Math 214 - Foundations of Mathematics Homework 5
 Due noon Oct 5, 2012

Your name

Solve the following problems. Show all your work. Every problem worths 4 points.

1. Let $a, b, c, d \in \mathbb{Z}$ with $a, c \neq 0$. Prove that if $a \mid b$ and $c \mid d$, then $a c \mid(a d+b c)$.
2. Prove that for integers n and $m, 3 \mid n m$ if and only if $3 \mid m$ or $3 \mid n$. (Hint: in one direction, you may want to use Division Theorem to write m, n in some special form)
3. Find all primes, p, that can be written as $p=n^{3}-1$ for some $n \in \mathbb{N}$. (Make sure that you have found all of them.)
4. Prove or disprove: if a and b are odd integers, then $4 \mid(a-b)$ or $4 \mid(a+b)$.
5. Prove that for any $n \in \mathbb{Z}, n^{2}$ cannot be of the form $3 m-1$, where $m \in \mathbb{Z}$.
6. Show that an positive integer is a multiple of 9 if and only if the sum of all digits of the integer is a multiple of 9 .
7. Find $\operatorname{gcd}(51,288)$ and $m, n \in \mathbb{Z}$ such that $\operatorname{gcd}(51,288)=51 n+288 m$ (Show your intermediate quotients and remainders).
