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Big data

What is big data?

Big data (Wiki)
Big data is a broad term for data sets so large or complex that traditional data
processing applications are inadequate.

.....

What is considered “big data” varies depending on the capabilities of the users
and their tools, and expanding capabilities make big data a moving target.

To study big data, one may focus on analyzing important data sets, and
deduce useful information and decisions.
Alternatively, one may focus on some learning and creating techniques in
handling large data set.
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Quantum Computing

In quantum mechanics, to model 100 photons, we need complex vectors
of sizes N = 2100.

Even if a computer can do 33.86 quadrillion (= 1015 ∗ 33.86) operations
per second, changing such a matrix require

2100/(1015 ∗ 33.86) seconds > 9364 centries.

That is why Richard Feynman suggested the use of
quantum properties/systems to do fast computing.
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Quantum Information Science

In quantum information science, one uses quantum states and
properties to store, transmit, and process information.

To transmit and process information, qubits will go through quantum
channels or operations.

↓ ↓ ↓

→ Quantum Channel
Quantum computing unit →

↑ ↑ ↑
Quantum Operations

A Basic Problem
Given two quantum states ρ1, ρ2 and a certain quantum operation or channel
Φ, how similar and how different can ρ1 and Φ(ρ2) be?

Chi-Kwong Li, College of William & Mary Matrix Problems in Quantum Information Science



Quantum Information Science

In quantum information science, one uses quantum states and
properties to store, transmit, and process information.

To transmit and process information, qubits will go through quantum
channels or operations.

↓ ↓ ↓

→ Quantum Channel
Quantum computing unit →

↑ ↑ ↑
Quantum Operations

A Basic Problem
Given two quantum states ρ1, ρ2 and a certain quantum operation or channel
Φ, how similar and how different can ρ1 and Φ(ρ2) be?

Chi-Kwong Li, College of William & Mary Matrix Problems in Quantum Information Science



Quantum Information Science

In quantum information science, one uses quantum states and
properties to store, transmit, and process information.

To transmit and process information, qubits will go through quantum
channels or operations.

↓ ↓ ↓

→ Quantum Channel
Quantum computing unit →

↑ ↑ ↑
Quantum Operations

A Basic Problem
Given two quantum states ρ1, ρ2 and a certain quantum operation or channel
Φ, how similar and how different can ρ1 and Φ(ρ2) be?

Chi-Kwong Li, College of William & Mary Matrix Problems in Quantum Information Science



Quantum Information Science

In quantum information science, one uses quantum states and
properties to store, transmit, and process information.

To transmit and process information, qubits will go through quantum
channels or operations.

↓ ↓ ↓

→ Quantum Channel
Quantum computing unit →

↑ ↑ ↑
Quantum Operations

A Basic Problem
Given two quantum states ρ1, ρ2 and a certain quantum operation or channel
Φ, how similar and how different can ρ1 and Φ(ρ2) be?

Chi-Kwong Li, College of William & Mary Matrix Problems in Quantum Information Science



Mathematical Formulation

Quantum states are represented as n× n density matrices, i.e., positive
semi-definite matrices with trace one, say, ρ = 1

2

(
1 i
−i 1

)
.

Quantum channels / quantum operations are trace preserving completely
positive linear maps Φ : Mn →Mn with the operator sum representation

Φ(X) =
r∑
j=1

FjXF
∗
j for all X ∈Mn,

where F1, . . . , Fr ∈Mn satisfy
∑r

j=1 F
∗
j Fj = In.

Unitary channel: Φ(X) = UXU∗ for some unitary U .

Mixed unitary channel: Φ(X) =
∑r

j=1 pjUjXU
∗
j for some unitary

U1, . . . , Ur and probability vector (p1, . . . , pr).

Unital channels: A quantum channel Φ such that Φ(I/n) = I/n.
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Four types of tools

Unitary channels: Φ(X) = UXU∗ for some unitary U .

Mixed unitary channels: Φ(X) =
∑r

j=1 pjUjXU
∗
j

Unital channels: Φ(I) = I

All quantum channels
Φ(X) =

∑r

j=1 FjXF
∗
j .
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Distance measures for quantum states

For two numbers a, b, we can measure the distance between them by
|a− b|.
For two matrices / quantum states ρ1, ρ2, we can measure the distance
between them by a norm
There are different kinds of norms on matrices. For example,
the operator norm ‖X‖oper = max{‖Xv‖ : v ∈ Cn, ‖v‖ = 1},

the trace norm ‖X‖1 = tr |X|, and Frobenius norm
‖X‖F = tr (X∗X)1/2.
A norm ‖ · ‖ on Mn is unitary similarity invariant (USI) if

‖UXU∗‖ = ‖X‖ for any U,X ∈Mn such that U is unitary.
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Unitary channels: Φ(X) = UXU ∗

Theorem [Li,Pelejo,Wang]

Let ‖ · ‖ be a USI norm, ρ1 = U

(
a1

. . .
an

)
U∗, ρ2 ∈Mn be density

matrices, where U is unitary and a1 ≥ · · · ≥ an. Suppose ρ2 has eigenvalues
b1 ≥ · · · ≥ bn.

