Matrix Problems in Quantum Information Science

Chi-Kwong LI
Department of Mathematics College of William and Mary

Joint work with
Diane Pelejo, Collge of William and Mary, and
Kuo-Zhong Wang, National Chiaotung University, Taiwan

What is big data?

Big data

What is big data?

Big data

What is big data?

Big data (Wiki)

Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate.

Big data

What is big data?

Big data (Wiki)

Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate.

What is considered "big data" varies depending on the capabilities of the users and their tools, and expanding capabilities make big data a moving target.

Big data

What is big data?

Big data (Wiki)

Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate.

What is considered "big data" varies depending on the capabilities of the users and their tools, and expanding capabilities make big data a moving target.

- To study big data, one may focus on analyzing important data sets, and deduce useful information and decisions.

Big data

What is big data?

Big data (Wiki)

Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate.

What is considered "big data" varies depending on the capabilities of the users and their tools, and expanding capabilities make big data a moving target.

- To study big data, one may focus on analyzing important data sets, and deduce useful information and decisions.
- Alternatively, one may focus on some learning and creating techniques in handling large data set.

Quantum Computing

- In quantum mechanics, to model 100 photons, we need complex vectors of sizes $N=2^{100}$.

Quantum Computing

- In quantum mechanics, to model 100 photons, we need complex vectors of sizes $N=2^{100}$.
- Even if a computer can do 33.86 quadrillion $\left(=10^{15} * 33.86\right)$ operations per second, changing such a matrix require

$$
2^{100} /\left(10^{15} * 33.86\right) \text { seconds }>9364 \text { centries. }
$$

Quantum Computing

- In quantum mechanics, to model 100 photons, we need complex vectors of sizes $N=2^{100}$.
- Even if a computer can do 33.86 quadrillion $\left(=10^{15} * 33.86\right)$ operations per second, changing such a matrix require

$$
2^{100} /\left(10^{15} * 33.86\right) \text { seconds }>9364 \text { centries. }
$$

- That is why Richard Feynman suggested the use of quantum properties/systems to do fast computing.

Quantum Information Science

- In quantum information science, one uses quantum states and properties to store, transmit, and process information.

Quantum Information Science

- In quantum information science, one uses quantum states and properties to store, transmit, and process information.
- To transmit and process information, qubits will go through quantum channels or operations.

Quantum Information Science

- In quantum information science, one uses quantum states and properties to store, transmit, and process information.
- To transmit and process information, qubits will go through quantum channels or operations.

Quantum Information Science

- In quantum information science, one uses quantum states and properties to store, transmit, and process information.
- To transmit and process information, qubits will go through quantum channels or operations.

A Basic Problem

Given two quantum states ρ_{1}, ρ_{2} and a certain quantum operation or channel Φ, how similar and how different can ρ_{1} and $\Phi\left(\rho_{2}\right)$ be?

Mathematical Formulation

- Quantum states are represented as $n \times n$ density matrices, i.e., positive semi-definite matrices with trace one, say, $\rho=\frac{1}{2}\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$.

Mathematical Formulation

- Quantum states are represented as $n \times n$ density matrices, i.e., positive semi-definite matrices with trace one, say, $\rho=\frac{1}{2}\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$.
- Quantum channels / quantum operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{n}$

Mathematical Formulation

- Quantum states are represented as $n \times n$ density matrices, i.e., positive semi-definite matrices with trace one, say, $\rho=\frac{1}{2}\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$.
- Quantum channels / quantum operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{n}$ with the operator sum representation

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*} \quad \text { for all } X \in M_{n}
$$

where $F_{1}, \ldots, F_{r} \in M_{n}$ satisfy $\sum_{j=1}^{r} F_{j}^{*} F_{j}=I_{n}$.

Mathematical Formulation

- Quantum states are represented as $n \times n$ density matrices, i.e., positive semi-definite matrices with trace one, say, $\rho=\frac{1}{2}\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$.
- Quantum channels / quantum operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{n}$ with the operator sum representation

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*} \quad \text { for all } X \in M_{n}
$$

where $F_{1}, \ldots, F_{r} \in M_{n}$ satisfy $\sum_{j=1}^{r} F_{j}^{*} F_{j}=I_{n}$.

