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Example: computing Ax

Ex: compute Ax , where A =

 2 3 4
−1 5 −3
6 −2 8

 and x =

x1x2
x3

.

Solution: By definition, 2 3 4
−1 5 −3
6 −2 8

x1x2
x3

 = x1

 2
−1
6

+ x2

 3
5
−2

+ x3

 4
−3
8


=

2x1
−x1
6x1

+

 3x2
5x2
−2x2

+

 4x3
−3x3
8x3


=

2x1 + 3x2 + 4x3
−x1 + 5x2 − 3x3
6x1 − 2x2 + 8x3


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Equivalent formulations (review)

Theorem 3: if A is an m × n matrix, with column vectors
a1, a2, . . . , an, and if b is a vector in Rm, then the following three
equations have the same solution set

1 matrix equation Ax = b

2 vector equation x1a1 + x2a2 + . . . + xnan = b

3 the linear system with augmented matrix[
a1 a2 . . . an b

]

So the equation Ax = b has a solution if and only if vector b is a
linear combination of the column vectors of A.
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Dot product of two vectors

What is the relation between A, x and the first entry in Ax?

 2 3 4
−1 5 −3
6 −2 8

x1x2
x3

 =

2x1 + 3x2 + 4x3
−x1 + 5x2 − 3x3
6x1 − 2x2 + 8x3


We observe that the first row of A is

[
2 3 4

]
and the the first entry

of Ax is 2x1 + 3x2 + 4x3, which is the sum of the product of
corresponding entries in the row and vector x .

This kind of product is called the dot product of two vectors.
Formally, the dot product of vectors u =

[
u1 u2 . . . un

]
and

v =
[
v1 v2 . . . vn

]
is

u ·v =
[
u1 u2 . . . un

]
·
[
v1 v2 . . . vn

]
= u1v1+u2v2+. . .+unvn

So if the product Ax is defined, then the i-th entry in Ax is dot
product of the i-th row vector of A and the vector x .
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Properties of matrix-vector product Ax

Theorem 5: If A is an m × n matrix, and u and v are vectors in Rn,
and c ∈ R is a scalar, then

1 A(u + v) = Au + Av

2 A(cu) = c(Au)

Proof. Let the column vectors of A be a1, a2, . . . , an. that is,

A =
[
a1 a2 . . . an

]
. And let u =


u1
u2
. . .
un

 and v =


v1
v2
. . .
vn

.
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For part (1):

A(u + v) =
[
a1 a2 a3

] 
u1 + v1
u2 + v2
. . .

un + vn


= (u1 + v1)a1 + (u2 + v2)a2 + . . . + (un + vn)an

= (u1a1 + u2a2 + . . . + unan) + (v1a1 + v2a2 + . . . + vnan)

= Au + Av .

For part (2):

A(cu) =
[
a1 a2 a3

] 
cu1
cu2
. . .
cun


= (cu1)a1 + (cu2)a2 + . . . + (cun)an

= c(u1a1 + u2a2 + . . . + unan)

= c(Au).
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Homogeneous linear systems

A system of linear equations is said to be homogeneous if it can be
written in the form Ax = 0, where A is an m × n matrix and 0 is the
zero vector in Rm.

Such a system Ax = 0 always has at least one solution, namely, x = 0
(the zero vector in Rm). This zero solution is usually called the trivial
solution.

The homogeneous equation Ax = 0 has a nontrivial solution if and
only if the equation has at least one free variable.
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Examples

Ex 1: Determine if the following homogeneous system has a nontrivial
solution. Then describe the solution set.

3x1 + 5x2 − 4x3 = 0

−3x1 − 2x2 + 4x3 = 0

6x1 + x2 − 8x3 = 0

Solution: Let A be the matrix of coefficients of the system and row
reduce the augmented matrix

[
A 0

]
to echelon form: 3 5 −4 0

−3 −2 4 0
6 1 −8 0

→
3 5 −4 0

0 3 0 0
0 −9 0 0

→
3 5 −4 0

0 3 0 0
0 0 0 0


Since x3 is a free variable, Ax = 0 has nontrivial solutions.
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Examples—Cont.

