. Prove or disprove: if a and b are odd integers, then 4|(a-b) or 4|(a+b).
- 5. Prove that for any $n \in \mathbb{Z}$, n^2 cannot be of the form 3m 1, where $m \in \mathbb{Z}$.
- 6. Show that an positive integer is a multiple of 9 if and only if the sum of all digits of the integer is a multiple of 9.
- 7. Find gcd(51, 288) and $m, n \in \mathbb{Z}$ such that gcd(51, 288) = 51n + 288m (Show your intermediate quotients and remainders).