- Unitary channel: $\Phi(X)=U X U^{*}$ for some unitary U.

Mathematical Formulation

- Quantum states are represented as $n \times n$ density matrices, i.e., positive semi-definite matrices with trace one, say, $\rho=\frac{1}{2}\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$.
- Quantum channels / quantum operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{n}$ with the operator sum representation

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*} \quad \text { for all } X \in M_{n}
$$

where $F_{1}, \ldots, F_{r} \in M_{n}$ satisfy $\sum_{j=1}^{r} F_{j}^{*} F_{j}=I_{n}$.

- Unitary channel: $\Phi(X)=U X U^{*}$ for some unitary U.
- Mixed unitary channel: $\Phi(X)=\sum_{j=1}^{r} p_{j} U_{j} X U_{j}^{*}$ for some unitary U_{1}, \ldots, U_{r} and probability vector $\left(p_{1}, \ldots, p_{r}\right)$.

Mathematical Formulation

- Quantum states are represented as $n \times n$ density matrices, i.e., positive semi-definite matrices with trace one, say, $\rho=\frac{1}{2}\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$.
- Quantum channels / quantum operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{n}$ with the operator sum representation

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*} \quad \text { for all } X \in M_{n}
$$

where $F_{1}, \ldots, F_{r} \in M_{n}$ satisfy $\sum_{j=1}^{r} F_{j}^{*} F_{j}=I_{n}$.

- Unitary channel: $\Phi(X)=U X U^{*}$ for some unitary U.
- Mixed unitary channel: $\Phi(X)=\sum_{j=1}^{r} p_{j} U_{j} X U_{j}^{*}$ for some unitary U_{1}, \ldots, U_{r} and probability vector $\left(p_{1}, \ldots, p_{r}\right)$.
- Unital channels: A quantum channel Φ such that $\Phi(I / n)=I / n$.

Four types of tools

Four types of tools

- Unitary channels: $\Phi(X)=U X U^{*}$ for some unitary U.

Four types of tools

- Unitary channels: $\Phi(X)=U X U^{*}$ for some unitary U.

- Mixed unitary channels: $\Phi(X)=\sum_{j=1}^{r} p_{j} U_{j} X U_{j}^{*}$

Four types of tools

- Unitary channels: $\Phi(X)=U X U^{*}$ for some unitary U.

- Mixed unitary channels: $\Phi(X)=\sum_{j=1}^{r} p_{j} U_{j} X U_{j}^{*}$

- Unital channels: $\Phi(I)=I$

Four types of tools

- Unitary channels: $\Phi(X)=U X U^{*}$ for some unitary U.

- Mixed unitary channels: $\Phi(X)=\sum_{j=1}^{r} p_{j} U_{j} X U_{j}^{*}$

- Unital channels: $\Phi(I)=I$

- All quantum channels

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*}
$$

Distance measures for quantum states

- For two numbers a, b, we can measure the distance between them by $|a-b|$.
- For two matrices / quantum states ρ_{1}, ρ_{2}, we can measure the distance between them by a norm
- There are different kinds of norms on matrices. For example, the operator norm $\|X\|_{\text {oper }}=\max \left\{\|X v\|: v \in \mathbb{C}^{n},\|v\|=1\right\}$, the trace norm $\|X\|_{1}=\operatorname{tr}|X|$, and Frobenius norm $\|X\|_{F}=\operatorname{tr}\left(X^{*} X\right)^{1 / 2}$.
- A norm $\|\cdot\|$ on M_{n} is unitary similarity invariant (USI) if

$$
\left\|U X U^{*}\right\|=\|X\| \text { for any } U, X \in M_{n} \text { such that } U \text { is unitary. }
$$

Unitary channels: $\Phi(X)=U X U^{*}$

Theorem [Li,Pelejo,Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{ccc}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary and $a_{1} \geq \cdots \geq a_{n}$. Suppose ρ_{2} has eigenvalues $b_{1} \geq \cdots \geq b_{n}$.

