Section 1.8-1.9 Introduction to Linear Transformation

Gexin Yu
gyu@wm.edu

College of William and Mary

Transformationa

- A transformation (or function or mapping) T from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.

Transformationa

- A transformation (or function or mapping) T from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.
- The set \mathbf{R}^{n} is called domain of T, and \mathbf{R}^{m} is called the codomain of T.

Transformationa

- A transformation (or function or mapping) T from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.
- The set \mathbf{R}^{n} is called domain of T, and \mathbf{R}^{m} is called the codomain of T.
- The notation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ indicates that the domain of T is R^{n} and the codomain is \mathbf{R}^{m}.

Transformationa

- A transformation (or function or mapping) T from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.
- The set \mathbf{R}^{n} is called domain of T, and \mathbf{R}^{m} is called the codomain of T.
- The notation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ indicates that the domain of T is R^{n} and the codomain is \mathbf{R}^{m}.
- For x in \mathbf{R}^{n}, the vector $T(x)$ in \mathbf{R}^{m} is called the image of x (under the action of T).

Transformationa

- A transformation (or function or mapping) T from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.
- The set \mathbf{R}^{n} is called domain of T, and \mathbf{R}^{m} is called the codomain of T.
- The notation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ indicates that the domain of T is R^{n} and the codomain is \mathbf{R}^{m}.
- For x in \mathbf{R}^{n}, the vector $T(x)$ in \mathbf{R}^{m} is called the image of x (under the action of T).
- The set of all images $T(x)$ is called the range of T. See the figure on the next slide.

Domain, codomain, and range of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Matrix Transformations

- For each x in $\mathbf{R}^{n}, T(x)$ is computed as $A x$, where A is an $m \times n$ matrix.

Matrix Transformations

- For each x in $\mathbf{R}^{n}, T(x)$ is computed as $A x$, where A is an $m \times n$ matrix.
- For simplicity, we denote such a matrix transformation by x as $A x$.

Matrix Transformations

- For each x in $\mathbf{R}^{n}, T(x)$ is computed as $A x$, where A is an $m \times n$ matrix.
- For simplicity, we denote such a matrix transformation by x as $A x$.
- The domain of T is \mathbf{R}^{n}, when A has n columns and the codomain of T is \mathbf{R}^{m}, when each column of A has m entries.

Matrix Transformations

- For each x in $\mathbf{R}^{n}, T(x)$ is computed as $A x$, where A is an $m \times n$ matrix.
- For simplicity, we denote such a matrix transformation by x as $A x$.
- The domain of T is \mathbf{R}^{n}, when A has n columns and the codomain of T is \mathbf{R}^{m}, when each column of A has m entries.
- The range of T is the set of all linear combinations of the columns of A, because each image $T(x)$ is of the form $A x$.

Example

- Ex 1: Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], u=\left[\begin{array}{c}2 \\ -1\end{array}\right], c=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$. Define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T(x)=A x$, so that

$$
T(x)=A x=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
$$

Example

- Ex 1: Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], u=\left[\begin{array}{c}2 \\ -1\end{array}\right], c=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$. Define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T(x)=A x$, so that

$$
T(x)=A x=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
$$

(a) Find $T(u)$, the image of u under the transformation T.

Example

- Ex 1: Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], u=\left[\begin{array}{c}2 \\ -1\end{array}\right], c=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$. Define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T(x)=A x$, so that

$$
T(x)=A x=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
$$

(a) Find $T(u)$, the image of u under the transformation T.
(b) Find an x in \mathbf{R}^{2} whose image under T is c.

Example

- Ex 1: Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], u=\left[\begin{array}{c}2 \\ -1\end{array}\right], c=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$. Define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T(x)=A x$, so that

$$
T(x)=A x=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
$$

(a) Find $T(u)$, the image of u under the transformation T.
(b) Find an x in \mathbf{R}^{2} whose image under T is c.
(c) Is there more than one x whose image under T is c ?

Example

- Ex 1: Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], u=\left[\begin{array}{c}2 \\ -1\end{array}\right], c=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$. Define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T(x)=A x$, so that

$$
T(x)=A x=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
$$

(a) Find $T(u)$, the image of u under the transformation T.
(b) Find an x in \mathbf{R}^{2} whose image under T is c.
(c) Is there more than one x whose image under T is c ?
(d) Determine if c is in the range of the transformation T.

Example

- Ex 1: Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], u=\left[\begin{array}{c}2 \\ -1\end{array}\right], c=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$. Define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T(x)=A x$, so that

$$
T(x)=A x=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
$$

(a) Find $T(u)$, the image of u under the transformation T.
(b) Find an x in \mathbf{R}^{2} whose image under T is c.
(c) Is there more than one x whose image under T is c ?
(d) Determine if c is in the range of the transformation T.

