Math 214 - Foundations of Mathematics Homework 8

Due Nov 2, 2011

Your name

Solve the following problems. Show all your work. Four points each.

1. (4 points) Let S be a nonempty subset of \mathbb{Z}, and let R be a relation defined on S by $(x, y) \in R$ if $3 \mid(x+2 y)$.
(a) Prove that R is an equivalence relation.
(b) If $S=\{-7,-6,-2,0,1,4,5,7\}$, then what are the distinct equivalence classes in this case?
2. (4 points) Let S be a non-empty subset of \mathbb{N}, and let \sim be a relation defined on S by $x \sim y$ if $x^{2}+y^{2}$ is even. Prove that \sim is an equivalence relation. Determine the distinct equivalence classes.
3. (4 points) Show that the relation R defined on $\mathbb{R} \times \mathbb{R}$ by $((a, b),(c, d)) \in \mathbb{R}$ if $|a|+|b|=|c|+|d|$ is an equivalence relation. describe geometrically the elements of the equivalence classes $[(1,2)],[(3,0)]$.
4. (4 points) For some nonempty set S, suppose $f: S \rightarrow S$ is a function and an equivalence relation. What is f ? Justify your answer.
5. (4 points) Define the mapping $h: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{20}$ by $h([a])=[3 a]$ for each $a \in \mathbb{Z}$. Prove that h is well-defined and injective.
6. (4 points) Let p be a positive prime number and $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be defined as $f([x])=\left[x^{2}\right]$. Show that f is a function. Give examples to show that it is not necessarily injective or surjective.