Unitary channels: $\Phi(X)=U X U^{*}$

Theorem [Li,Pelejo,Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary and $a_{1} \geq \cdots \geq a_{n}$. Suppose ρ_{2} has eigenvalues $b_{1} \geq \cdots \geq b_{n}$. For unitary channels Φ,

- $\min \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=U\left(\begin{array}{lll}b_{1} & & \\ & \ddots & \\ & & b_{n}\end{array}\right) U^{*}$, and

Unitary channels: $\Phi(X)=U X U^{*}$

Theorem [Li,Pelejo,Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary and $a_{1} \geq \cdots \geq a_{n}$. Suppose ρ_{2} has eigenvalues $b_{1} \geq \cdots \geq b_{n}$. For unitary channels Φ,

- $\min \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=U\left(\begin{array}{lll}b_{1} & & \\ & \ddots & \\ & & b_{n}\end{array}\right) U^{*}$, and
- $\max \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=U\left(\begin{array}{lll}b_{n} & & \\ & \ddots & \\ & & b_{1}\end{array}\right) U^{*}$.

General Quantum Channels: $\Phi(X)=\sum F_{j} X F_{j}^{*}$

Fact Let $\rho_{2}, \sigma \in M_{n}$ be density matrices. There is a quantum channel Φ such that

$$
\Phi\left(\rho_{2}\right)=\sigma
$$

General Quantum Channels: $\Phi(X)=\sum F_{j} X F_{j}^{*}$

Fact Let $\rho_{2}, \sigma \in M_{n}$ be density matrices. There is a quantum channel Φ such that

$$
\Phi\left(\rho_{2}\right)=\sigma
$$

Theorem [Li,Pelejo,Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{ccc}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary, $a_{1} \geq \cdots \geq a_{n}$. For general quantum channels Φ,

- $\min \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=$

General Quantum Channels: $\Phi(X)=\sum F_{j} X F_{j}^{*}$

Fact Let $\rho_{2}, \sigma \in M_{n}$ be density matrices. There is a quantum channel Φ such that

$$
\Phi\left(\rho_{2}\right)=\sigma
$$

Theorem [Li,Pelejo,Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary, $a_{1} \geq \cdots \geq a_{n}$. For general quantum channels Φ,

- $\min \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}$, and

General Quantum Channels: $\Phi(X)=\sum F_{j} X F_{j}^{*}$

Fact Let $\rho_{2}, \sigma \in M_{n}$ be density matrices. There is a quantum channel Φ such that

$$
\Phi\left(\rho_{2}\right)=\sigma
$$

Theorem [Li,Pelejo,Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{ccc}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary, $a_{1} \geq \cdots \geq a_{n}$. For general quantum channels Φ,

- $\min \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}$, and
- $\max \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=U\left(\begin{array}{llll}0 & & & \\ & \ddots & & \\ & & 0 & \\ & & & 1\end{array}\right) U^{*}$.

Mixed Unitary and Unital Channels

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_{n}$ be density matrices. The following are equivalent.

Mixed Unitary and Unital Channels

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_{n}$ be density matrices. The following are equivalent.
(1) There exists a mixed unitary quantum channel Φ such that $\Phi(\rho)=\sigma$.

Mixed Unitary and Unital Channels

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_{n}$ be density matrices. The following are equivalent.
(1) There exists a mixed unitary quantum channel Φ such that $\Phi(\rho)=\sigma$.
(2) There are unitary matrices $U_{1}, \ldots, U_{n} \in M_{n}$ such that

$$
\sigma=\frac{1}{n}\left(U_{1} \rho U_{1}^{*}+\cdots+U_{n} \rho U_{n}^{*}\right)
$$

Mixed Unitary and Unital Channels

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_{n}$ be density matrices. The following are equivalent.
(1) There exists a mixed unitary quantum channel Φ such that $\Phi(\rho)=\sigma$.
(2) There are unitary matrices $U_{1}, \ldots, U_{n} \in M_{n}$ such that

$$
\sigma=\frac{1}{n}\left(U_{1} \rho U_{1}^{*}+\cdots+U_{n} \rho U_{n}^{*}\right)
$$

(3) There exists a unital quantum channel Φ such that $\Phi(\rho)=\sigma$.

