Two examples in Mathematical Induction

Once winner, always winner??

September 20, 2010

Example:

- Proposition: For all positive integers n, the number $n^{2}+n$ is even.
- Proof. we use induction on n.

1. When $n=1: 1^{2}+1=2$ is even. True.
2. Suppose that it is true when $n=k$, that is $k^{2}+k$ is even. We need to show that it is true for $n=k+1$, that is $(k+1)^{2}+(k+1)$ is even.
Since $(k+1)^{2}+(k+1)=(k+1)(k+1+1)$ is the product of two consecutive numbers and one of them must be even, $(k+1)^{2}+(k+1)$ is even.
3. By mathematical induction, the number $n^{2}+n$ is even for all positive integers n.
Is this a math induction proof?

All people have the same sex (!?)

Proof. Let $P(n)$ be the statement that "in any set of n people, all members of the set are the same sex".
If we have a set consisting of one person, then clearly all the members of the set are of the same sex, so $P(1)$ is true.
Suppose that $P(k)$ is true. Then in any set of k people, all the members of the set are of the same sex. In order to show that $P(k+1)$ is true, we need to show that in any set of $k+1$ people, all the members of the set are of the same sex.
Take a set of $k+1$ people. Call these people $a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}$. If we send one person out of the room, say a_{1}, then we have a set of k people left in the room, so by induction hypothesis they are all of the same sex. Now bring a_{1} back into the room and set a_{2} out. Again there is a set of k people left in the room, so by the assumption that they are all of the same sex. Now observe that everyone in the original set of $k+1$ people is of the same sex as a_{3}, so the are all of the same sex. By the Principle of Mathematical Induction, $P(n)$ is true.

