Math 412 Homework 6

your name
Due date: Oct 9, 2015

Solve the following problems. Please remember to use complete sentences and good grammar.

1. (4 points) Show that if n is a positive integer, then $\left(\sum_{d \mid n} \tau(d)\right)^{2}=\sum_{d \mid n} \tau(d)^{3}$.
2. (4 points) Show that if $f(n)=\sum_{d \mid n} \mu(d) F(n / d)$, then $F(n)=\sum_{d \mid n} f(d)$.
3. (4 points) The Dirichlet product of two arithmetic functions f and g is defined to $(f * g)(n)=$ $\sum_{d \mid n} f(d) g(n / d)$. Show that if f and g are multiplicative functions, then $f * g$ is also multiplicative.
4. (4 points) Show that $\sum_{d \mid n} \mu^{2}(d)=2^{\omega(n)}$, where $\omega(n)$ is the number of distinct prime factors of n.
5. (4 points) Show that if n is a positive integer, then $\phi(n)=n \sum_{d \mid n} \mu(d) / d$.
6. A positive integer n is called super perfect if $\sigma(\sigma(n))=2 n$. Show that
(a) (2 points) if $n=2^{q}$, where $2^{q+1}-1$ is prime, then n is superperfect.
(b) (4 points) every even superperfect number is of form $n=2^{q}$, where $2^{q+1}-1$ is prime.
7. (Bonus, 4 points) Show that if $n=p^{2}$, where p is an odd prime, then n is not superperfect.
