Section 1.7 Linear independence

Gexin Yu
gyu@wm.edu
College of William and Mary

Linear Independence

- Let v_{1}, \ldots, v_{p} be vectors in \mathbf{R}^{n}. Consider vector equation

$$
\begin{equation*}
x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{p} v_{p}=0 \tag{1}
\end{equation*}
$$

If it has only the trivial solution, then the set $\left\{v_{1}, \ldots, v_{p}\right\}$ is said to be linearly independent; if it has one non-trivial solution, then the set of vectors are linear dependent.

Linear Independence

- Let v_{1}, \ldots, v_{p} be vectors in \mathbf{R}^{n}. Consider vector equation

$$
\begin{equation*}
x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{p} v_{p}=0 \tag{1}
\end{equation*}
$$

If it has only the trivial solution, then the set $\left\{v_{1}, \ldots, v_{p}\right\}$ is said to be linearly independent; if it has one non-trivial solution, then the set of vectors are linear dependent.

- If $c_{1}, c_{2}, \ldots, c_{p}$ is a non-trivial solution of (1), then $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=0$ is called a linear dependence relation among v_{1}, \ldots, v_{p} when the weights are not all zero.

Linear Independence

- Let v_{1}, \ldots, v_{p} be vectors in \mathbf{R}^{n}. Consider vector equation

$$
\begin{equation*}
x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{p} v_{p}=0 \tag{1}
\end{equation*}
$$

If it has only the trivial solution, then the set $\left\{v_{1}, \ldots, v_{p}\right\}$ is said to be linearly independent; if it has one non-trivial solution, then the set of vectors are linear dependent.

- If $c_{1}, c_{2}, \ldots, c_{p}$ is a non-trivial solution of (1), then $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=0$ is called a linear dependence relation among v_{1}, \ldots, v_{p} when the weights are not all zero.
- A set of vectors is linearly dependent if and only if it is not linearly independent.

Example

- Ex 1: Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right], v_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$,
a) determine if the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent.
b) if possible, find the linear dependence relation among v_{1}, v_{2}, v_{3}.

Example

- Ex 1: Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right], v_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$,
a) determine if the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent.
b) if possible, find the linear dependence relation among v_{1}, v_{2}, v_{3}.
- Solution: We must determine if there is a nontrivial solution to the following equation:

$$
x_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Example

- Ex 1: Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right], v_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$,
a) determine if the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent.
b) if possible, find the linear dependence relation among v_{1}, v_{2}, v_{3}.
- Solution: We must determine if there is a nontrivial solution to the following equation:

$$
x_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- Row operations on the associated augmented matrix:

$$
\left[\begin{array}{llll}
1 & 4 & 2 & 0 \\
2 & 5 & 1 & 0 \\
3 & 6 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 2 & 0 \\
0 & -3 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- x_{1} and x_{2} are basic variables, and x_{3} is free.
- x_{1} and x_{2} are basic variables, and x_{3} is free.
- Each nonzero value of x_{3} determine a nontrivial solution.
- x_{1} and x_{2} are basic variables, and x_{3} is free.
- Each nonzero value of x_{3} determine a nontrivial solution.
- Hence, v_{1}, v_{2}, v_{3} are linearly dependent.
- x_{1} and x_{2} are basic variables, and x_{3} is free.
- Each nonzero value of x_{3} determine a nontrivial solution.
- Hence, v_{1}, v_{2}, v_{3} are linearly dependent.
- To find a linear dependence relation among v_{1}, v_{2}, v_{3}, row reduce the augmented matrix, and we can get $x_{1}=2 x_{3}, x_{2}=-x_{3}$ and x_{3} is free.
- x_{1} and x_{2} are basic variables, and x_{3} is free.
- Each nonzero value of x_{3} determine a nontrivial solution.
- Hence, v_{1}, v_{2}, v_{3} are linearly dependent.
- To find a linear dependence relation among v_{1}, v_{2}, v_{3}, row reduce the augmented matrix, and we can get $x_{1}=2 x_{3}, x_{2}=-x_{3}$ and x_{3} is free.
- Choose any nonzero value for x_{3}, say $x_{3}=1$, we get $x_{1}=2, x_{2}=-1, x_{3}=1$.
- x_{1} and x_{2} are basic variables, and x_{3} is free.
- Each nonzero value of x_{3} determine a nontrivial solution.
- Hence, v_{1}, v_{2}, v_{3} are linearly dependent.
- To find a linear dependence relation among v_{1}, v_{2}, v_{3}, row reduce the augmented matrix, and we can get $x_{1}=2 x_{3}, x_{2}=-x_{3}$ and x_{3} is free.
- Choose any nonzero value for x_{3}, say $x_{3}=1$, we get $x_{1}=2, x_{2}=-1, x_{3}=1$.
- So we obtain one (out of infinitely many) possible linear dependence relations among v_{1}, v_{2}, v_{3} :

