Bivariate Penalized Splines for Geo-Spatial Models

GuanNan Wang
Department of Mathematics
College of William \mathcal{E} Mary

April 20, 2016

Motivation

Bivariate Splines

Triangulations

Bivatiate Penalized Spline Estimators

Partially Linear Bivariate Spline

Image of Lena Söderberg

Damaged image with 50% of missing data observations

Image of Lena Söderberg

Image recovered using thin-plate splines

Image of Lena Söderberg

Face of Lena Söderberg with 8401 pixels.

Image of Lena Söderberg

Lena Söderberg from November 1972 issue of Playboy

Spatial Data and Modeling

- Spatial is relating to the position, area, shape, and size of things.
- Spatial describes how objects fit together in space.
- Data are facts and statistics collected together for inference and analysis.
- Spatial Data are data/information about the location and shape of, and relationships among, geographic features, usually stored as coordinates and topology.

Spatial Model

- A common goal in spatial modeling: predicting the value of a target variable Y over a two-dimensional domain.
- Let $\left\{\mathbf{X}_{i}=\left(X_{1 i}, X_{2 i}\right)\right\}_{i=1}^{n}$ be a set of n points range over a bounded domain $\Omega \subseteq \mathbb{R}^{2}$ of an arbitrary shape.
- Let Y_{i} be the value of Y observed at point \mathbf{X}_{i}.
- Given n observations $\left\{\left(\mathbf{X}_{i}, Y_{i}\right)\right\}_{i=1}^{n}=\left\{\left(X_{1 i}, X_{2 i}, Y_{i}\right)\right\}_{i=1}^{n}$, we assume

$$
Y_{i}=m\left(\mathbf{X}_{i}\right)+\sigma\left(\mathbf{X}_{i}\right) \epsilon_{i}, \quad i=1, \cdots, n
$$

- ϵ_{i} 's are random errors and independent of \boldsymbol{X}_{i};
- m is an unknown smooth function.
- Goal: to estimate a function of m based on the n observations.

1-D Smoothing Splines

- The smoothing spline estimate of m is defined as a solution to the optimization problem:

$$
\sum_{i=1}^{n}\left[Y_{i}-m\left(X_{i}\right)\right]^{2}+\lambda \int\left[m^{\prime \prime}(t)\right]^{2} d t
$$

with λ as a fixed constant (roughness penalty parameter).

- The 1st term ensures the closeness of the estimate to the data;
- The 2nd term penalizes the curvature of the function;
- Small $\lambda \Rightarrow$ an interpolating estimate;
- Large $\lambda \Rightarrow m^{\prime \prime}(x) \rightarrow 0 \Rightarrow$ the least squares fit.

Bivariate Smoothing

Suppose we have two input variables X_{1} and X_{2}.

- Thin-plate spline smoother: Wood (2003)
- By penalizing the curvature of the spline surface, thin-plate spline is defined as a solution to the optimization problem

$$
\sum_{i=1}^{n}\left(Y_{i}-m\left(X_{1 i}, X_{2 i}\right)\right)^{2}+\lambda \int \sum_{i+j=2}\binom{2}{i}\left(D_{x_{1}}^{i} D_{x_{2}}^{j} f\right)^{2} d x_{1} d x_{2}
$$

- Tensor product spline smoother:

$$
m\left(x_{1}, x_{2}\right)=\sum_{j, k} \beta_{j k} B_{j}\left(x_{1}\right) B_{k}\left(x_{2}\right)
$$

- Useful when the data are observed on a regular grid in a rectangular domain;
- Undesirable when data are located in domains with complex boundaries and holes.

Smoothing Over Difficult Regions

Ramsay (2002, JRSSB): estimate the per capita income for the Island of Montreal, Canada.

Island of Montreal with 493 data points defined by the centroids of census enumeration areas. Source: Ramsay (2002, JRSSB)

Bivariate Splines Over Triangulation

- We consider bivariate splines on triangulations to handle the irregular domains.

Triangulation of the image of Lena Söderberg

Triangle: Size and Shape

- Let τ be a triangle, i.e., a convex hull of three points not located in one line.
- Given any triangle τ,
- Let $|\tau|$ be the length of its longest edge;
- Let ρ_{τ} be the radius of the largest disk inscribed in τ;
- Define the ratio $\beta_{\tau}=|\tau| / \rho_{\tau}$ the shape parameter of τ;
- For an equilateral triangle, $\beta_{\tau}=2 \sqrt{3}$;

- Any other triangle has a larger shape of parameter;
- When β_{τ} is small, the triangles are relatively uniform (all angles of triangles in the triangulation τ are relatively the same).