Mixed Unitary and Unital Channels

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_{n}$ be density matrices. The following are equivalent.
(1) There exists a mixed unitary quantum channel Φ such that $\Phi(\rho)=\sigma$.
(2) There are unitary matrices $U_{1}, \ldots, U_{n} \in M_{n}$ such that

$$
\sigma=\frac{1}{n}\left(U_{1} \rho U_{1}^{*}+\cdots+U_{n} \rho U_{n}^{*}\right)
$$

(3) There exists a unital quantum channel Φ such that $\Phi(\rho)=\sigma$.
(4) $\lambda(\sigma) \prec \lambda(\rho)$, i.e., the sum of the k largest eigenvalues of σ is not larger than that of ρ for $k=1, \ldots, n-1$.

Theorem [Li, Pelejo, Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary, $a_{1} \geq \cdots \geq a_{n}$. For unital channels Φ,

- $\max \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=$

Theorem [Li, Pelejo, Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary, $a_{1} \geq \cdots \geq a_{n}$. For unital channels Φ,

- $\max \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=\rho_{1}=U\left(\begin{array}{lll}b_{n} & & \\ & \ddots & \\ & & b_{1}\end{array}\right) U^{*}$, and

Theorem [Li, Pelejo, Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary, $a_{1} \geq \cdots \geq a_{n}$. For unital channels Φ,

- $\max \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=\rho_{1}=U\left(\begin{array}{lll}b_{n} & & \\ & \ddots & \\ & & b_{1}\end{array}\right) U^{*}$, and
- $\min \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=U\left(\begin{array}{lll}d_{1} & & \\ & \ddots & \\ & & d_{n}\end{array}\right) U^{*}$,
where $\left(d_{1}, \ldots, d_{n}\right)$ is determined by the following algorithm:

Step 0. Set $\left(\Delta_{1}, \ldots, \Delta_{n}\right)=\lambda\left(\rho_{1}\right)-\lambda\left(\rho_{2}\right)$.

Theorem [Li, Pelejo, Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary, $a_{1} \geq \cdots \geq a_{n}$. For unital channels Φ,

- $\max \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=\rho_{1}=U\left(\begin{array}{lll}b_{n} & & \\ & \ddots & \\ & & b_{1}\end{array}\right) U^{*}$, and
- $\min \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=U\left(\begin{array}{lll}d_{1} & & \\ & \ddots & \\ & & d_{n}\end{array}\right) U^{*}$,
where $\left(d_{1}, \ldots, d_{n}\right)$ is determined by the following algorithm:

Step 0. Set $\left(\Delta_{1}, \ldots, \Delta_{n}\right)=\lambda\left(\rho_{1}\right)-\lambda\left(\rho_{2}\right)$.
Step 1. If $\Delta_{1} \geq \cdots \geq \Delta_{n}$, then set $\left(d_{1}, \ldots, d_{n}\right)=\lambda\left(\rho_{1}\right)-\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ and stop. Else, go to Step 2.

Theorem [Li, Pelejo, Wang]

Let $\|\cdot\|$ be a USI norm, $\rho_{1}=U\left(\begin{array}{lll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right) U^{*}, \rho_{2} \in M_{n}$ be density matrices, where U is unitary, $a_{1} \geq \cdots \geq a_{n}$. For unital channels Φ,

- $\max \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=\rho_{1}=U\left(\begin{array}{lll}b_{n} & & \\ & \ddots & \\ & & b_{1}\end{array}\right) U^{*}$, and
- $\min \left\|\rho_{1}-\Phi\left(\rho_{2}\right)\right\|$ occurs at $\Phi\left(\rho_{2}\right)=U\left(\begin{array}{lll}d_{1} & & \\ & \ddots & \\ & & d_{n}\end{array}\right) U^{*}$,
where $\left(d_{1}, \ldots, d_{n}\right)$ is determined by the following algorithm:

Step 0. Set $\left(\Delta_{1}, \ldots, \Delta_{n}\right)=\lambda\left(\rho_{1}\right)-\lambda\left(\rho_{2}\right)$.
Step 1. If $\Delta_{1} \geq \cdots \geq \Delta_{n}$, then set $\left(d_{1}, \ldots, d_{n}\right)=\lambda\left(\rho_{1}\right)-\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ and stop. Else, go to Step 2.

