Math 412 Homework 11

your name

Due date: Nov 13, 2015

Solve the following problems. Please remember to use complete sentences and good grammar.

1. Show that if $a_{0}>0$, then $p_{k} / p_{k-1}=\left[a_{k}, a_{k-1}, \ldots, a_{1}, a_{0}\right]$ and $q_{k} / q_{k-1}=\left[a_{k}, a_{k-1}, \ldots, a_{2}, a_{1}\right]$, where $C_{k-1}=p_{k-1} / q_{k-1}$ and $C_{k}=p_{k} / q_{k}, k \geq 1$, are successive convergence of the continued fraction $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$.
2. Let $\alpha>1$ be an irrational number. Show that the k-th convergent of the simple continued fraction of $1 / \alpha$ is the reciprocal of the $(k-1)$-th convergent of the simple continued fraction of α.
3. Let α be an irrational number and let p_{j} / q_{j} be the j-th convergent of the simple continued fraction expansion of α. Show that at least one of any three consecutive convergence satisfies the inequality $\left|\alpha-p_{j} / q_{j}\right|<1 /\left(\sqrt{5} q_{j}^{2}\right)$. Conclude that there are infinitely many rational numbers p / q, where p and q are integers with $q \neq 0$, such that $|\alpha-p / q|<1 /\left(\sqrt{5} q^{2}\right)$.
4. Show that the simple continued fraction \sqrt{d}, where d is a positive integer, has period length one if and only if $d=a^{2}+1$, where a is a nonnegative integer.
5. Show that if p_{k} / q_{k} is a convergent of the simple continued fraction expansion of \sqrt{d}, then $\left|p_{k}^{2}-d q_{k}^{2}\right|<$ $1+2 \sqrt{d}$.
6. (Bonus) Let k be a positive integer and $D_{k}=\left(3^{k}+1\right)^{2}+3$. Show that the simple continued fraction of $\sqrt{D_{k}}$ has a period of length $6 k$.