$$
2 v_{1}-v_{2}+v_{3}=0
$$

Linear Independence of Matrix Columns

- Suppose that we begin with a matrix $A=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right]$, instead of a set of vectors.

Linear Independence of Matrix Columns

- Suppose that we begin with a matrix $A=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right]$, instead of a set of vectors.
- The matrix equation $A x=0$ can be written as

$$
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=0
$$

Linear Independence of Matrix Columns

- Suppose that we begin with a matrix $A=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right]$, instead of a set of vectors.
- The matrix equation $A x=0$ can be written as

$$
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=0
$$

- Each linear dependence relation among the columns of A corresponds to a nontrivial solution of $A x=0$.

Linear Independence of Matrix Columns

- Suppose that we begin with a matrix $A=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right]$, instead of a set of vectors.
- The matrix equation $A x=0$ can be written as

$$
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=0
$$

- Each linear dependence relation among the columns of A corresponds to a nontrivial solution of $A x=0$.
- Thus, the columns of matrix A are linearly independent if and only if the equation $A x=0$ has only the trivial solution.

Sets of one or two vectors

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.

Sets of one or two vectors

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.
- This is because the vector equation $x_{1} v=0$ has only the trivial solution when $v \neq 0$.

Sets of one or two vectors

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.
- This is because the vector equation $x_{1} v=0$ has only the trivial solution when $v \neq 0$.
- The zero vector is linearly dependent because $x_{1} 0=0$ has many nontrivial solutions.

Sets of one or two vectors

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.
- This is because the vector equation $x_{1} v=0$ has only the trivial solution when $v \neq 0$.
- The zero vector is linearly dependent because $x_{1} 0=0$ has many nontrivial solutions.
- A set of two vectors $\left\{v_{1}, v_{2}\right\}$ is linearly dependent if at least one of the vectors is a multiple of the other.

Sets of one or two vectors

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.
- This is because the vector equation $x_{1} v=0$ has only the trivial solution when $v \neq 0$.
- The zero vector is linearly dependent because $x_{1} 0=0$ has many nontrivial solutions.
- A set of two vectors $\left\{v_{1}, v_{2}\right\}$ is linearly dependent if at least one of the vectors is a multiple of the other.
- The set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.
- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and $v_{1} \neq 0$, then some v_{j} (with $j>1)$ is a linear combination of the preceding vectors, v_{1}, \ldots, v_{j-1}.
- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and $v_{1} \neq 0$, then some v_{j} (with $j>1)$ is a linear combination of the preceding vectors, v_{1}, \ldots, v_{j-1}.
- Theorem 7 does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors.
- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and $v_{1} \neq 0$, then some v_{j} (with $j>1)$ is a linear combination of the preceding vectors, v_{1}, \ldots, v_{j-1}.
- Theorem 7 does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors.
- A vector in a linearly dependent set may fail to be a linear combination of the other vectors.
- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and $v_{1} \neq 0$, then some v_{j} (with $j>1)$ is a linear combination of the preceding vectors, v_{1}, \ldots, v_{j-1}.
- Theorem 7 does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors.
- A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

Proof of Theorem 7

- If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_{j}.