Step 2. Let $2 \leq j<k \leq \ell \leq n$ be such that

$$
\Delta_{j-1} \neq \Delta_{j}=\cdots=\Delta_{k-1}<\Delta_{k}=\cdots=\Delta_{\ell} \neq \Delta_{\ell+1} .
$$

Replace each $\Delta_{j}, \ldots, \Delta_{\ell}$ by $\left(\Delta_{j}+\cdots+\Delta_{\ell}\right) /(\ell-j+1)$, and go to Step 1.

Examples

Here are two examples illustrating the algorithm in the theorem.
Example 1 Let $\rho_{1}=\frac{1}{10} \operatorname{diag}(4,3,3,0)$ and $\rho_{2}=\frac{1}{10} \operatorname{diag}(3,3,3,1)$.
Apply Step 0:

$$
\text { Set }\left(\Delta_{1}, \ldots, \Delta_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(3,3,3,1)=\frac{1}{10} \operatorname{diag}(1,0,0,-1)
$$

Examples

Here are two examples illustrating the algorithm in the theorem.
Example 1 Let $\rho_{1}=\frac{1}{10} \operatorname{diag}(4,3,3,0)$ and $\rho_{2}=\frac{1}{10} \operatorname{diag}(3,3,3,1)$.
Apply Step 0:

$$
\text { Set }\left(\Delta_{1}, \ldots, \Delta_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(3,3,3,1)=\frac{1}{10} \operatorname{diag}(1,0,0,-1)
$$

Apply Step 1.

$$
\text { Set }\left(d_{1}, \ldots, d_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(1,0,0,-1) \frac{1}{10}=\operatorname{diag}(3,3,3,1)
$$

Examples

Here are two examples illustrating the algorithm in the theorem.
Example 1 Let $\rho_{1}=\frac{1}{10} \operatorname{diag}(4,3,3,0)$ and $\rho_{2}=\frac{1}{10} \operatorname{diag}(3,3,3,1)$.
Apply Step 0:

$$
\text { Set }\left(\Delta_{1}, \ldots, \Delta_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(3,3,3,1)=\frac{1}{10} \operatorname{diag}(1,0,0,-1)
$$

Apply Step 1.

$$
\text { Set }\left(d_{1}, \ldots, d_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(1,0,0,-1) \frac{1}{10}=\operatorname{diag}(3,3,3,1)
$$

Example 2 Let $\rho_{1}=\frac{1}{10} \operatorname{diag}(4,3,3,0)$ and $\rho_{2}=\frac{1}{10} \operatorname{diag}(5,2,2,1)$.
Apply Step 0:

$$
\text { Set }\left(\Delta_{1}, \ldots, \Delta_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(5,2,2,1)=\frac{1}{10} \operatorname{diag}(-1,1,1,-1)
$$

Examples

Here are two examples illustrating the algorithm in the theorem.
Example 1 Let $\rho_{1}=\frac{1}{10} \operatorname{diag}(4,3,3,0)$ and $\rho_{2}=\frac{1}{10} \operatorname{diag}(3,3,3,1)$.
Apply Step 0:

$$
\text { Set }\left(\Delta_{1}, \ldots, \Delta_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(3,3,3,1)=\frac{1}{10} \operatorname{diag}(1,0,0,-1)
$$

Apply Step 1.

$$
\text { Set }\left(d_{1}, \ldots, d_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(1,0,0,-1) \frac{1}{10}=\operatorname{diag}(3,3,3,1)
$$

Example 2 Let $\rho_{1}=\frac{1}{10} \operatorname{diag}(4,3,3,0)$ and $\rho_{2}=\frac{1}{10} \operatorname{diag}(5,2,2,1)$.
Apply Step 0 :

$$
\text { Set }\left(\Delta_{1}, \ldots, \Delta_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(5,2,2,1)=\frac{1}{10} \operatorname{diag}(-1,1,1,-1)
$$

Apply Step 2.

