Section 1.7 Linear independence

Gexin Yu gyu@wm.edu

College of William and Mary

イロン イヨン イヨン イヨン

æ

• Let v_1, \ldots, v_p be vectors in \mathbb{R}^n . Consider vector equation

$$x_1v_1 + x_2v_2 + \ldots + x_pv_p = 0 \tag{1}$$

(4) (5) (4) (5) (4)

If it has only the trivial solution, then the set $\{v_1, \ldots, v_p\}$ is said to be linearly independent; if it has one non-trivial solution, then the set of vectors are linear dependent.

• Let v_1, \ldots, v_p be vectors in \mathbf{R}^n . Consider vector equation

$$x_1v_1 + x_2v_2 + \ldots + x_pv_p = 0 \tag{1}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

If it has only the trivial solution, then the set $\{v_1, \ldots, v_p\}$ is said to be linearly independent; if it has one non-trivial solution, then the set of vectors are linear dependent.

If c₁, c₂,..., c_p is a non-trivial solution of (1), then
 c₁v₁ + c₂v₂ + ... + c_pv_p = 0 is called a linear dependence relation among v₁,..., v_p when the weights are not all zero.

• Let v_1, \ldots, v_p be vectors in \mathbf{R}^n . Consider vector equation

$$x_1v_1 + x_2v_2 + \ldots + x_pv_p = 0 \tag{1}$$

(ロ) (同) (E) (E) (E)

If it has only the trivial solution, then the set $\{v_1, \ldots, v_p\}$ is said to be linearly independent; if it has one non-trivial solution, then the set of vectors are linear dependent.

- If c_1, c_2, \ldots, c_p is a non-trivial solution of (1), then $c_1v_1 + c_2v_2 + \ldots + c_pv_p = 0$ is called a linear dependence relation among v_1, \ldots, v_p when the weights are not all zero.
- A set of vectors is linearly dependent if and only if it is not linearly independent.

• Ex 1: Let
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$,

- a) determine if the set $\{v_1, v_2, v_3\}$ is linearly independent.
- b) if possible, find the linear dependence relation among v_1 , v_2 , v_3 .

同 とくほ とくほと

æ

• Ex 1: Let
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$,

- a) determine if the set $\{v_1,v_2,v_3\}$ is linearly independent.
- b) if possible, find the linear dependence relation among v_1, v_2, v_3 .
- Solution: We must determine if there is a nontrivial solution to the following equation:

$$x_1\begin{bmatrix}1\\2\\3\end{bmatrix}+x_2\begin{bmatrix}4\\5\\6\end{bmatrix}+x_3\begin{bmatrix}2\\1\\0\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

(3)

• Ex 1: Let
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$,

- a) determine if the set $\{v_1,v_2,v_3\}$ is linearly independent.
- b) if possible, find the linear dependence relation among v_1, v_2, v_3 .
- Solution: We must determine if there is a nontrivial solution to the following equation:

$$x_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + x_2 \begin{bmatrix} 4\\5\\6 \end{bmatrix} + x_3 \begin{bmatrix} 2\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

• Row operations on the associated augmented matrix:

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• x_1 and x_2 are basic variables, and x_3 is free.

イロト イヨト イヨト イヨト

æ

- x_1 and x_2 are basic variables, and x_3 is free.
- Each nonzero value of x_3 determine a nontrivial solution.

프 🖌 🛪 프 🕨

æ

- x_1 and x_2 are basic variables, and x_3 is free.
- Each nonzero value of x_3 determine a nontrivial solution.
- Hence, v_1, v_2, v_3 are linearly dependent.

Image: A image: A

3

- x_1 and x_2 are basic variables, and x_3 is free.
- Each nonzero value of x_3 determine a nontrivial solution.
- Hence, v_1 , v_2 , v_3 are linearly dependent.
- To find a linear dependence relation among v_1, v_2, v_3 , row reduce the augmented matrix, and we can get $x_1 = 2x_3, x_2 = -x_3$ and x_3 is free.

A B K A B K

- x_1 and x_2 are basic variables, and x_3 is free.
- Each nonzero value of x_3 determine a nontrivial solution.
- Hence, v_1 , v_2 , v_3 are linearly dependent.
- To find a linear dependence relation among v_1, v_2, v_3 , row reduce the augmented matrix, and we can get $x_1 = 2x_3, x_2 = -x_3$ and x_3 is free.
- Choose any nonzero value for x_3 , say $x_3 = 1$, we get $x_1 = 2, x_2 = -1, x_3 = 1$.