- (a). Compute $T(u)$:

$$
T(u)=A u=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
5 \\
1 \\
-9
\end{array}\right]
$$

- (b) Solve $T(x)=c$ for x. That is, solve $A x=c$:

$$
\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-5
\end{array}\right]
$$

- (b) Solve $T(x)=c$ for x. That is, solve $A x=c$:

$$
\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-5
\end{array}\right]
$$

- Row reduce the augmented matrix:

$$
\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & -5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & -5 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1.5 \\
0 & 1 & -0.5 \\
0 & 0 & 0
\end{array}\right]
$$

- (b) Solve $T(x)=c$ for x. That is, solve $A x=c$:

$$
\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-5
\end{array}\right]
$$

- Row reduce the augmented matrix:

$$
\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & -5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & -5 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1.5 \\
0 & 1 & -0.5 \\
0 & 0 & 0
\end{array}\right]
$$

- Hence $x_{1}=1.5, x_{2}=-0.5$ and $x=\left[\begin{array}{c}1.5 \\ -0.5\end{array}\right]$
- (b) Solve $T(x)=c$ for x. That is, solve $A x=c$:

$$
\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-5
\end{array}\right]
$$

- Row reduce the augmented matrix:

$$
\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & -5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & -5 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1.5 \\
0 & 1 & -0.5 \\
0 & 0 & 0
\end{array}\right]
$$

- Hence $x_{1}=1.5, x_{2}=-0.5$ and $x=\left[\begin{array}{c}1.5 \\ -0.5\end{array}\right]$
- The image of this vector x under T is the given vector c.
- (c) Any x whose image under T is c must satisfy the matrix equation in (b). But it is clear from (b) that the matrix equation has a unique solution. So there is exactly one x whose image is c.
- (c) Any x whose image under T is c must satisfy the matrix equation in (b). But it is clear from (b) that the matrix equation has a unique solution. So there is exactly one x whose image is c.
- (d) The vector c is in the range of T if c is the image of some x in \mathbf{R}^{2}, that is, if $c=T(x)$ for some x.
- (c) Any x whose image under T is c must satisfy the matrix equation in (b). But it is clear from (b) that the matrix equation has a unique solution. So there is exactly one x whose image is c.
- (d) The vector c is in the range of T if c is the image of some x in \mathbf{R}^{2}, that is, if $c=T(x)$ for some x.
- This is another way of asking if the equation $A x=c$ is consistent.
- (c) Any x whose image under T is c must satisfy the matrix equation in (b). But it is clear from (b) that the matrix equation has a unique solution. So there is exactly one x whose image is c.
- (d) The vector c is in the range of T if c is the image of some x in \mathbf{R}^{2}, that is, if $c=T(x)$ for some x.
- This is another way of asking if the equation $A x=c$ is consistent.
- To find the answer, row reduce the augmented matrix:

$$
\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 14 & -7
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 0 & -35
\end{array}\right]
$$

- (c) Any x whose image under T is c must satisfy the matrix equation in (b). But it is clear from (b) that the matrix equation has a unique solution. So there is exactly one x whose image is c.
- (d) The vector c is in the range of T if c is the image of some x in \mathbf{R}^{2}, that is, if $c=T(x)$ for some x.
- This is another way of asking if the equation $A x=c$ is consistent.
- To find the answer, row reduce the augmented matrix:

$$
\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 14 & -7
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 0 & -35
\end{array}\right]
$$

- So the system is inconsistent. That is, c is not in the range of T.

Shear Transformation

- Let $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$. The transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T(x)=A x$ is called a shear transformation.

Shear Transformation

- Let $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$. The transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T(x)=A x$ is called a shear transformation.
- It can be shown that if T acts on each point in the 2×2 square, then the set of images forms a parallelogram.

Shear Transformation

- Let $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$. The transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T(x)=A x$ is called a shear transformation.
- It can be shown that if T acts on each point in the 2×2 square, then the set of images forms a parallelogram.

- The key idea is to show that T maps line segments onto line segments and then to check that the corners of the square map onto the vertices of the parallelogram.

Shear Transformation

- Let $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$. The transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T(x)=A x$ is called a shear transformation.
- It can be shown that if T acts on each point in the 2×2 square, then the set of images forms a parallelogram.

- The key idea is to show that T maps line segments onto line segments and then to check that the corners of the square map onto the vertices of the parallelogram.
- $T\left(\left[\begin{array}{l}0 \\ 2\end{array}\right]\right)=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{l}6 \\ 2\end{array}\right]$, and $T\left(\left[\begin{array}{l}2 \\ 2\end{array}\right]\right)=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{l}8 \\ 2\end{array}\right]$.

Shear Transformation

- Let $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$. The transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T(x)=A x$ is called a shear transformation.
- It can be shown that if T acts on each point in the 2×2 square, then the set of images forms a parallelogram.

- The key idea is to show that T maps line segments onto line segments and then to check that the corners of the square map onto the vertices of the parallelogram.
- $T\left(\left[\begin{array}{l}0 \\ 2\end{array}\right]\right)=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{l}6 \\ 2\end{array}\right]$, and $T\left(\left[\begin{array}{l}2 \\ 2\end{array}\right]\right)=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{l}8 \\ 2\end{array}\right]$.
- T deforms the square as if the top of the square were pushed to the right while the base is held fixed.