For unitary channels Φ,

min ‖ρ1 − Φ(ρ2)‖ occurs at Φ(ρ2) = U

(
b1

. . .
bn

)
U∗, and

max ‖ρ1 − Φ(ρ2)‖ occurs at Φ(ρ2) = U

(
bn

. . .
b1

)
U∗.
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General Quantum Channels: Φ(X) = ∑
FjXF ∗

j

Fact Let ρ2, σ ∈Mn be density matrices. There is a quantum channel Φ such
that

Φ(ρ2) = σ.

Theorem [Li,Pelejo,Wang]

Let ‖ · ‖ be a USI norm, ρ1 = U

(
a1

. . .
an

)
U∗, ρ2 ∈Mn be density

matrices, where U is unitary, a1 ≥ · · · ≥ an. For general quantum channels Φ,

min ‖ρ1 − Φ(ρ2)‖ occurs at Φ(ρ2) = ρ1 = U

(
a1

. . .
an

)
U∗, and

max ‖ρ1 − Φ(ρ2)‖ occurs at Φ(ρ2) = U

0
. . .

0
1

U∗.
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Mixed Unitary and Unital Channels

Theorem [Li and Poon, 2011]
Let ρ, σ ∈Mn be density matrices. The following are equivalent.

1 There exists a mixed unitary quantum channel Φ such that Φ(ρ) = σ.

2 There are unitary matrices U1, . . . , Un ∈Mn such that

σ = 1
n

(U1ρU
∗
1 + · · ·+ UnρU

∗
n) .

3 There exists a unital quantum channel Φ such that Φ(ρ) = σ.

4 λ(σ) ≺ λ(ρ), i.e., the sum of the k largest eigenvalues of σ is not larger
than that of ρ for k = 1, . . . , n− 1.
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Theorem [Li, Pelejo, Wang]

Let ‖ · ‖ be a USI norm, ρ1 = U

(
a1

. . .
an

)
U∗, ρ2 ∈Mn be density

matrices, where U is unitary, a1 ≥ · · · ≥ an. For unital channels Φ,

max ‖ρ1 − Φ(ρ2)‖ occurs at Φ(ρ2) =

ρ1 = U

(
bn

. . .
b1

)
U∗, and

min ‖ρ1 − Φ(ρ2)‖ occurs at Φ(ρ2) = U

(
d1

. . .
dn

)
U∗,

where (d1, . . . , dn) is determined by the following algorithm:

Step 0. Set (∆1, . . . ,∆n) = λ(ρ1)− λ(ρ2).

Step 1. If ∆1 ≥ · · · ≥ ∆n, then set (d1, . . . , dn) = λ(ρ1)− (∆1, . . . ,∆n) and stop.
Else, go to Step 2.

Step 2. Let 2 ≤ j < k ≤ ` ≤ n be such that

∆j−1 6= ∆j = · · · = ∆k−1 < ∆k = · · · = ∆` 6= ∆`+1.

Replace each ∆j , . . . ,∆` by (∆j + · · · + ∆`)/(`− j + 1), and go to Step 1.
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Examples

Here are two examples illustrating the algorithm in the theorem.

Example 1 Let ρ1 = 1
10 diag (4, 3, 3, 0) and ρ2 = 1

10 diag (3, 3, 3, 1).
Apply Step 0:

Set (∆1, . . . ,∆4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (3, 3, 3, 1) = 1
10 diag (1, 0, 0,−1).

Apply Step 1.

Set (d1, . . . , d4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (1, 0, 0,−1) 1
10 = diag (3, 3, 3, 1).

Example 2 Let ρ1 = 1
10 diag (4, 3, 3, 0) and ρ2 = 1

10 diag (5, 2, 2, 1).
Apply Step 0:

Set (∆1, . . . ,∆4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (5, 2, 2, 1) = 1
10 diag (−1, 1, 1,−1).

Apply Step 2.

Change (∆1, . . . ,∆4) to 1
10 diag (1/3, 1/3, 1/3,−1).

Apply Step 1.

Set (d1, . . . , d4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (1/3, 1/3, 1/3,−1) = 1
30 diag (11, 8, 8, 3).
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Remarks, further results, and further research

We also obtained results for other functions including:

the fidelity function F (ρ1, ρ2) = ‖ρ1/2
1 ρ

1/2
2 ‖1,

the relative entropy function S(ρ1||ρ2) = tr (ρ1(log ρ1 − log ρ2)),

considered by other authors such as L. Zhang, and S.-M. Fei, J. Li, R.
Pereira, and S. Plosker, etc.
Our proofs depends on matrix theory, majorization, functional calculus,
approximation theory, etc. that are useful for other problems.
There are other research problems deserving further study.
For example, one may study the optimal lower and upper bounds of the
set

{D(ρ1,Φ(σ)) : Φ ∈ S, σ ∈ T }
for a set S of quantum channels, and a set T of quantum states.
One can ask similar opimization problems for general matrices.
Our paper will be submitted and posted on arXiv soon.
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Thank you for your attention!
Talk to me now or later if you have any questions!

Also talk to other EXTREEMS-QED faculty members
if you are interested in their areas.
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