Math 214 - Foundations of Mathematics Homework 9

Due Nov 9, 2012

your name

Solve the following problems. Show all your work. Unless otherwise stated, problems are worth 4 points.

1. Consider $h: \mathbb{Z}_{16} \rightarrow \mathbb{Z}_{24}$ by $h([a])=[3 a]$ for each $a \in \mathbb{Z}$.
(a) Prove that h is a function.
(b) Is h injective? Surjective? Bijective?
2. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ where, for $(a, b) \in \mathbb{R}, f(a, b)=(2 a+7,3 b-3)$. Prove that f is a bijective function and find f^{-1}.
3. Let A, B and C be nonempty sets and let f, g and h be functions such that $f: A \rightarrow B, g: B \rightarrow C$ and $h: B \rightarrow C$. For each of the following, prove or disprove:
(a) if $g \circ f=h \circ f$, then $g=h$.
(b) if f is injective and $g \circ f=h \circ f$, then $g=h$.
4. For nonempty sets A, B, C, let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Prove that if $g \circ f$ is injective, then f is injective.
(b) Disprove that if $g \circ f$ is injective, then g is injective.
5. For nonempty sets A and B and functions $f: A \rightarrow B$ and $g: B \rightarrow A$ suppose that $g \circ f=i_{A}$, the identity function on A.
(a) (4 Points) Show that f is injective and g is surjective.
(b) (2 Points) Show that f is not necessarily surjective.
(c) (2 Points) Show that g is not necessarily injective.
6. Let $A_{1}, A_{2} \subseteq A$. Prove that if f is injective, then $f\left(A_{1}\right) \cap f\left(A_{2}\right) \subseteq f\left(A_{1} \cap A_{2}\right)$. Give an example that the equality fails.
7. (Extra Credit, 4 points) Le S be the set of odd positive integers. A function $F: \mathbb{N} \rightarrow S$ is defined by $F(n)=k$ for each $n \in \mathbb{N}$, where k is that odd positive integer for which $3 n+1=2^{m} k$ for some nonnegative integer m. Prove or disprove the following:
(a) F is injective.
(b) F is surjective.
