Section 1.3 Vector Equations

Gexin Yu
gyu@wm.edu

College of William and Mary

Vectors

- A matrix with only one column is called a column vector, or simply a vector.

Vectors

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries: $w=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.

Vectors

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries: $w=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
- The set of all vectors with 2 entries is denoted by \mathbf{R}^{2}.

Vectors

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries: $w=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
- The set of all vectors with 2 entries is denoted by \mathbf{R}^{2}.
- Two vectors are equal if and only if their corresponding entries are equal.

Vectors

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries: $w=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
- The set of all vectors with 2 entries is denoted by \mathbf{R}^{2}.
- Two vectors are equal if and only if their corresponding entries are equal.
- Two operations on vectors:

Vectors

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries: $w=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
- The set of all vectors with 2 entries is denoted by \mathbf{R}^{2}.
- Two vectors are equal if and only if their corresponding entries are equal.
- Two operations on vectors:
- the sum of two vectors u and v is the vector $u+v$ obtained by adding corresponding entries of u and v.

Vectors

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries: $w=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
- The set of all vectors with 2 entries is denoted by \mathbf{R}^{2}.
- Two vectors are equal if and only if their corresponding entries are equal.
- Two operations on vectors:
- the sum of two vectors u and v is the vector $u+v$ obtained by adding corresponding entries of u and v.
- given a vector u and a real number c, the scalar multiple of u by c is the vector $c u$ obtained by multiplying each entry in u by c.

Example

- Example: given $u=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{c}2 \\ -5\end{array}\right]$, find $4 u,(-3) v$ and $4 u+(-3) v$.

Example

- Example: given $u=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{c}2 \\ -5\end{array}\right]$, find $4 u,(-3) v$ and $4 u+(-3) v$.
- Solution: $4 u=\left[\begin{array}{c}4 \\ -8\end{array}\right]$

Example

- Example: given $u=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{c}2 \\ -5\end{array}\right]$, find $4 u,(-3) v$ and $4 u+(-3) v$.
- Solution: $4 u=\left[\begin{array}{c}4 \\ -8\end{array}\right]$

$$
(-3) v=\left[\begin{array}{l}
-6 \\
15
\end{array}\right]
$$

Example

- Example: given $u=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{c}2 \\ -5\end{array}\right]$, find $4 u,(-3) v$ and $4 u+(-3) v$.
- Solution: $4 u=\left[\begin{array}{c}4 \\ -8\end{array}\right]$

$$
\begin{aligned}
& (-3) v=\left[\begin{array}{c}
-6 \\
15
\end{array}\right] \\
& 4 u+(-3) v=\left[\begin{array}{c}
4 \\
-8
\end{array}\right]+\left[\begin{array}{c}
-6 \\
15
\end{array}\right]=\left[\begin{array}{c}
-2 \\
7
\end{array}\right]
\end{aligned}
$$

Geometric descriptions of R^{2}

- Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector $\left[\begin{array}{l}a \\ b\end{array}\right]$.

Geometric descriptions of R^{2}

- Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector $\left[\begin{array}{l}a \\ b\end{array}\right]$.
- So we may regard \mathbf{R}^{2} as the set of all points in the plane.

Geometric descriptions of R^{2}

- Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector $\left[\begin{array}{l}a \\ b\end{array}\right]$.
- So we may regard \mathbf{R}^{2} as the set of all points in the plane.
- If vectors u and v are represented as points in the plane, then the vector $u+v$ corresponds to the fourth vertex of the parallelogram whose other vertices are u, v and 0 .

Vectors in \mathbf{R}^{3} and \mathbf{R}^{n}

- Vectors in \mathbf{R}^{3} are 3×1 matrices, that is, a column with three entries.

Vectors in \mathbf{R}^{3} and \mathbf{R}^{n}

- Vectors in \mathbf{R}^{3} are 3×1 matrices, that is, a column with three entries.
- They are represented geometrically by points in a three-dimensional coordinate space, with arrows from the origin.

