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Vectors

A matrix with only one column is called a column vector, or simply a
vector.

An example of a vector with two entries: w =

[
2
3

]
.

The set of all vectors with 2 entries is denoted by R2.

Two vectors are equal if and only if their corresponding entries are
equal.

Two operations on vectors:

I the sum of two vectors u and v is the vector u + v obtained by adding
corresponding entries of u and v .

I given a vector u and a real number c , the scalar multiple of u by c is
the vector cu obtained by multiplying each entry in u by c .
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Example

Example: given u =

[
1
−2

]
and v =

[
2
−5

]
, find 4u, (−3)v and

4u + (−3)v .

Solution: 4u =

[
4
−8

]

(−3)v =

[
−6
15

]

4u + (−3)v =

[
4
−8

]
+

[
−6
15

]
=

[
−2
7

]
.
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Geometric descriptions of R2

Consider a rectangular coordinate system in the plane. Because each
point in the plane is determined by an ordered pair of numbers, we

can identify a geometric point (a, b) with the column vector

[
a
b

]
.

So we may regard R2 as the set of all points in the plane.

If vectors u and v are represented as points in the plane, then the
vector u + v corresponds to the fourth vertex of the parallelogram
whose other vertices are u, v and 0.
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Vectors in R3 and Rn

Vectors in R3 are 3× 1 matrices, that is, a column with three entries.

They are represented geometrically by points in a three-dimensional
coordinate space, with arrows from the origin.

If n is a positive integer, Rn (read r-n) denotes the collection of all
lists (or ordered n-tuples) of n real numbers, usually written as n × 1

matrices, such as


u1
u2
. . .
un


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Algebraic properties of vectors in Rn

The vectors whose entries are all zeros is called the zero vector, and is
denoted by vector 0.

For all vectors u, v ,w in Rn and all scalars c and d (thus c and d are
real numbers):

1 u + v = v + u
2 (u + v) + w = u + (v + w)
3 u + 0 = 0 + u = u
4 u + (−u) = −u + u = 0, where −u = (−1)u
5 c(u + v) = cu + cv
6 (c + d)u = cu + du
7 c(du) = (cd)u
8 1u = u
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Linear combinations of vectors

Given vectors v1, v2, . . . , vp in Rn and scalars c1, c2, . . . , cp, the vector
y defined by

y = c1v1 + c2v2 + . . . + cpvp

is called a linear combination of v1, . . . , vp with weights c1, c2, . . . , cp.

The weights in a linear combination can be any real numbers,
including zero.
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Linear combinations of vectors—Example

Ex: Let a1 =

 1
−2
−5

, a2 =

2
5
6

 and b =

 7
4
−3

. Determine whether

vector b can be written as a linear combination of vectors a1 and a2.

So we need to determine if there are numbers x1 and x2 such that

x1a1 + x2a2 = b.

This is a vector equations.
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Solving vector equations—an example

We can first rewrite the vector equation as a linear systems, by
definitions of scalar multiplication and vector addition

x1

 1
−2
−5

+ x2

2
5
6

 =

 7
4
−3

 ,

which is  x1
−2x1
−5x1

+

2x2
5x2
6x2

 =

 x1 + 2x2
−2x1 + 5x2
−5x1 + 6x2

 =

 7
4
−3


So we have the following linear system

x1 + 2x2 = 7

−2x1 + 5x2 = 4

−5x1 + 6x2 = −3

with augmented matrix

 1 2 7
−2 5 4
−5 6 −3


Solve it, we get x1 = 3 and x2 = 2. So b = 3a1 + 2a2.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Solving vector equations—an example

We can first rewrite the vector equation as a linear systems, by
definitions of scalar multiplication and vector addition

x1

 1
−2
−5

+ x2

2
5
6

 =

 7
4
−3

 ,

which is  x1
−2x1
−5x1

+

2x2
5x2
6x2

 =

 x1 + 2x2
−2x1 + 5x2
−5x1 + 6x2

 =

 7
4
−3



So we have the following linear system

x1 + 2x2 = 7

−2x1 + 5x2 = 4

−5x1 + 6x2 = −3

with augmented matrix

 1 2 7
−2 5 4
−5 6 −3


Solve it, we get x1 = 3 and x2 = 2. So b = 3a1 + 2a2.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Solving vector equations—an example

We can first rewrite the vector equation as a linear systems, by
definitions of scalar multiplication and vector addition

x1

 1
−2
−5

+ x2

2
5
6

 =

 7
4
−3

 ,

which is  x1
−2x1
−5x1

+

2x2
5x2
6x2

 =

 x1 + 2x2
−2x1 + 5x2
−5x1 + 6x2

 =

 7
4
−3


So we have the following linear system

x1 + 2x2 = 7

−2x1 + 5x2 = 4

−5x1 + 6x2 = −3

with augmented matrix

 1 2 7
−2 5 4
−5 6 −3



Solve it, we get x1 = 3 and x2 = 2. So b = 3a1 + 2a2.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Solving vector equations—an example

