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Linear Independence

Let v1, . . . , vp be vectors in Rn. Consider vector equation

x1v1 + x2v2 + . . . + xpvp = 0 (1)

If it has only the trivial solution, then the set {v1, . . . , vp} is said to
be linearly independent; if it has one non-trivial solution, then the set
of vectors are linear dependent.

If c1, c2, . . . , cp is a non-trivial solution of (1), then
c1v1 + c2v2 + . . . + cpvp = 0 is called a linear dependence relation
among v1, . . . , vp when the weights are not all zero.

A set of vectors is linearly dependent if and only if it is not linearly
independent.
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Example

Ex 1: Let v1 =

1
2
3

 , v2 =

4
5
6

 , v3 =

2
1
0

,

a) determine if the set {v1, v2, v3} is linearly independent.
b) if possible, find the linear dependence relation among v1, v2, v3.

Solution: We must determine if there is a nontrivial solution to the
following equation:

x1

1
2
3

+ x2

4
5
6

+ x3

2
1
0

 =

0
0
0


Row operations on the associated augmented matrix:1 4 2 0

2 5 1 0
3 6 0 0

→
1 4 2 0

0 −3 −3 0
0 0 0 0
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x1 and x2 are basic variables, and x3 is free.

Each nonzero value of x3 determine a nontrivial solution.

Hence, v1, v2, v3 are linearly dependent.

To find a linear dependence relation among v1, v2, v3, row reduce the
augmented matrix, and we can get x1 = 2x3, x2 = −x3 and x3 is free.

Choose any nonzero value for x3, say x3 = 1, we get
x1 = 2, x2 = −1, x3 = 1.

So we obtain one (out of infinitely many) possible linear dependence
relations among v1, v2, v3:

2v1 − v2 + v3 = 0

Gexin Yu gyu@wm.edu Section 1.7 Linear independence



x1 and x2 are basic variables, and x3 is free.

Each nonzero value of x3 determine a nontrivial solution.

Hence, v1, v2, v3 are linearly dependent.

To find a linear dependence relation among v1, v2, v3, row reduce the
augmented matrix, and we can get x1 = 2x3, x2 = −x3 and x3 is free.

Choose any nonzero value for x3, say x3 = 1, we get
x1 = 2, x2 = −1, x3 = 1.

So we obtain one (out of infinitely many) possible linear dependence
relations among v1, v2, v3:

2v1 − v2 + v3 = 0

Gexin Yu gyu@wm.edu Section 1.7 Linear independence



x1 and x2 are basic variables, and x3 is free.

Each nonzero value of x3 determine a nontrivial solution.

Hence, v1, v2, v3 are linearly dependent.

To find a linear dependence relation among v1, v2, v3, row reduce the
augmented matrix, and we can get x1 = 2x3, x2 = −x3 and x3 is free.

Choose any nonzero value for x3, say x3 = 1, we get
x1 = 2, x2 = −1, x3 = 1.

So we obtain one (out of infinitely many) possible linear dependence
relations among v1, v2, v3:

2v1 − v2 + v3 = 0

Gexin Yu gyu@wm.edu Section 1.7 Linear independence



x1 and x2 are basic variables, and x3 is free.

Each nonzero value of x3 determine a nontrivial solution.

Hence, v1, v2, v3 are linearly dependent.

To find a linear dependence relation among v1, v2, v3, row reduce the
augmented matrix, and we can get x1 = 2x3, x2 = −x3 and x3 is free.

Choose any nonzero value for x3, say x3 = 1, we get
x1 = 2, x2 = −1, x3 = 1.

So we obtain one (out of infinitely many) possible linear dependence
relations among v1, v2, v3:

2v1 − v2 + v3 = 0

Gexin Yu gyu@wm.edu Section 1.7 Linear independence



x1 and x2 are basic variables, and x3 is free.

Each nonzero value of x3 determine a nontrivial solution.

Hence, v1, v2, v3 are linearly dependent.

To find a linear dependence relation among v1, v2, v3, row reduce the
augmented matrix, and we can get x1 = 2x3, x2 = −x3 and x3 is free.

Choose any nonzero value for x3, say x3 = 1, we get
x1 = 2, x2 = −1, x3 = 1.

So we obtain one (out of infinitely many) possible linear dependence
relations among v1, v2, v3:

2v1 − v2 + v3 = 0

Gexin Yu gyu@wm.edu Section 1.7 Linear independence



x1 and x2 are basic variables, and x3 is free.

Each nonzero value of x3 determine a nontrivial solution.

Hence, v1, v2, v3 are linearly dependent.

To find a linear dependence relation among v1, v2, v3, row reduce the
augmented matrix, and we can get x1 = 2x3, x2 = −x3 and x3 is free.

Choose any nonzero value for x3, say x3 = 1, we get
x1 = 2, x2 = −1, x3 = 1.