Change $\left(\Delta_{1}, \ldots, \Delta_{4}\right)$ to $\frac{1}{10} \operatorname{diag}(1 / 3,1 / 3,1 / 3,-1)$.

Examples

Here are two examples illustrating the algorithm in the theorem.
Example 1 Let $\rho_{1}=\frac{1}{10} \operatorname{diag}(4,3,3,0)$ and $\rho_{2}=\frac{1}{10} \operatorname{diag}(3,3,3,1)$.
Apply Step 0:

$$
\text { Set }\left(\Delta_{1}, \ldots, \Delta_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(3,3,3,1)=\frac{1}{10} \operatorname{diag}(1,0,0,-1)
$$

Apply Step 1.

$$
\text { Set }\left(d_{1}, \ldots, d_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(1,0,0,-1) \frac{1}{10}=\operatorname{diag}(3,3,3,1)
$$

Example 2 Let $\rho_{1}=\frac{1}{10} \operatorname{diag}(4,3,3,0)$ and $\rho_{2}=\frac{1}{10} \operatorname{diag}(5,2,2,1)$.
Apply Step 0:

$$
\text { Set }\left(\Delta_{1}, \ldots, \Delta_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(5,2,2,1)=\frac{1}{10} \operatorname{diag}(-1,1,1,-1)
$$

Apply Step 2.

Change $\left(\Delta_{1}, \ldots, \Delta_{4}\right)$ to $\frac{1}{10} \operatorname{diag}(1 / 3,1 / 3,1 / 3,-1)$.

Apply Step 1.

$$
\text { Set }\left(d_{1}, \ldots, d_{4}\right)=\frac{1}{10} \operatorname{diag}(4,3,3,0)-\frac{1}{10} \operatorname{diag}(1 / 3,1 / 3,1 / 3,-1)=\frac{1}{30} \operatorname{diag}(11,8,8,3)
$$

Remarks, further results, and further research

Remarks, further results, and further research

- We also obtained results for other functions including:

Remarks, further results, and further research

- We also obtained results for other functions including: the fidelity function $F\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}^{1 / 2} \rho_{2}^{1 / 2}\right\|_{1}$,

Remarks, further results, and further research

- We also obtained results for other functions including: the fidelity function $F\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}^{1 / 2} \rho_{2}^{1 / 2}\right\|_{1}$, the relative entropy function $S\left(\rho_{1} \| \rho_{2}\right)=\operatorname{tr}\left(\rho_{1}\left(\log \rho_{1}-\log \rho_{2}\right)\right)$,

Remarks, further results, and further research

- We also obtained results for other functions including:

$$
\text { the fidelity function } F\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}^{1 / 2} \rho_{2}^{1 / 2}\right\|_{1}
$$

$$
\text { the relative entropy function } S\left(\rho_{1} \| \rho_{2}\right)=\operatorname{tr}\left(\rho_{1}\left(\log \rho_{1}-\log \rho_{2}\right)\right)
$$

considered by other authors such as L. Zhang, and S.-M. Fei, J. Li, R. Pereira, and S. Plosker, etc.

Remarks, further results, and further research

- We also obtained results for other functions including:

$$
\text { the fidelity function } F\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}^{1 / 2} \rho_{2}^{1 / 2}\right\|_{1}
$$

$$
\text { the relative entropy function } S\left(\rho_{1} \| \rho_{2}\right)=\operatorname{tr}\left(\rho_{1}\left(\log \rho_{1}-\log \rho_{2}\right)\right)
$$

considered by other authors such as L. Zhang, and S.-M. Fei, J. Li, R. Pereira, and S. Plosker, etc.

