Math 412 Homework 7

your name

Due date: Oct 23, 2015

Solve the following problems. Please remember to use complete sentences and good grammar.

- 1. (4 points) Determine the order of 9 modulo 25.
- 2. (4 points) Let *a* be an odd integer and integer $l \ge 3$. Show that the order of *a* modulo 2^l is a divisor of 2^{l-2} . (In other words, $a^{2^{l-2}} \equiv 1 \mod 2^l$.)
- 3. (4 points) Let p be a prime divisor of the Fermat number F_n = 2^{2ⁿ} + 1.
 (a) show that ord_p2 = 2ⁿ⁺¹.
 (b) From part (a), conclude that 2ⁿ⁺¹|(p-1), so that p must be of form 2ⁿ⁺¹k + 1.
- 4. (4 points) Show that if n is a positive integer and a and b are integers relatively prime to n such that $(ord_n a, ord_n b) = 1$, then $ord_n(ab) = ord_n a \cdot ord_n b$.
- 5. (6 points) Let p be a prime and the prime decomposition of $\phi(p) = p 1$ be $p 1 = q_1^{t_1} q_2^{t_2} \dots q_r^{t_r}$, where q_1, q_2, \dots, q_r are primes.
 - (a) Show that there are integers a_1, a_2, \ldots, a_r such that $ord_p a_i = q_i^{t_i}$, for $i = 1, 2, \ldots, r$.
 - (b) Show that $a = a_1 a_2 \dots a_r$ is a primitive root modulo p.
 - (c) Follow the procedure outlined in part (a) and (b) to find a primitive root modulo 29.
- 6. (4 points) Let n be a positive integer possessing a primitive root. Using this primitive root, prove that the product of all positive integers less than n and relatively prime to n is congruent to -1 modulo n.
- 7. (bonus, 4 points) Find the remainder $r, 1 \le r \le 13$, when 2^{1985} is divided by 13.