Proof of Theorem 7

- If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_{j}.
- For instance, if $v_{1}=c_{2} v_{2}+c_{3} v_{3}$, then

$$
0=(-1) v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}+\ldots+0 v_{p}
$$

Proof of Theorem 7

- If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_{j}.
- For instance, if $v_{1}=c_{2} v_{2}+c_{3} v_{3}$, then

$$
0=(-1) v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}+\ldots+0 v_{p}
$$

- Thus S is linearly dependent.

Proof of Theorem 7

- If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_{j}.
- For instance, if $v_{1}=c_{2} v_{2}+c_{3} v_{3}$, then

$$
0=(-1) v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}+\ldots+0 v_{p}
$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v_{1} is zero, then it is a (trivial) linear combination of the other vectors in S :

$$
v_{1}=0=0 v_{2}+0 v_{3}+\ldots+0 v_{p}
$$

Proof of Theorem 7

- If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_{j}.
- For instance, if $v_{1}=c_{2} v_{2}+c_{3} v_{3}$, then

$$
0=(-1) v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}+\ldots+0 v_{p}
$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v_{1} is zero, then it is a (trivial) linear combination of the other vectors in S :

$$
v_{1}=0=0 v_{2}+0 v_{3}+\ldots+0 v_{p}
$$

- So $v_{1} \neq 0$, and there exist weights c_{1}, \ldots, c_{p} not all zero, such that $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=0$.

Proof of Theorem 7

- If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_{j}.
- For instance, if $v_{1}=c_{2} v_{2}+c_{3} v_{3}$, then

$$
0=(-1) v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}+\ldots+0 v_{p}
$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v_{1} is zero, then it is a (trivial) linear combination of the other vectors in S :

$$
v_{1}=0=0 v_{2}+0 v_{3}+\ldots+0 v_{p}
$$

- So $v_{1} \neq 0$, and there exist weights c_{1}, \ldots, c_{p} not all zero, such that $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=0$.
- Let j be the largest subscript for which $c_{j} \neq 0$.

Proof of Theorem 7

- If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_{j}.
- For instance, if $v_{1}=c_{2} v_{2}+c_{3} v_{3}$, then

$$
0=(-1) v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}+\ldots+0 v_{p}
$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v_{1} is zero, then it is a (trivial) linear combination of the other vectors in S :

$$
v_{1}=0=0 v_{2}+0 v_{3}+\ldots+0 v_{p}
$$

- So $v_{1} \neq 0$, and there exist weights c_{1}, \ldots, c_{p} not all zero, such that $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=0$.
- Let j be the largest subscript for which $c_{j} \neq 0$.
- As $v_{1} \neq 0, j \neq 1$, and we have

$$
c_{1} v_{1}+\ldots+c_{j} v_{j}+0 v_{j+1}+\ldots+0 v_{p}=0
$$

Proof of Theorem 7

- If some v_{j} in S equals a linear combination of the other vectors, then v_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_{j}.
- For instance, if $v_{1}=c_{2} v_{2}+c_{3} v_{3}$, then

$$
0=(-1) v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}+\ldots+0 v_{p}
$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v_{1} is zero, then it is a (trivial) linear combination of the other vectors in S :

$$
v_{1}=0=0 v_{2}+0 v_{3}+\ldots+0 v_{p}
$$

- So $v_{1} \neq 0$, and there exist weights c_{1}, \ldots, c_{p} not all zero, such that $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=0$.
- Let j be the largest subscript for which $c_{j} \neq 0$.
- As $v_{1} \neq 0, j \neq 1$, and we have

$$
c_{1} v_{1}+\ldots+c_{j} v_{j}+0 v_{j+1}+\ldots+0 v_{p}=0
$$

Example

- Ex. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the set spanned by u and v, and explain why a vector w is in $\operatorname{Span}\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

Example

- Ex. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the set spanned by u and v, and explain why a vector w is in $\operatorname{Span}\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.
- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbf{R}^{3}.

Example

- Ex. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the set spanned by u and v, and explain why a vector w is in $\operatorname{Span}\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.
- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbf{R}^{3}.
- $\operatorname{Span}\{u, v\}$ is the $x_{1} x_{2}$-plane (with $x_{3}=0$).