(本部)) (本語)) (本語)) (語)

- x_1 and x_2 are basic variables, and x_3 is free.
- Each nonzero value of x_3 determine a nontrivial solution.
- Hence, v_1 , v_2 , v_3 are linearly dependent.
- To find a linear dependence relation among v_1, v_2, v_3 , row reduce the augmented matrix, and we can get $x_1 = 2x_3, x_2 = -x_3$ and x_3 is free.
- Choose any nonzero value for x_3 , say $x_3 = 1$, we get $x_1 = 2, x_2 = -1, x_3 = 1$.
- So we obtain one (out of infinitely many) possible linear dependence relations among v₁, v₂, v₃:

$$2v_1 - v_2 + v_3 = 0$$

(日) (四) (王) (王) (王)

• Suppose that we begin with a matrix $A = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}$, instead of a set of vectors.

個 と く ヨ と く ヨ と …

- Suppose that we begin with a matrix $A = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}$, instead of a set of vectors.
- The matrix equation Ax = 0 can be written as

$$x_1a_1+x_2a_2+\ldots+x_na_n=0$$

伺 とう きょう とう とう

- Suppose that we begin with a matrix A = [a₁ ... a_n], instead of a set of vectors.
- The matrix equation Ax = 0 can be written as

$$x_1a_1+x_2a_2+\ldots+x_na_n=0$$

• Each linear dependence relation among the columns of A corresponds to a nontrivial solution of Ax = 0.

・ 回 ト ・ ヨ ト ・ ヨ ト

- Suppose that we begin with a matrix A = [a₁ ... a_n], instead of a set of vectors.
- The matrix equation Ax = 0 can be written as

$$x_1a_1+x_2a_2+\ldots+x_na_n=0$$

- Each linear dependence relation among the columns of A corresponds to a nontrivial solution of Ax = 0.
- Thus, the columns of matrix A are linearly independent if and only if the equation Ax = 0 has only the trivial solution.

(4回) (注) (注) (注) (注)

• A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.

・ 回 ト ・ ヨ ト ・ ヨ ト

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.
- This is because the vector equation $x_1v = 0$ has only the trivial solution when $v \neq 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.
- This is because the vector equation $x_1v = 0$ has only the trivial solution when $v \neq 0$.
- The zero vector is linearly dependent because $x_10 = 0$ has many nontrivial solutions.

A 3 1 A 3 1 A

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.
- This is because the vector equation $x_1v = 0$ has only the trivial solution when $v \neq 0$.
- The zero vector is linearly dependent because $x_1 0 = 0$ has many nontrivial solutions.
- A set of two vectors {v₁, v₂} is linearly dependent if at least one of the vectors is a multiple of the other.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- A set containing only one vector say, v is linearly independent if and only if v is not the zero vector.
- This is because the vector equation $x_1v = 0$ has only the trivial solution when $v \neq 0$.
- The zero vector is linearly dependent because $x_1 0 = 0$ has many nontrivial solutions.
- A set of two vectors {v₁, v₂} is linearly dependent if at least one of the vectors is a multiple of the other.
- The set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.

(ロ) (同) (E) (E) (E)

• Theorem 7: (Characterization of Linearly Dependent Sets) A set $S = \{v_1, v_2, \ldots, v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

伺下 イヨト イヨト

3

- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S = \{v_1, v_2, \ldots, v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and v₁ ≠ 0, then some v_j (with j > 1) is a linear combination of the preceding vectors, v₁,..., v_{j-1}.

伺い イヨト イヨト ニヨ

- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S = \{v_1, v_2, \ldots, v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and v₁ ≠ 0, then some v_j (with j > 1) is a linear combination of the preceding vectors, v₁,..., v_{j-1}.
- Theorem 7 does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors.

(本部)) (本語)) (本語)) (語)

- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S = \{v_1, v_2, \ldots, v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and v₁ ≠ 0, then some v_j (with j > 1) is a linear combination of the preceding vectors, v₁,..., v_{j-1}.
- Theorem 7 does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors.
- A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

(ロ) (同) (E) (E) (E)

- Theorem 7: (Characterization of Linearly Dependent Sets) A set $S = \{v_1, v_2, \ldots, v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and v₁ ≠ 0, then some v_j (with j > 1) is a linear combination of the preceding vectors, v₁,..., v_{j-1}.
- Theorem 7 does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors.
- A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

(ロ) (同) (E) (E) (E)

If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_j.