Vectors in \mathbf{R}^{3} and \mathbf{R}^{n}

- Vectors in \mathbf{R}^{3} are 3×1 matrices, that is, a column with three entries.
- They are represented geometrically by points in a three-dimensional coordinate space, with arrows from the origin.
- If n is a positive integer, \mathbf{R}^{n} (read $r-n$) denotes the collection of all lists (or ordered n-tuples) of n real numbers, usually written as $n \times 1$ matrices, such as $\left[\begin{array}{c}u_{1} \\ u_{2} \\ \ldots \\ u_{n}\end{array}\right]$

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):
(1) $u+v=v+u$

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):
(1) $u+v=v+u$
(2) $(u+v)+w=u+(v+w)$

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):
(1) $u+v=v+u$
(2) $(u+v)+w=u+(v+w)$
(3) $u+0=0+u=u$

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):
(1) $u+v=v+u$
(2) $(u+v)+w=u+(v+w)$
(3) $u+0=0+u=u$
(4) $u+(-u)=-u+u=0$, where $-u=(-1) u$

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):
(1) $u+v=v+u$
(2) $(u+v)+w=u+(v+w)$
(3) $u+0=0+u=u$
(4) $u+(-u)=-u+u=0$, where $-u=(-1) u$
(5) $c(u+v)=c u+c v$

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):
(1) $u+v=v+u$
(2) $(u+v)+w=u+(v+w)$
(3) $u+0=0+u=u$
(4) $u+(-u)=-u+u=0$, where $-u=(-1) u$
(5) $c(u+v)=c u+c v$

6) $(c+d) u=c u+d u$

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):
(1) $u+v=v+u$
(2) $(u+v)+w=u+(v+w)$
(3) $u+0=0+u=u$
(4) $u+(-u)=-u+u=0$, where $-u=(-1) u$
(5) $c(u+v)=c u+c v$
(6) $(c+d) u=c u+d u$
(7) $c(d u)=(c d) u$

Algebraic properties of vectors in \mathbf{R}^{n}

- The vectors whose entries are all zeros is called the zero vector, and is denoted by vector 0 .
- For all vectors u, v, w in \mathbf{R}^{n} and all scalars c and d (thus c and d are real numbers):
(1) $u+v=v+u$
(2) $(u+v)+w=u+(v+w)$
(3) $u+0=0+u=u$
(4) $u+(-u)=-u+u=0$, where $-u=(-1) u$
(5) $c(u+v)=c u+c v$
(6) $(c+d) u=c u+d u$
(7) $c(d u)=(c d) u$
(8) $1 u=u$

Linear combinations of vectors

- Given vectors $v_{1}, v_{2}, \ldots, v_{p}$ in \mathbf{R}^{n} and scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector y defined by

$$
y=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}
$$

is called a linear combination of v_{1}, \ldots, v_{p} with weights $c_{1}, c_{2}, \ldots, c_{p}$.

Linear combinations of vectors

- Given vectors $v_{1}, v_{2}, \ldots, v_{p}$ in \mathbf{R}^{n} and scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector y defined by

$$
y=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}
$$

is called a linear combination of v_{1}, \ldots, v_{p} with weights $c_{1}, c_{2}, \ldots, c_{p}$.

- The weights in a linear combination can be any real numbers, including zero.

Linear combinations of vectors-Example

Ex: Let $a_{1}=\left[\begin{array}{c}1 \\ -2 \\ -5\end{array}\right], a_{2}=\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$ and $b=\left[\begin{array}{c}7 \\ 4 \\ -3\end{array}\right]$. Determine whether vector b can be written as a linear combination of vectors a_{1} and a_{2}.

Linear combinations of vectors-Example

Ex: Let $a_{1}=\left[\begin{array}{c}1 \\ -2 \\ -5\end{array}\right], a_{2}=\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$ and $b=\left[\begin{array}{c}7 \\ 4 \\ -3\end{array}\right]$. Determine whether
vector b can be written as a linear combination of vectors a_{1} and a_{2}.

- So we need to determine if there are numbers x_{1} and x_{2} such that

$$
x_{1} a_{1}+x_{2} a_{2}=b
$$

Linear combinations of vectors-Example

Ex: Let $a_{1}=\left[\begin{array}{c}1 \\ -2 \\ -5\end{array}\right], a_{2}=\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$ and $b=\left[\begin{array}{c}7 \\ 4 \\ -3\end{array}\right]$. Determine whether
vector b can be written as a linear combination of vectors a_{1} and a_{2}.