- Our proofs depends on matrix theory, majorization, functional calculus, approximation theory, etc. that are useful for other problems.

Remarks, further results, and further research

- We also obtained results for other functions including:

$$
\text { the fidelity function } F\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}^{1 / 2} \rho_{2}^{1 / 2}\right\|_{1}
$$

$$
\text { the relative entropy function } S\left(\rho_{1} \| \rho_{2}\right)=\operatorname{tr}\left(\rho_{1}\left(\log \rho_{1}-\log \rho_{2}\right)\right)
$$

considered by other authors such as L. Zhang, and S.-M. Fei, J. Li, R. Pereira, and S. Plosker, etc.

- Our proofs depends on matrix theory, majorization, functional calculus, approximation theory, etc. that are useful for other problems.
- There are other research problems deserving further study.

Remarks, further results, and further research

- We also obtained results for other functions including:

$$
\text { the fidelity function } F\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}^{1 / 2} \rho_{2}^{1 / 2}\right\|_{1}
$$

$$
\text { the relative entropy function } S\left(\rho_{1} \| \rho_{2}\right)=\operatorname{tr}\left(\rho_{1}\left(\log \rho_{1}-\log \rho_{2}\right)\right) \text {, }
$$

considered by other authors such as L. Zhang, and S.-M. Fei, J. Li, R. Pereira, and S. Plosker, etc.

- Our proofs depends on matrix theory, majorization, functional calculus, approximation theory, etc. that are useful for other problems.
- There are other research problems deserving further study.
- For example, one may study the optimal lower and upper bounds of the set

$$
\left\{D\left(\rho_{1}, \Phi(\sigma)\right): \Phi \in \mathcal{S}, \sigma \in \mathcal{T}\right\}
$$

for a set \mathcal{S} of quantum channels, and a set \mathcal{T} of quantum states.

Remarks, further results, and further research

- We also obtained results for other functions including:

$$
\text { the fidelity function } F\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}^{1 / 2} \rho_{2}^{1 / 2}\right\|_{1}
$$

$$
\text { the relative entropy function } S\left(\rho_{1} \| \rho_{2}\right)=\operatorname{tr}\left(\rho_{1}\left(\log \rho_{1}-\log \rho_{2}\right)\right)
$$

considered by other authors such as L. Zhang, and S.-M. Fei, J. Li, R. Pereira, and S. Plosker, etc.

- Our proofs depends on matrix theory, majorization, functional calculus, approximation theory, etc. that are useful for other problems.
- There are other research problems deserving further study.
- For example, one may study the optimal lower and upper bounds of the set

$$
\left\{D\left(\rho_{1}, \Phi(\sigma)\right): \Phi \in \mathcal{S}, \sigma \in \mathcal{T}\right\}
$$

for a set \mathcal{S} of quantum channels, and a set \mathcal{T} of quantum states.

- One can ask similar opimization problems for general matrices.

Remarks, further results, and further research

- We also obtained results for other functions including: the fidelity function $F\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}^{1 / 2} \rho_{2}^{1 / 2}\right\|_{1}$, the relative entropy function $S\left(\rho_{1} \| \rho_{2}\right)=\operatorname{tr}\left(\rho_{1}\left(\log \rho_{1}-\log \rho_{2}\right)\right)$, considered by other authors such as L. Zhang, and S.-M. Fei, J. Li, R. Pereira, and S. Plosker, etc.
- Our proofs depends on matrix theory, majorization, functional calculus, approximation theory, etc. that are useful for other problems.
- There are other research problems deserving further study.
- For example, one may study the optimal lower and upper bounds of the set

$$
\left\{D\left(\rho_{1}, \Phi(\sigma)\right): \Phi \in \mathcal{S}, \sigma \in \mathcal{T}\right\}
$$

for a set \mathcal{S} of quantum channels, and a set \mathcal{T} of quantum states.

- One can ask similar opimization problems for general matrices.
- Our paper will be submitted and posted on arXiv soon.

Thank you for your attention!

Talk to me now or later if you have any questions! Also talk to other EXTREEMS-QED faculty members
if you are interested in their areas.