回 と く ヨ と く ヨ と

- If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_j.
- For instance, if $v_1 = c_2 v_2 + c_3 v_3$, then

$$0 = (-1)v_1 + c_2v_2 + c_3v_3 + 0v_4 + \ldots + 0v_p$$

個 と く ヨ と く ヨ と …

- If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_j.
- For instance, if $v_1 = c_2 v_2 + c_3 v_3$, then

$$0 = (-1)v_1 + c_2v_2 + c_3v_3 + 0v_4 + \ldots + 0v_p$$

• Thus S is linearly dependent.

(4) (3) (4) (3) (4)

- If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_j.
- For instance, if $v_1 = c_2 v_2 + c_3 v_3$, then

$$0 = (-1)v_1 + c_2v_2 + c_3v_3 + 0v_4 + \ldots + 0v_p$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v₁ is zero, then it is a (trivial) linear combination of the other vectors in S:

$$v_1 = 0 = 0v_2 + 0v_3 + \ldots + 0v_p$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_j.
- For instance, if $v_1 = c_2 v_2 + c_3 v_3$, then

$$0 = (-1)v_1 + c_2v_2 + c_3v_3 + 0v_4 + \ldots + 0v_p$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v₁ is zero, then it is a (trivial) linear combination of the other vectors in S:

$$v_1 = 0 = 0v_2 + 0v_3 + \ldots + 0v_p$$

• So $v_1 \neq 0$, and there exist weights c_1, \ldots, c_p not all zero, such that $c_1v_1 + c_2v_2 + \ldots + c_pv_p = 0$.

(4回) (注) (注) (注) (注)

- If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_j.
- For instance, if $v_1 = c_2 v_2 + c_3 v_3$, then

$$0 = (-1)v_1 + c_2v_2 + c_3v_3 + 0v_4 + \ldots + 0v_p$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v₁ is zero, then it is a (trivial) linear combination of the other vectors in S:

$$v_1 = 0 = 0v_2 + 0v_3 + \ldots + 0v_p$$

- So $v_1 \neq 0$, and there exist weights c_1, \ldots, c_p not all zero, such that $c_1v_1 + c_2v_2 + \ldots + c_pv_p = 0$.
- Let *j* be the largest subscript for which $c_j \neq 0$.

(ロ) (同) (E) (E) (E)

- If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_j .
- For instance, if $v_1 = c_2 v_2 + c_3 v_3$, then

$$0 = (-1)v_1 + c_2v_2 + c_3v_3 + 0v_4 + \ldots + 0v_p$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v₁ is zero, then it is a (trivial) linear combination of the other vectors in S:

$$v_1 = 0 = 0v_2 + 0v_3 + \ldots + 0v_p$$

- So $v_1 \neq 0$, and there exist weights c_1, \ldots, c_p not all zero, such that $c_1v_1 + c_2v_2 + \ldots + c_pv_p = 0$.
- Let j be the largest subscript for which $c_j \neq 0$.
- As $v_1
 eq 0$, j
 eq 1, and we have

$$c_1v_1+\ldots+c_jv_j+0v_{j+1}+\ldots+0v_p=0$$

- If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight -1 on v_j .
- For instance, if $v_1 = c_2 v_2 + c_3 v_3$, then

$$0 = (-1)v_1 + c_2v_2 + c_3v_3 + 0v_4 + \ldots + 0v_p$$

- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent. If v₁ is zero, then it is a (trivial) linear combination of the other vectors in S:

$$v_1 = 0 = 0v_2 + 0v_3 + \ldots + 0v_p$$

- So $v_1 \neq 0$, and there exist weights c_1, \ldots, c_p not all zero, such that $c_1v_1 + c_2v_2 + \ldots + c_pv_p = 0$.
- Let j be the largest subscript for which $c_j \neq 0$.
- As $v_1
 eq 0$, j
 eq 1, and we have

$$c_1v_1+\ldots+c_jv_j+0v_{j+1}+\ldots+0v_p=0$$

• Ex. Let $u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v, and explain why a vector w is in $Span\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

回 と く ヨ と く ヨ と

• Ex. Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in $Span\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

• Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 .

< 🗇 🕨

→ Ξ → < Ξ →</p>

• Ex. Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in $Span\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

- Solution: The vectors *u* and *v* are linearly independent because neither vector is a multiple of the other, and so they span a plane in **R**³.
- Span $\{u, v\}$ is the x_1x_2 -plane (with $x_3 = 0$).

