Math 214 - Foundations of Mathematics Homework 7

Due Oct 26, 2012

Your name

Solve the following problems. Show all your work. Four points each if not specified.

1. Find the last digit of 7^{2011}.
2. Without using induction, prove that $\left(10^{n+1}-9 n-10\right) \equiv 0(\bmod 81)$ for every nonnegative integer n. (Remark: this is the same problem, in different form, in a previous homework set. But here you are not allowed to use induction.)
3. (6 points) Solve the following problems in \mathbb{Z}_{n}.
(a) In \mathbb{Z}_{8}, express the following sums and products as $[r]$, where $0 \leq r<8$:

$$
[3]+[6],[3][6],[-13]+[138],[-13][138]
$$

(b) Let $[a],[b] \in \mathbb{Z}_{8}$. If $[a][b]=[0]$, does it follow that $[a]=[0]$ or $[b]=[0]$?
(c) Prove that for any prime p, if $[a],[b] \in \mathbb{Z}_{p}$, then $[a][b]=[0]$ implies $[a]=[0]$ or $[b]=[0]$.
4. Prove that the multiplication in $\mathbb{Z}_{n}, n \geq 2$, defined by $[a][b]=[a b]$ is well-defined.
5. A relation R is defined on \mathbb{Z} by $(a, b) \in R$ if $|a-b| \leq 2$. Which of the properties reflexive, symmetric, and transitive does the relation R possess? Justify your answers.
6. Let R be a relation defined on $Z-\{0\}$ by $(a, b) \in R$ if $a b>0$. Show that R is an equivalence relation on $Z-\{0\}$.