TRIANGULATIONS

A collection $\triangle=\left\{\tau_{1}, \ldots, \tau_{N}\right\}$ of triangles is called a triangulation of $\Omega=\cup_{i=1}^{N} \tau_{i}$ if a pair of triangles in \triangle intersect, then their intersection is either a common vertex or a common edge.

TRIANGULATIONS

A collection $\triangle=\left\{\tau_{1}, \ldots, \tau_{N}\right\}$ of triangles is called a triangulation of $\Omega=\cup_{i=1}^{N} \tau_{i}$ if a pair of triangles in \triangle intersect, then their intersection is either a common vertex or a common edge.

Two triangulation examples.

Uniform Refinement of A Triangulation

Let Δ be a given triangulation. A uniform refinement of Δ can be obtained by splitting each triangle $\tau \in \Delta$ into four subtriangles by connecting the midpoints of the edges of τ.

A triangulation and its uniform refinement

Triangulations In Practice

- Maxmin-angle triangulation: we seek to maximize the smallest angle in a triangulation.
- There is no triangle that contains no data points.
- Find a polygon Ω containing all the design points of the data and triangulate Ω by hand or computer to have a triangulation \triangle_{0}.
- Uniformly refine \triangle_{0} several times to have a desired triangulation.
- The Delaunay algorithm is a good way to triangulate the convex hull of an arbitrary dataset; see MATLAB program "delaunay.m".

Definition of Spline Functions

- Let $\tau=\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\rangle$. For any point $v=(x, y) \in R^{2}$, let b_{1}, b_{2}, b_{3} be the solution of

$$
\begin{aligned}
& x=b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}, \\
& y=b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3}, \\
& 1=b_{1}+b_{2}+b_{3},
\end{aligned}
$$

where coefficients $\left(b_{1}, b_{2}, b_{3}\right)$ are called the barycentric coordinates of point v with respect to the triangle τ.

- Fix a degree $d>0$. For $i+j+k=d$, let

$$
B_{i j k}^{d}(x, y)=\frac{d!}{i!j!k!} b_{1}^{i} b_{2}^{j} b_{3}^{k} \text { (Bernstein-Bézier polynomials). }
$$

- Let $\left.s\right|_{\tau}=\sum_{i+j+k=d} c_{i j k}^{\tau} B_{i j k}^{d}(x, y), \tau \in \triangle$.

Spline Functions on Triangulations

- Lai and Schumaker (2007): all basics about multivariate splines
- Evaluation
- Differentiation
- Integration
- Refinement schemes of a triangulation
- Lai and Schumaker (2007): advanced properties
- Dimension of various spline spaces
- Construction of various locally supported

Lai and Schumaker basis functions

- Approximation properties of various spline spaces

Bivariate Penalized Spline Estimator

- Given $\lambda>0$ and $\left\{\mathbf{X}_{i}, Y_{i}\right\}_{i=1}^{n}$, consider the minimization:

$$
\begin{equation*}
\min _{s} \sum_{i=1}^{n}\left\{Y_{i}-s\left(\mathbf{X}_{i}\right)\right\}^{2}+\lambda \mathcal{E}_{v}(s) \tag{1}
\end{equation*}
$$

where

$$
\mathcal{E}_{v}(f)=\sum_{\tau \in \Delta} \int_{\tau} \sum_{i+j=2}\binom{2}{i}\left(D_{x_{1}}^{i} D_{x_{2}}^{j} f\right)^{2} d x_{1} d x_{2}
$$

is the energy functional.

- Let \widehat{m}_{λ} be the minimizer of (1) and we call it the bivariate penalized spline estimator over triangulation (BPSOT estimator) of m corresponding to λ.

Penalty Parameter Selection

- Partition the original data randomly into K subsamples with: one subsample \Rightarrow test set, $K-1$ subsamples \Rightarrow training set.
- Define the K-fold cross-validation score as

$$
C V_{\lambda}=\sum_{i=1}^{n}\left\{Y_{i}-\hat{m}_{\lambda}^{-k[i]}\left(\mathbf{X}_{i}\right)\right\}^{2}
$$

- $k[i]$: the subsample containing the i th observation.
- $\hat{m}_{\lambda}^{-k[i]}$: the estimate of the mean with the measurements of the $k[i]$ th part of the data points removed.
- Select $\lambda=\arg \min C V_{\lambda}$.

