Math 214 – Foundations of Mathematics Homework 9

Due Nov 9, 2012

your name

Solve the following problems. Show all your work. Unless otherwise stated, problems are worth 4 points.

- Consider h : Z₁₆ → Z₂₄ by h([a]) = [3a] for each a ∈ Z.
 (a) Prove that h is a function.
 (b) Is h injective? Surjective? Bijective?
- 2. Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ where, for $(a, b) \in \mathbb{R}$, f(a, b) = (2a + 7, 3b 3). Prove that f is a bijective function and find f^{-1} .
- 3. Let A, B and C be nonempty sets and let f, g and h be functions such that f : A → B, g : B → C and h : B → C. For each of the following, prove or disprove:
 (a) if g ∘ f = h ∘ f, then g = h.
 (b) if f is injective and g ∘ f = h ∘ f, then g = h.
- 4. For nonempty sets A, B, C, let $f : A \to B$ and $g : B \to C$ be functions.
 - (a) Prove that if $g \circ f$ is injective, then f is injective.
 - (b) Disprove that if $g \circ f$ is injective, then g is injective.
- 5. For nonempty sets A and B and functions $f : A \to B$ and $g : B \to A$ suppose that $g \circ f = i_A$, the identity function on A.
 - (a) (4 Points) Show that f is injective and g is surjective.
 - (b) (2 Points) Show that f is not necessarily surjective.
 - (c) (2 Points) Show that g is not necessarily injective.
- 6. Let $A_1, A_2 \subseteq A$. Prove that if f is injective, then $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$. Give an example that the equality fails.
- 7. (Extra Credit, 4 points) Le S be the set of odd positive integers. A function F : N → S is defined by F(n) = k for each n ∈ N, where k is that odd positive integer for which 3n + 1 = 2^mk for some nonnegative integer m. Prove or disprove the following:
 (a) F is injective.
 - (b) F is surjective.