Math 412 Homework 8

your name

Due date: Oct 30, 2014

Solve the following problems. Please remember to use complete sentences and good grammar. Four points each.

- 1. Show that there are the same number of primitive roots modulo $2p^t$ as there are modulo p^t , where p is an odd prime and t is a positive integer.
- 2. Show that the integer m has a primitive root if and only if the only solutions of the congruence $x^2 \equiv 1 \pmod{m}$ are $x \equiv \pm 1 \pmod{m}$.
- 3. Let p be an odd prime.
 - (a) Show that if p is an odd prime an r is a primitive roots of p, then $ind_r(p-1) = (p-1)/2$.
 - (b) Show that the congruence $x^4 \equiv -1 \pmod{p}$ has a solution if and only if p is of the form 8k + 1.
- 4. Find all solutions of the following congruence: $13^x \equiv 5 \pmod{23}$.
- 5. Let p be an odd prime and $p \not| a$. Show that there exist integers u, v with (u, v) = 1 so that $u^2 + av^2 \equiv 0 \pmod{p}$ if and only if -a is a quadratic residue modulo p.
- 6. Show that if p is a prime and p = 8n + 1, and r is a primitive root modulo p, then the solutions of $x^2 \equiv \pm 2 \pmod{p}$ are given by $x \equiv \pm (r^{7n} \pm r^n) \pmod{p}$, where \pm sign in the first congruence corresponds to the \pm sign inside the parentheses in the second congruence.
- 7. (Bonus) A cyclic number is an (n-1)-digit integer that, when multiplied by $1, 2, 3, \ldots, n-1$, produces the same digits in a different order. For example, 142857 is a cyclic number with 6 digits. Prove that if 10 is a primitive root modulo p, where p is a prime, then $(10^{p-1} - 1)/p$ is a cyclic number.