We can first rewrite the vector equation as a linear systems, by
definitions of scalar multiplication and vector addition

x1

 1
−2
−5

+ x2

2
5
6

 =

 7
4
−3

 ,

which is  x1
−2x1
−5x1

+

2x2
5x2
6x2

 =

 x1 + 2x2
−2x1 + 5x2
−5x1 + 6x2

 =

 7
4
−3


So we have the following linear system

x1 + 2x2 = 7

−2x1 + 5x2 = 4

−5x1 + 6x2 = −3

with augmented matrix

 1 2 7
−2 5 4
−5 6 −3


Solve it, we get x1 = 3 and x2 = 2. So b = 3a1 + 2a2.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Linear combination and vector equations

We observe that in the above example, the original vectors a1, a2 and
b are the columns of the augmented matrix of the linear system.

We write the matrix in a way that identifies its columns[
a1 a2 b

]
In general, a vector equation

x1a1 + x2a2 + . . . + xpvp = b

has the same solution set as the linear system whose augmented
matrix is [

a1 a2 . . . an b
]

In particular, the vector b can be generated by a linear combination of
vectors a1, a2, . . . , an if and only if there exists a solution to the linear
system corresponding to the above augmented matrix.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Linear combination and vector equations

We observe that in the above example, the original vectors a1, a2 and
b are the columns of the augmented matrix of the linear system.

We write the matrix in a way that identifies its columns[
a1 a2 b

]

In general, a vector equation

x1a1 + x2a2 + . . . + xpvp = b

has the same solution set as the linear system whose augmented
matrix is [

a1 a2 . . . an b
]

In particular, the vector b can be generated by a linear combination of
vectors a1, a2, . . . , an if and only if there exists a solution to the linear
system corresponding to the above augmented matrix.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Linear combination and vector equations

We observe that in the above example, the original vectors a1, a2 and
b are the columns of the augmented matrix of the linear system.

We write the matrix in a way that identifies its columns[
a1 a2 b

]
In general, a vector equation

x1a1 + x2a2 + . . . + xpvp = b

has the same solution set as the linear system whose augmented
matrix is [

a1 a2 . . . an b
]

In particular, the vector b can be generated by a linear combination of
vectors a1, a2, . . . , an if and only if there exists a solution to the linear
system corresponding to the above augmented matrix.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Linear combination and vector equations

We observe that in the above example, the original vectors a1, a2 and
b are the columns of the augmented matrix of the linear system.

We write the matrix in a way that identifies its columns[
a1 a2 b

]
In general, a vector equation

x1a1 + x2a2 + . . . + xpvp = b

has the same solution set as the linear system whose augmented
matrix is [

a1 a2 . . . an b
]

In particular, the vector b can be generated by a linear combination of
vectors a1, a2, . . . , an if and only if there exists a solution to the linear
system corresponding to the above augmented matrix.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Span of vectors

Definition: If v1, . . . , vp are vectors in Rn, then the set of all linear
combinations of v1, . . . , vp is denoted by Span{v1, . . . , vp} and is
called the subset of Rn spanned (or generated) by v1, . . . , vp.

That is, Span{v1, . . . , vp} is the collection of all vectors that can be
written in the form

c1v1 + c2v2 + . . . + cpvp,

with real numbers (or scalars) c1, c2, . . . , cp.
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Span of vectors

Ex: let v =

[
1
1

]
, then Span{v} is the the set of vectors whose points

are in the line passing (0, 0) and (1, 1).

In general, let v be a nonzero vector in R3. Then Span{v} is the set
of all scalar multiples of v , which is the set of points on the line in R3

through vectors v and 0.

Let u and v be vectors in R3. What is Span{u, v}?

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Span of vectors

Ex: let v =

[
1
1

]
, then Span{v} is the the set of vectors whose points

are in the line passing (0, 0) and (1, 1).

In general, let v be a nonzero vector in R3. Then Span{v} is the set
of all scalar multiples of v , which is the set of points on the line in R3

through vectors v and 0.

Let u and v be vectors in R3. What is Span{u, v}?

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Span of vectors

Ex: let v =

[
1
1

]
, then Span{v} is the the set of vectors whose points

are in the line passing (0, 0) and (1, 1).

In general, let v be a nonzero vector in R3. Then Span{v} is the set
of all scalar multiples of v , which is the set of points on the line in R3

through vectors v and 0.

Let u and v be vectors in R3. What is Span{u, v}?

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



1.4 Matrix equations (part 1)
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Matrix equation

Definition: If A is an m × n matrix, with column vectors
a1, a2, . . . , an, and if x is a vector in Rn, then the product of A and x ,
denoted by Ax , is the linear combination of the column vectors of A
using the corresponding entries in vector x as weights. That is

Ax =
[
a1 a2 . . . an

] 
x1
x2
. . .
xn

 = x1a1 + x2a2 + . . . + xnan.