- So we need to determine if there are numbers x_{1} and x_{2} such that

$$
x_{1} a_{1}+x_{2} a_{2}=b
$$

- This is a vector equations.

Solving vector equations-an example

- We can first rewrite the vector equation as a linear systems, by definitions of scalar multiplication and vector addition

$$
x_{1}\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

Solving vector equations-an example

- We can first rewrite the vector equation as a linear systems, by definitions of scalar multiplication and vector addition

$$
x_{1}\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

- which is

$$
\left[\begin{array}{c}
x_{1} \\
-2 x_{1} \\
-5 x_{1}
\end{array}\right]+\left[\begin{array}{c}
2 x_{2} \\
5 x_{2} \\
6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
-2 x_{1}+5 x_{2} \\
-5 x_{1}+6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

Solving vector equations-an example

- We can first rewrite the vector equation as a linear systems, by definitions of scalar multiplication and vector addition

$$
x_{1}\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

- which is

$$
\left[\begin{array}{c}
x_{1} \\
-2 x_{1} \\
-5 x_{1}
\end{array}\right]+\left[\begin{array}{c}
2 x_{2} \\
5 x_{2} \\
6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
-2 x_{1}+5 x_{2} \\
-5 x_{1}+6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

- So we have the following linear system

$$
\begin{array}{r}
x_{1}+2 x_{2}=7 \\
-2 x_{1}+5 x_{2}=4 \\
-5 x_{1}+6 x_{2}=-3
\end{array}
$$

with augmented matrix $\left[\begin{array}{ccc}1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3\end{array}\right]$

Solving vector equations-an example

- We can first rewrite the vector equation as a linear systems, by definitions of scalar multiplication and vector addition

$$
x_{1}\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

- which is

$$
\left[\begin{array}{c}
x_{1} \\
-2 x_{1} \\
-5 x_{1}
\end{array}\right]+\left[\begin{array}{c}
2 x_{2} \\
5 x_{2} \\
6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
-2 x_{1}+5 x_{2} \\
-5 x_{1}+6 x_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right]
$$

- So we have the following linear system

$$
\begin{array}{r}
x_{1}+2 x_{2}=7 \\
-2 x_{1}+5 x_{2}=4 \\
-5 x_{1}+6 x_{2}=-3
\end{array}
$$

with augmented matrix $\left[\begin{array}{ccc}1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3\end{array}\right]$

- Solve it, we get $x_{1}=3$ and $x_{2}=2$. So $b=3 a_{1}+2 a_{2}$.

Linear combination and vector equations

- We observe that in the above example, the original vectors a_{1}, a_{2} and b are the columns of the augmented matrix of the linear system.

Linear combination and vector equations

- We observe that in the above example, the original vectors a_{1}, a_{2} and b are the columns of the augmented matrix of the linear system.
- We write the matrix in a way that identifies its columns

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & b
\end{array}\right]
$$

Linear combination and vector equations

- We observe that in the above example, the original vectors a_{1}, a_{2} and b are the columns of the augmented matrix of the linear system.
- We write the matrix in a way that identifies its columns

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & b
\end{array}\right]
$$

- In general, a vector equation

$$
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{p} v_{p}=b
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n} & b
\end{array}\right]
$$

Linear combination and vector equations

- We observe that in the above example, the original vectors a_{1}, a_{2} and b are the columns of the augmented matrix of the linear system.
- We write the matrix in a way that identifies its columns

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & b
\end{array}\right]
$$

- In general, a vector equation

$$
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{p} v_{p}=b
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n} & b
\end{array}\right]
$$

- In particular, the vector b can be generated by a linear combination of vectors $a_{1}, a_{2}, \ldots, a_{n}$ if and only if there exists a solution to the linear system corresponding to the above augmented matrix.

Span of vectors

- Definition: If v_{1}, \ldots, v_{p} are vectors in \mathbf{R}^{n}, then the set of all linear combinations of v_{1}, \ldots, v_{p} is denoted by $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ and is called the subset of \mathbf{R}^{n} spanned (or generated) by v_{1}, \ldots, v_{p}.