Image of Lena Söderberg: Triangulations

Triangulation \triangle_{0}

Image of Lena Söderberg: Triangulations

Triangulation \triangle_{1}

Image of Lena Söderberg: Triangulations

Triangulation \triangle_{2}

Image of Lena Söderberg：Triangulations

Recovered image using bivariate splines over triangulation Δ_{1}

Motivation: California House Value Data

> | \cdot | $<50 \mathrm{~K}$ |
| :--- | :--- |
| \cdot | $50 \mathrm{~K}-100 \mathrm{~K}$ |
| | $100 \mathrm{~K}-150 \mathrm{~K}$ |
| \cdot | $150 \mathrm{~K}-200 \mathrm{~K}$ |
| \cdot | $200 \mathrm{~K}-300 \mathrm{~K}$ |
| \cdot | $>300 \mathrm{~K}$ |
| | boundary |

- Prediction
- How different factors affect real estate property prices?

20,532 blocks defined by centroids of census enumeration areas (1990 Census).

California House Value Data

- Data: all the block groups in California from the 1990 Census
- Target: House value

California House Value Data

- Data: all the block groups in California from the 1990 Census
- Target: House value

California House Value Data

- Data: all the block groups in California from the 1990 Census
- Target: House value

California House Value Data

- Data: all the block groups in California from the 1990 Census
- Target: House value

California House Value Data

- Data: all the block groups in California from the 1990 Census
- Target: House value

California House Value Data

- Data: all the block groups in California from the 1990 Census
- Target: House value

California House Value Data

- Data: all the block groups in California from the 1990 Census
- Target: House value

California House Value Data

- Data: all the block groups in California from the 1990 Census
- Target: House value

6-FACTOR GLM

- 6-factor GLM of house value as a linear combination of:
- House Age (Age)
- Total \# of Rooms (TR)
- \# of Bedrooms (BR)
- Median Income (Income)

Model 1: 6-Factor GLM (Pace and Barry, 1997)

$$
\begin{aligned}
\log (\text { Value })= & \beta_{0}+\beta_{1} \text { Income }+\beta_{2} \log (\text { Age }) \\
& +\beta_{3} \log (\text { TR } / \text { Pop })+\beta_{4} \log (\text { BR } / \text { Pop }) \\
& +\beta_{5} \log (\text { Pop } / \text { Hhd })+\beta_{6} \log (\text { Hhd })
\end{aligned}
$$

6-FACTOR GLM Estimates

A. California house value data

B. GLM fit with 6 factors

LOCATION, LOCATION, LOCATION!

- "Location matters"!
- We need to adjust for the location effect:
- House Age (Age)
- Population (Pop)
- Total \# of Rooms (TR)
- \# of Bedrooms (BR)
- Median Income (Income)
- Household (Hhd)
- Latitude
- Longitude

Model 2: A Flexible Semiparametric Model

$$
\begin{aligned}
\log (\text { Value })= & \beta_{0}+\beta_{1} \text { Income }+\beta_{2} \log (\text { Age }) \\
& +\beta_{3} \log (\text { TR } / \text { Pop })+\beta_{4} \log (\text { BR } / \text { Pop }) \\
& +\beta_{5} \log (\text { Pop } / \text { Hhd })+\beta_{6} \log (\text { Hhd }) \\
& +g(\text { Latitude }, \text { Longitude }),
\end{aligned}
$$

where $g(\cdot, \cdot)$ is a smooth bivariate function to be estimated.

Estimated House Values

(a) GLM fit with 6 factors

(b) Bivariate penalized splines

Prediction errors of the logarithm of house values.

LINEAR	KRIG	TPS	SOAP	BPST
0.146	0.083	0.081	0.079	0.052

REFERENCES

- Furrer, R., Nychka, D., and Sainand, S. (2011). Package 'fields'. R package version 6.6.1. http: //cran.r-project.org/web/packages/fields/fields.pdf.
- Lai, M. J. and Schumaker, L. L. (2007). Spline Functions on Triangulations. Cambridge University Press.
- Lai, M. J. and Wang, L. (2013). Bivariate penalized splines for regression. Statistica Sinica 23, 1399-1417.
- Ramsay, T. (2002). Spline smoothing over difficult regions. J R. Statist. Soc. B 64, 307-319.
- Wood, S. N. (2003). Thin plate regression splines. J R. Statist. Soc. B, 65, 95-114.
- Wood, S. N., Bravington, M. V. and Hedley, S. L. (2008). Soap film smoothing.J R. Statist. Soc. B 70 931-955.

