Math 214 - Foundations of Mathematics Homework 6

Due Oct 19, 2012

Your name

Solve the following problems. Show all your work.

1. Let a, b, c be integers. Prove that if $3 \mid(a b c-1)$, then $3|(a-1), 3|(b-1)$, or $3 \mid(c-1)$.
2. Let $d=g c d(a, b)$. If $a=d a^{\prime}$ and $b=d b^{\prime}$, show that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.
3. Let $a, b \in \mathbb{Z}$, where not both a and b are 0 . Show that there are infinitely many pairs x, y of integers such that $\operatorname{gcd}(a, b)=a x+b y$.
4. Show that $n+1$ and $3 n+2$ are coprime.
5. Prove that $\sqrt[3]{3}$ and $\log _{10} 234$ are irrational numbers.
6. For integers a and b, let $l c m(a, b)$ be the least positive multiplier of a and b. Show that $l c m(a, b)$. $\operatorname{gcd}(a, b)=a b$. (hint: express gcd and lcm in terms of the prime factors of a and b. you may need to prove that $\max \{m, n\}+\min \{m, n\}=m+n$ first.)