Span of vectors

- Definition: If v_{1}, \ldots, v_{p} are vectors in \mathbf{R}^{n}, then the set of all linear combinations of v_{1}, \ldots, v_{p} is denoted by $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ and is called the subset of \mathbf{R}^{n} spanned (or generated) by v_{1}, \ldots, v_{p}.
- That is, $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ is the collection of all vectors that can be written in the form

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}
$$

with real numbers (or scalars) $c_{1}, c_{2}, \ldots, c_{p}$.

Span of vectors

- Ex: let $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then $\operatorname{Span}\{v\}$ is the the set of vectors whose points are in the line passing $(0,0)$ and $(1,1)$.

Span of vectors

- Ex: let $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then $\operatorname{Span}\{v\}$ is the the set of vectors whose points are in the line passing $(0,0)$ and $(1,1)$.
- In general, let v be a nonzero vector in \mathbf{R}^{3}. Then $\operatorname{Span}\{v\}$ is the set of all scalar multiples of v, which is the set of points on the line in \mathbf{R}^{3} through vectors v and 0 .

Span of vectors

- Ex: let $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then $\operatorname{Span}\{v\}$ is the the set of vectors whose points are in the line passing $(0,0)$ and $(1,1)$.
- In general, let v be a nonzero vector in \mathbf{R}^{3}. Then $\operatorname{Span}\{v\}$ is the set of all scalar multiples of v, which is the set of points on the line in \mathbf{R}^{3} through vectors v and 0 .
- Let u and v be vectors in \mathbf{R}^{3}. What is $\operatorname{Span}\{u, v\}$?

1.4 Matrix equations (part 1)

Matrix equation

- Definition: If A is an $m \times n$ matrix, with column vectors $a_{1}, a_{2}, \ldots, a_{n}$, and if x is a vector in \mathbf{R}^{n}, then the product of A and x, denoted by $A x$, is the linear combination of the column vectors of A using the corresponding entries in vector x as weights. That is

$$
A x=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]=x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}
$$

Matrix equation

- Definition: If A is an $m \times n$ matrix, with column vectors $a_{1}, a_{2}, \ldots, a_{n}$, and if x is a vector in \mathbf{R}^{n}, then the product of A and x, denoted by $A x$, is the linear combination of the column vectors of A using the corresponding entries in vector x as weights. That is

$$
A x=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]=x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n} .
$$

- $A x$ is defined only if the number of columns of A equals the number of entries in vector x.

Examples

- Ex 1: For vectors v_{1}, v_{2}, v_{3} in \mathbf{R}^{m}, write the linear combination $3 v_{1}-5 v_{2}+7 v_{3}$ as a matrix times a vector.

Examples

- Ex 1: For vectors v_{1}, v_{2}, v_{3} in \mathbf{R}^{m}, write the linear combination $3 v_{1}-5 v_{2}+7 v_{3}$ as a matrix times a vector.
- Solution: place vectors v_{1}, v_{2}, v_{3} into the columns of a matrix A and place the weights $3,-5,7$ into a vector x.

Examples

- Ex 1: For vectors v_{1}, v_{2}, v_{3} in \mathbf{R}^{m}, write the linear combination $3 v_{1}-5 v_{2}+7 v_{3}$ as a matrix times a vector.
- Solution: place vectors v_{1}, v_{2}, v_{3} into the columns of a matrix A and place the weights $3,-5,7$ into a vector x.
- That is,

$$
3 v_{1}-5 v_{2}+7 v_{3}=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]\left[\begin{array}{c}
3 \\
-5 \\
7
\end{array}\right]=A x
$$

Examples

- Ex 2: Write the following linear system as a vector equation involving a linear combination of vectors, and then as a matrix equation:

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=4 \\
-5 x_{2}+3 x_{3}=1
\end{array}
$$

Examples

- Ex 2: Write the following linear system as a vector equation involving a linear combination of vectors, and then as a matrix equation:

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=4 \\
-5 x_{2}+3 x_{3}=1
\end{array}
$$

- Solution: we may write the linear system as

$$
x_{1}\left[\begin{array}{l}
1 \tag{1}\\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
2 \\
-5
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

Examples

- Ex 2: Write the following linear system as a vector equation involving a linear combination of vectors, and then as a matrix equation:

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=4 \\
-5 x_{2}+3 x_{3}=1
\end{array}
$$

- Solution: we may write the linear system as

$$
x_{1}\left[\begin{array}{l}
1 \tag{1}\\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
2 \\
-5
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

- As in the previous example, we may write it as matrix equation

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

Equivalent formulations

- Theorem 3: if A is an $m \times n$ matrix, with column vectors $a_{1}, a_{2}, \ldots, a_{n}$, and if b is a vector in \mathbf{R}^{m}, then the following three equations have the same solution set

Equivalent formulations

- Theorem 3: if A is an $m \times n$ matrix, with column vectors $a_{1}, a_{2}, \ldots, a_{n}$, and if b is a vector in \mathbf{R}^{m}, then the following three equations have the same solution set
(1) matrix equation $A x=b$

Equivalent formulations

- Theorem 3: if A is an $m \times n$ matrix, with column vectors $a_{1}, a_{2}, \ldots, a_{n}$, and if b is a vector in \mathbf{R}^{m}, then the following three equations have the same solution set
(1) matrix equation $A x=b$
(2) vector equation $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=b$

Equivalent formulations

- Theorem 3: if A is an $m \times n$ matrix, with column vectors $a_{1}, a_{2}, \ldots, a_{n}$, and if b is a vector in \mathbf{R}^{m}, then the following three equations have the same solution set
(1) matrix equation $A x=b$
(2) vector equation $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=b$
(3) the linear system with augmented matrix

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n} & b
\end{array}\right]
$$

Equivalent formulations

- Theorem 3: if A is an $m \times n$ matrix, with column vectors $a_{1}, a_{2}, \ldots, a_{n}$, and if b is a vector in \mathbf{R}^{m}, then the following three equations have the same solution set
(1) matrix equation $A x=b$
(2) vector equation $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=b$
(3) the linear system with augmented matrix

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n} & b
\end{array}\right]
$$

- So the equation $A x=b$ has a solution if and only if vector b is a linear combination of the column vectors of A.

Existence of solutions-When vectors span \mathbf{R}^{m} ?

- Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true or they are all false.

Existence of solutions-When vectors span \mathbf{R}^{m} ?

- Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true or they are all false.
(a) For each vector b in \mathbf{R}^{m}, the equation $A x=b$ has a solution.

Existence of solutions-When vectors span \mathbf{R}^{m} ?

- Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true or they are all false.
(a) For each vector b in \mathbf{R}^{m}, the equation $A x=b$ has a solution.
(b) Each b in \mathbf{R}^{m} is a linear combination of the column vectors of A.

Existence of solutions-When vectors span \mathbf{R}^{m} ?

- Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true or they are all false.
(a) For each vector b in \mathbf{R}^{m}, the equation $A x=b$ has a solution.
(b) Each b in \mathbf{R}^{m} is a linear combination of the column vectors of A.
(c) The column vectors of A span \mathbf{R}^{m}.

Existence of solutions-When vectors span \mathbf{R}^{m} ?

- Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true or they are all false.
(a) For each vector b in \mathbf{R}^{m}, the equation $A x=b$ has a solution.
(b) Each b in \mathbf{R}^{m} is a linear combination of the column vectors of A.
(c) The column vectors of A span \mathbf{R}^{m}.
(d) The matrix A has a pivot position in every row.

Example

- Ex: Determine if b is in the $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$, where vectors v_{1}, v_{2}, v_{3}, b are

$$
v_{1}=\left[\begin{array}{c}
1 \\
-4 \\
-3
\end{array}\right], v_{2}=\left[\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right], v_{3}=\left[\begin{array}{c}
4 \\
-6 \\
-7
\end{array}\right], b=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Proof of Theorem 4

- As stated in the previous theorem, (a), (b) and (c) are all true or all false. So we just need to show (a) and (d) are either both true or false.

Proof of Theorem 4

- As stated in the previous theorem, (a), (b) and (c) are all true or all false. So we just need to show (a) and (d) are either both true or false.
- Let U be an echelon form of A.