- 170

(4) (5) (4) (5) (4)

• Ex. Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in $Span\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 .
- Span $\{u, v\}$ is the x_1x_2 -plane (with $x_3 = 0$).
- If w is a linear combination of u and v, then {u, v, w} is linearly dependent, by Theorem 7.

回 と く ヨ と く ヨ と

• Ex. Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in $Span\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 .
- Span $\{u, v\}$ is the x_1x_2 -plane (with $x_3 = 0$).
- If w is a linear combination of u and v, then {u, v, w} is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{u, v, w\}$ is linearly dependent.

回 と く ヨ と く ヨ と

• Ex. Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in $Span\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 .
- Span $\{u, v\}$ is the x_1x_2 -plane (with $x_3 = 0$).
- If w is a linear combination of u and v, then {u, v, w} is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{u, v, w\}$ is linearly dependent.
- By theorem 7, some vector in {u, v, w} is a linear combination of the preceding vectors (since u ≠ 0).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

• Ex. Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in $Span\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 .
- Span $\{u, v\}$ is the x_1x_2 -plane (with $x_3 = 0$).
- If w is a linear combination of u and v, then {u, v, w} is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{u, v, w\}$ is linearly dependent.
- By theorem 7, some vector in {u, v, w} is a linear combination of the preceding vectors (since u ≠ 0).
- That vector must be w, since v is not a multiple of u.

▲□→ ▲ 国 → ▲ 国 →

• Ex. Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in $Span\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

- Solution: The vectors u and v are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 .
- Span $\{u, v\}$ is the x_1x_2 -plane (with $x_3 = 0$).
- If w is a linear combination of u and v, then {u, v, w} is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{u, v, w\}$ is linearly dependent.
- By theorem 7, some vector in {u, v, w} is a linear combination of the preceding vectors (since u ≠ 0).
- That vector must be w, since v is not a multiple of u.
- So w is in $Span\{u, v\}$.

• Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.

・日・ ・ ヨ・ ・ ヨ・

3

- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.
- Proof: Let $A = \begin{bmatrix} v_1 & \dots & v_p \end{bmatrix}$. Then A is $n \times p$.

< □ > < □ > < □ > □ □

- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.
- Proof: Let $A = \begin{bmatrix} v_1 & \dots & v_p \end{bmatrix}$. Then A is $n \times p$.
- The equation Ax = 0 corresponds to a system of n equations in p unknowns.

▲御 → ▲ 臣 → ▲ 臣 → 二 臣

- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.
- Proof: Let $A = \begin{bmatrix} v_1 & \dots & v_p \end{bmatrix}$. Then A is $n \times p$.
- The equation Ax = 0 corresponds to a system of *n* equations in *p* unknowns.
- If p > n, there are more variables than equations, so there must be a free variable.

▲御 → ▲ 臣 → ▲ 臣 → 二 臣

- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.
- Proof: Let $A = \begin{bmatrix} v_1 & \dots & v_p \end{bmatrix}$. Then A is $n \times p$.
- The equation Ax = 0 corresponds to a system of *n* equations in *p* unknowns.
- If p > n, there are more variables than equations, so there must be a free variable.
- Hence Ax = 0 has a nontrivial solution, and the columns of A are linearly dependent.

(本部)) (本語)) (本語)) (語)

- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.
- Proof: Let $A = \begin{bmatrix} v_1 & \dots & v_p \end{bmatrix}$. Then A is $n \times p$.
- The equation Ax = 0 corresponds to a system of *n* equations in *p* unknowns.
- If p > n, there are more variables than equations, so there must be a free variable.
- Hence Ax = 0 has a nontrivial solution, and the columns of A are linearly dependent.
- Theorem 8 says nothing about the case in which the number of vectors in the set does not exceed the number of entries in each vector.

(本部) (本語) (本語) (語)

• Theorem 9: If a set $S = \{v_1, \ldots, v_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

• Theorem 9: If a set $S = \{v_1, \ldots, v_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

• Proof: By renumbering the vectors, we may suppose $v_1 = 0$.

.

・ 同 ト ・ ヨ ト ・ ヨ ト

2

• Theorem 9: If a set $S = \{v_1, \ldots, v_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

• Proof: By renumbering the vectors, we may suppose $v_1 = 0$.

.

• Then the equation $1v_1 + 0v_2 + \ldots + 0v_p = 0$ shows that S in linearly dependent.

(1日) (日) (日)