Ax is defined only if the number of columns of A equals the number
of entries in vector x .
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Examples

Ex 1: For vectors v1, v2, v3 in Rm, write the linear combination
3v1 − 5v2 + 7v3 as a matrix times a vector.

Solution: place vectors v1, v2, v3 into the columns of a matrix A and
place the weights 3,−5, 7 into a vector x .

That is,

3v1 − 5v2 + 7v3 =
[
v1 v2 v3

]  3
−5
7

 = Ax .
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Examples

Ex 2: Write the following linear system as a vector equation involving
a linear combination of vectors, and then as a matrix equation:

x1 + 2x2 − x3 = 4

−5x2 + 3x3 = 1

Solution: we may write the linear system as

x1

[
1
0

]
+ x2

[
2
−5

]
+ x3

[
−1
3

]
=

[
4
1

]
(1)

As in the previous example, we may write it as matrix equation

[
1 2 −1
0 −5 3

]x1x2
x3

 =

[
4
1

]
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Equivalent formulations

Theorem 3: if A is an m × n matrix, with column vectors
a1, a2, . . . , an, and if b is a vector in Rm, then the following three
equations have the same solution set

1 matrix equation Ax = b

2 vector equation x1a1 + x2a2 + . . . + xnan = b

3 the linear system with augmented matrix[
a1 a2 . . . an b

]

So the equation Ax = b has a solution if and only if vector b is a
linear combination of the column vectors of A.
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Existence of solutions—When vectors span Rm?

Theorem 4: Let A be an m × n matrix. Then the following
statements are logically equivalent. That is, for a particular A, either
they are all true or they are all false.

(a) For each vector b in Rm, the equation Ax = b has a solution.

(b) Each b in Rm is a linear combination of the column vectors of A.

(c) The column vectors of A span Rm.

(d) The matrix A has a pivot position in every row.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Existence of solutions—When vectors span Rm?

Theorem 4: Let A be an m × n matrix. Then the following
statements are logically equivalent. That is, for a particular A, either
they are all true or they are all false.

(a) For each vector b in Rm, the equation Ax = b has a solution.

(b) Each b in Rm is a linear combination of the column vectors of A.

(c) The column vectors of A span Rm.

(d) The matrix A has a pivot position in every row.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Existence of solutions—When vectors span Rm?

Theorem 4: Let A be an m × n matrix. Then the following
statements are logically equivalent. That is, for a particular A, either
they are all true or they are all false.

(a) For each vector b in Rm, the equation Ax = b has a solution.

(b) Each b in Rm is a linear combination of the column vectors of A.

(c) The column vectors of A span Rm.

(d) The matrix A has a pivot position in every row.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Existence of solutions—When vectors span Rm?

Theorem 4: Let A be an m × n matrix. Then the following
statements are logically equivalent. That is, for a particular A, either
they are all true or they are all false.

(a) For each vector b in Rm, the equation Ax = b has a solution.

(b) Each b in Rm is a linear combination of the column vectors of A.

(c) The column vectors of A span Rm.

(d) The matrix A has a pivot position in every row.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Existence of solutions—When vectors span Rm?

Theorem 4: Let A be an m × n matrix. Then the following
statements are logically equivalent. That is, for a particular A, either
they are all true or they are all false.

(a) For each vector b in Rm, the equation Ax = b has a solution.

(b) Each b in Rm is a linear combination of the column vectors of A.

(c) The column vectors of A span Rm.

(d) The matrix A has a pivot position in every row.

Gexin Yu gyu@wm.edu Section 1.3 Vector Equations



Example

Ex: Determine if b is in the Span{v1, v2, v3}, where vectors
v1, v2, v3, b are

v1 =

 1
−4
−3

 , v2 =

 3
2
−2

 , v3 =

 4
−6
−7

 , b =

1
2
3


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Proof of Theorem 4

As stated in the previous theorem, (a), (b) and (c) are all true or all
false. So we just need to show (a) and (d) are either both true or
false.

Let U be an echelon form of A.

For any vector b in Rm, we can row reduce the augmented matrix[
A b

]
to an augmented matrix

[
U d

]
for some vector d in Rm.

If (d) is true, then each row of U contains a pivot position, and there
can be no pivot in the augmented column. So Ax = b has a solution,
and (a) is true.

If (d) is false, then the last row of U is all zeros.

Let d be any vector with a 1 in its last entry. Then
[
U d

]
is an

inconsistent system.

Since the row operations are reversible,
[
U d

]
can be transformed

into the form
[
A b

]
for some vector b in Rm.

It follows that the system Ax = b is inconsistent for that vector b. So
(a) is false.
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