Continue the row reduction to get the reduced echelon form:1 0 −4/3 0
0 1 0 0
0 0 0 0


Solve for basic variables x1 and x2 (in terms of free variable x3), we
have x1 = 4/3x3, x2 = 0, and x3 is free.

As a vector, the general solution of Ax = 0 has the following form:

x =

x1x2
x3

 =

4x3/3
0
x3

 = x3

4/3
0
1

 = x3v

That is, every solution of Ax = 0 in this case is a scalar multiple of
vector v .
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Parametrix Vector Form

The equation of the form x = su + tv (with vectors x , u, v and scalars
s, t) is called a parametric vector equation of the plane.

In Example 1, the equation x = x3v (with x3 free), or x = tv (with
t ∈ R), is a parametric vector equation of a line.

Whenever a solution set is described explicitly with vectors as in
Example 1, we say that the solution is in parametric vector form.
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Solutions of non homogeneous systems

When a nonhomogeneous linear system has many solutions, the
general solution can be written in parametric vector form as one
vector plus an arbitrary linear combination of vectors that satisfy the
corresponding homogeneous system.

Example 2: Describe all solutions of Ax = b, where

A =

 3 5 −4
−3 −2 4
6 1 −8

 and b =

 7
−1
−4


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Solution: we row reduce the augmented matrix 3 5 −4 7
−3 −2 4 −1
6 1 −8 −4

→
1 0 −4/3 −1

0 1 0 2
0 0 0 0


So x1 = −1 + 4/3x3, x2 = 2 and x3 is free.

As a vector, we can write the solution as follows:

x =

x1x2
x3

 =

−1 + 4/3x3
2
x3

 =

−1
2
0

+

4/3x3
0
x3

 =

−1
2
0

+x3

4/3
0
1


So the equation has solution with parametric form x = p + tv with
vectors p and v and scalar t = x3.

Note that the solution set of Ax = 0 has the parametric vector
equation x = tv with t ∈ R.

The solution of Ax = b are obtained by adding a vector p to the
solution of Ax = 0.

The vector p itself is just one particular solution of Ax = b (when
t = 0).
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Steps writing a solution set in parametric vector form

1 Row reduce the augmented matrix to reduced echelon form.

2 Express each basic variable in terms of any free variables appearing in
an equation.

3 Write a typical solution x as a vector whose entries depend on the
free variables, if any.

4 Decompose x into a linear combination of vectors (with numeric
entries) using the free variables as parameters.

Gexin Yu gyu@wm.edu Section 1.4 Matrix equation (Cont.) and Section 1.5 Solution sets of linear systems



Example

Ex: Express the solution set with the following augmented matrix in
parametric vector form 

1 0 0 2 3 −3
0 1 0 −2 5 1
0 0 0 1 −3 2
0 0 0 0 0 0


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Solutions to Ax = 0 and Ax = b

Now, to describe the solution of Ax = b geometrically, we can think
of vector addition as a translation.
Given vectors p and v in R2 or R3, the effect of adding v to p is to
move p in a direction parallel to the line through v and 0.
We say that p is translated by v to p + v . See the figure

If each point on a line L in R2 or R3 is translated by a vector p, the
result is a line parallel to L.
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Suppose L is the line through 0 and v , described by equation x = tv .

Adding p to each point on L produces the translated line described by
equation x = p + tv .

We call x = p + tv the equation of the line through p parallel to v .

Thus the solution set of Ax = b is a line through p parallel to the
solution set of Ax = 0. See below figure

The relation between the solution sets of Ax = b and Ax = 0 shown
in the figure above generalizes to any consistent equation Ax = b,
although the solution set will be larger than a line when there are
several free variables.
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Theorem 6: Suppose the equation Ax = b is consistent for some
given vector b, and let (vector) p be a solution. Then the solution set
of Ax = b is the set of all vectors of the form w = p + vh, where vh is
the general solution of the homogeneous equation Ax = 0.

This theorem says that if Ax = b has a solution, then the solution set
is obtained by translating the solution set of Ax = 0, using any
particular solution p of Ax = b for the translation.
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