Example

- Ex. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the set spanned by u and v, and explain why a vector w is in $\operatorname{Span}\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.
- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbf{R}^{3}.
- Span $\{u, v\}$ is the $x_{1} x_{2}$-plane (with $x_{3}=0$).
- If w is a linear combination of u and v, then $\{u, v, w\}$ is linearly dependent, by Theorem 7.

Example

- Ex. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the set spanned by u and v, and explain why a vector w is in $\operatorname{Span}\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.
- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbf{R}^{3}.
- Span $\{u, v\}$ is the $x_{1} x_{2}$-plane (with $x_{3}=0$).
- If w is a linear combination of u and v, then $\{u, v, w\}$ is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{u, v, w\}$ is linearly dependent.

Example

- Ex. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the set spanned by u and v, and explain why a vector w is in $\operatorname{Span}\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.
- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbf{R}^{3}.
- Span $\{u, v\}$ is the $x_{1} x_{2}$-plane (with $x_{3}=0$).
- If w is a linear combination of u and v, then $\{u, v, w\}$ is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{u, v, w\}$ is linearly dependent.
- By theorem 7, some vector in $\{u, v, w\}$ is a linear combination of the preceding vectors (since $u \neq 0$).

Example

- Ex. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the set spanned by u and v, and explain why a vector w is in $\operatorname{Span}\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.
- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbf{R}^{3}.
- Span $\{u, v\}$ is the $x_{1} x_{2}$-plane (with $x_{3}=0$).
- If w is a linear combination of u and v, then $\{u, v, w\}$ is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{u, v, w\}$ is linearly dependent.
- By theorem 7, some vector in $\{u, v, w\}$ is a linear combination of the preceding vectors (since $u \neq 0$).
- That vector must be w, since v is not a multiple of u.

Example

- Ex. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the set spanned by u and v, and explain why a vector w is in $\operatorname{Span}\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.
- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbf{R}^{3}.
- Span $\{u, v\}$ is the $x_{1} x_{2}$-plane (with $x_{3}=0$).
- If w is a linear combination of u and v, then $\{u, v, w\}$ is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{u, v, w\}$ is linearly dependent.
- By theorem 7, some vector in $\{u, v, w\}$ is a linear combination of the preceding vectors (since $u \neq 0$).
- That vector must be w, since v is not a multiple of u.
- So w is in $\operatorname{Span}\{u, v\}$.
- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.
- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.
- Proof: Let $A=\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right]$. Then A is $n \times p$.
- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.
- Proof: Let $A=\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right]$. Then A is $n \times p$.
- The equation $A x=0$ corresponds to a system of n equations in p unknowns.
- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.
- Proof: Let $A=\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right]$. Then A is $n \times p$.
- The equation $A x=0$ corresponds to a system of n equations in p unknowns.
- If $p>n$, there are more variables than equations, so there must be a free variable.
- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.
- Proof: Let $A=\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right]$. Then A is $n \times p$.
- The equation $A x=0$ corresponds to a system of n equations in p unknowns.
- If $p>n$, there are more variables than equations, so there must be a free variable.
- Hence $A x=0$ has a nontrivial solution, and the columns of A are linearly dependent.
- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.
- Proof: Let $A=\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right]$. Then A is $n \times p$.
- The equation $A x=0$ corresponds to a system of n equations in p unknowns.
- If $p>n$, there are more variables than equations, so there must be a free variable.
- Hence $A x=0$ has a nontrivial solution, and the columns of A are linearly dependent.
- Theorem 8 says nothing about the case in which the number of vectors in the set does not exceed the number of entries in each vector.
- Theorem 9: If a set $S=\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} contains the zero vector, then the set is linearly dependent.
- Theorem 9: If a set $S=\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} contains the zero vector, then the set is linearly dependent.
- Proof: By renumbering the vectors, we may suppose $v_{1}=0$.
- Theorem 9: If a set $S=\left\{v_{1}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} contains the zero vector, then the set is linearly dependent.
- Proof: By renumbering the vectors, we may suppose $v_{1}=0$.
- Then the equation $1 v_{1}+0 v_{2}+\ldots+0 v_{p}=0$ shows that S in linearly dependent.