Proof of Theorem 4

- As stated in the previous theorem, (a), (b) and (c) are all true or all false. So we just need to show (a) and (d) are either both true or false.
- Let U be an echelon form of A.
- For any vector b in \mathbf{R}^{m}, we can row reduce the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ to an augmented matrix $\left[\begin{array}{ll}U & d\end{array}\right]$ for some vector d in \mathbf{R}^{m}.

Proof of Theorem 4

- As stated in the previous theorem, (a), (b) and (c) are all true or all false. So we just need to show (a) and (d) are either both true or false.
- Let U be an echelon form of A.
- For any vector b in \mathbf{R}^{m}, we can row reduce the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ to an augmented matrix $\left[\begin{array}{ll}U & d\end{array}\right]$ for some vector d in \mathbf{R}^{m}.
- If (d) is true, then each row of U contains a pivot position, and there can be no pivot in the augmented column. So $A x=b$ has a solution, and (a) is true.

Proof of Theorem 4

- As stated in the previous theorem, (a), (b) and (c) are all true or all false. So we just need to show (a) and (d) are either both true or false.
- Let U be an echelon form of A.
- For any vector b in \mathbf{R}^{m}, we can row reduce the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ to an augmented matrix $\left[\begin{array}{ll}U & d\end{array}\right]$ for some vector d in \mathbf{R}^{m}.
- If (d) is true, then each row of U contains a pivot position, and there can be no pivot in the augmented column. So $A x=b$ has a solution, and (a) is true.
- If (d) is false, then the last row of U is all zeros.

Proof of Theorem 4

- As stated in the previous theorem, (a), (b) and (c) are all true or all false. So we just need to show (a) and (d) are either both true or false.
- Let U be an echelon form of A.
- For any vector b in \mathbf{R}^{m}, we can row reduce the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ to an augmented matrix $\left[\begin{array}{ll}U & d\end{array}\right]$ for some vector d in \mathbf{R}^{m}.
- If (d) is true, then each row of U contains a pivot position, and there can be no pivot in the augmented column. So $A x=b$ has a solution, and (a) is true.
- If (d) is false, then the last row of U is all zeros.
- Let d be any vector with a 1 in its last entry. Then $\left[\begin{array}{ll}U & d\end{array}\right]$ is an inconsistent system.

Proof of Theorem 4

- As stated in the previous theorem, (a), (b) and (c) are all true or all false. So we just need to show (a) and (d) are either both true or false.
- Let U be an echelon form of A.
- For any vector b in \mathbf{R}^{m}, we can row reduce the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ to an augmented matrix $\left[\begin{array}{ll}U & d\end{array}\right]$ for some vector d in \mathbf{R}^{m}.
- If (d) is true, then each row of U contains a pivot position, and there can be no pivot in the augmented column. So $A x=b$ has a solution, and (a) is true.
- If (d) is false, then the last row of U is all zeros.
- Let d be any vector with a 1 in its last entry. Then $\left[\begin{array}{ll}U & d\end{array}\right]$ is an inconsistent system.
- Since the row operations are reversible, $\left[\begin{array}{ll}U & d\end{array}\right]$ can be transformed into the form $\left[\begin{array}{ll}A & b\end{array}\right]$ for some vector b in \mathbf{R}^{m}.

Proof of Theorem 4

- As stated in the previous theorem, (a), (b) and (c) are all true or all false. So we just need to show (a) and (d) are either both true or false.
- Let U be an echelon form of A.
- For any vector b in \mathbf{R}^{m}, we can row reduce the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ to an augmented matrix $\left[\begin{array}{ll}U & d\end{array}\right]$ for some vector d in \mathbf{R}^{m}.
- If (d) is true, then each row of U contains a pivot position, and there can be no pivot in the augmented column. So $A x=b$ has a solution, and (a) is true.
- If (d) is false, then the last row of U is all zeros.
- Let d be any vector with a 1 in its last entry. Then $\left[\begin{array}{ll}U & d\end{array}\right]$ is an inconsistent system.
- Since the row operations are reversible, $\left[\begin{array}{ll}U & d\end{array}\right]$ can be transformed into the form $\left[\begin{array}{ll}A & b\end{array}\right]$ for some vector b in \mathbf{R}^{m}.
- It follows that the system $A x=b$ is inconsistent for that vector b. So (a) is false.