So we obtain one (out of infinitely many) possible linear dependence
relations among v1, v2, v3:

2v1 − v2 + v3 = 0

Gexin Yu gyu@wm.edu Section 1.7 Linear independence



Linear Independence of Matrix Columns

Suppose that we begin with a matrix A =
[
a1 . . . an

]
, instead of a

set of vectors.

The matrix equation Ax = 0 can be written as

x1a1 + x2a2 + . . . + xnan = 0

Each linear dependence relation among the columns of A corresponds
to a nontrivial solution of Ax = 0.

Thus, the columns of matrix A are linearly independent if and only if
the equation Ax = 0 has only the trivial solution.
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Sets of one or two vectors

A set containing only one vector say, v is linearly independent if and
only if v is not the zero vector.

This is because the vector equation x1v = 0 has only the trivial
solution when v 6= 0.

The zero vector is linearly dependent because x10 = 0 has many
nontrivial solutions.

A set of two vectors {v1, v2} is linearly dependent if at least one of
the vectors is a multiple of the other.

The set of two vectors is linearly independent if and only if neither of
the vectors is a multiple of the other.
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Theorem 7: (Characterization of Linearly Dependent Sets) A set
S = {v1, v2, . . . , vp} of two or more vectors is linearly dependent if
and only if at least one of the vectors in S is a linear combination of
the others.

In fact, if S is linearly dependent and v1 6= 0, then some vj (with
j > 1) is a linear combination of the preceding vectors, v1, . . . , vj−1.

Theorem 7 does not say that every vector in a linearly dependent set
is a linear combination of the preceding vectors.

A vector in a linearly dependent set may fail to be a linear
combination of the other vectors.
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Proof of Theorem 7

If some vj in S equals a linear combination of the other vectors, then
vj can be subtracted from both sides of the equation, producing a
linear dependence relation with a nonzero weight −1 on vj .

For instance, if v1 = c2v2 + c3v3, then

0 = (−1)v1 + c2v2 + c3v3 + 0v4 + . . . + 0vp

Thus S is linearly dependent.
Conversely, suppose S is linearly dependent. If v1 is zero, then it is a
(trivial) linear combination of the other vectors in S :

v1 = 0 = 0v2 + 0v3 + . . . + 0vp

So v1 6= 0, and there exist weights c1, . . . , cp not all zero, such that
c1v1 + c2v2 + . . . + cpvp = 0.
Let j be the largest subscript for which cj 6= 0.
As v1 6= 0, j 6= 1, and we have

c1v1 + . . . + cjvj + 0vj+1 + . . . + 0vp = 0

.
So

vj = (−c1
cj

)v1 + (−c2
cj

)v2 + . . . + (−
cj−1

cj
)vj−1
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Example

Ex. Let u =

3
1
0

 and v =

1
6
0

. Describe the set spanned by u and

v , and explain why a vector w is in Span{u, v} if and only if
{u, v ,w} is linearly dependent.

Solution: The vectors u and v are linearly independent because
neither vector is a multiple of the other, and so they span a plane in
R3.

Span{u, v} is the x1x2-plane (with x3 = 0).

If w is a linear combination of u and v , then {u, v ,w} is linearly
dependent, by Theorem 7.

Conversely, suppose that {u, v ,w} is linearly dependent.

By theorem 7, some vector in {u, v ,w} is a linear combination of the
preceding vectors (since u 6= 0).

That vector must be w , since v is not a multiple of u.

So w is in Span{u, v}.
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If w is a linear combination of u and v , then {u, v ,w} is linearly
dependent, by Theorem 7.

Conversely, suppose that {u, v ,w} is linearly dependent.

By theorem 7, some vector in {u, v ,w} is a linear combination of the
preceding vectors (since u 6= 0).

That vector must be w , since v is not a multiple of u.

So w is in Span{u, v}.
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Theorem 8: If a set contains more vectors than there are entries in
each vector, then the set is linearly dependent. That is, any set
{v1, . . . , vp} in Rn is linearly dependent if p > n.

Proof: Let A =
[
v1 . . . vp

]
. Then A is n × p.

The equation Ax = 0 corresponds to a system of n equations in p
unknowns.

If p > n, there are more variables than equations, so there must be a
free variable.

Hence Ax = 0 has a nontrivial solution, and the columns of A are
linearly dependent.

Theorem 8 says nothing about the case in which the number of
vectors in the set does not exceed the number of entries in each
vector.
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Theorem 9: If a set S = {v1, . . . , vp} in Rn contains the zero vector,
then the set is linearly dependent.

Proof: By renumbering the vectors, we may suppose v1 = 0.

.

Then the equation 1v1 + 0v2 + . . . + 0vp = 0 shows that S in linearly
dependent.
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