Linear Transformations

- Definition: A transformation (or mapping) T is linear if

Linear Transformations

- Definition: A transformation (or mapping) T is linear if (a) $T(u+v)=T(u)+T(v)$ for all u, v in the domain of T

Linear Transformations

- Definition: A transformation (or mapping) T is linear if
(a) $T(u+v)=T(u)+T(v)$ for all u, v in the domain of T
(b) $T(c u)=c T(u)$ for all scalars c and all u in the domain of T.

Linear Transformations

- Definition: A transformation (or mapping) T is linear if
(a) $T(u+v)=T(u)+T(v)$ for all u, v in the domain of T
(b) $T(c u)=c T(u)$ for all scalars c and all u in the domain of T.
- Linear transformations preserve the operations of vector addition and scalar multiplication.

Linear Transformations

- Definition: A transformation (or mapping) T is linear if
(a) $T(u+v)=T(u)+T(v)$ for all u, v in the domain of T
(b) $T(c u)=c T(u)$ for all scalars c and all u in the domain of T.
- Linear transformations preserve the operations of vector addition and scalar multiplication.
- These two properties lead to the following useful facts:

Linear Transformations

- Definition: A transformation (or mapping) T is linear if
(a) $T(u+v)=T(u)+T(v)$ for all u, v in the domain of T
(b) $T(c u)=c T(u)$ for all scalars c and all u in the domain of T.
- Linear transformations preserve the operations of vector addition and scalar multiplication.
- These two properties lead to the following useful facts:
(c) If T is a linear transformation, then $T(0)=0$.

Linear Transformations

- Definition: A transformation (or mapping) T is linear if
(a) $T(u+v)=T(u)+T(v)$ for all u, v in the domain of T
(b) $T(c u)=c T(u)$ for all scalars c and all u in the domain of T.
- Linear transformations preserve the operations of vector addition and scalar multiplication.
- These two properties lead to the following useful facts:
(c) If T is a linear transformation, then $T(0)=0$.
(d) $T(c u+d v)=c T(u)+d T(v)$ for all vectors u, v and scalars c, d.

Linear Transformations

- Definition: A transformation (or mapping) T is linear if
(a) $T(u+v)=T(u)+T(v)$ for all u, v in the domain of T
(b) $T(c u)=c T(u)$ for all scalars c and all u in the domain of T.
- Linear transformations preserve the operations of vector addition and scalar multiplication.
- These two properties lead to the following useful facts:
(c) If T is a linear transformation, then $T(0)=0$.
(d) $T(c u+d v)=c T(u)+d T(v)$ for all vectors u, v and scalars c, d.
- Note that property (d) implies property (c).

Linear Transformations

- Definition: A transformation (or mapping) T is linear if
(a) $T(u+v)=T(u)+T(v)$ for all u, v in the domain of T
(b) $T(c u)=c T(u)$ for all scalars c and all u in the domain of T.
- Linear transformations preserve the operations of vector addition and scalar multiplication.
- These two properties lead to the following useful facts:
(c) If T is a linear transformation, then $T(0)=0$.
(d) $T(c u+d v)=c T(u)+d T(v)$ for all vectors u, v and scalars c, d.
- Note that property (d) implies property (c).
- Any transformation is linear if and only if it satisfies (d).

Example

- Ex: Given a scalar r, define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=r x$. Show that T is a linear transformation.

Example

- Ex: Given a scalar r, define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=r x$. Show that T is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in \mathbf{R}^{2} and $c, d \in \mathbf{R}$.

Example

- Ex: Given a scalar r, define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=r x$. Show that T is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in \mathbf{R}^{2} and $c, d \in \mathbf{R}$.

$$
\begin{aligned}
T(c u+d v) & =r(c u+d v) \\
& =r c u+r d v \\
& =c(r u)+d(r v) \\
& =c T(u)+d T(v)
\end{aligned}
$$

Example

- Ex: Given a scalar r, define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=r x$. Show that T is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in \mathbf{R}^{2} and $c, d \in \mathbf{R}$.

$$
\begin{aligned}
T(c u+d v) & =r(c u+d v) \\
& =r c u+r d v \\
& =c(r u)+d(r v) \\
& =c T(u)+d T(v)
\end{aligned}
$$

So T is a linear transformation.

Example

- Ex: Given a scalar r, define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=r x$. Show that T is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in \mathbf{R}^{2} and $c, d \in \mathbf{R}$.

$$
\begin{aligned}
T(c u+d v) & =r(c u+d v) \\
& =r c u+r d v \\
& =c(r u)+d(r v) \\
& =c T(u)+d T(v)
\end{aligned}
$$

So T is a linear transformation.

- T is called a contraction when $0 \leq r \leq 1$ and a dilation when $r>1$.

Superposition principle

- Repeated application of (d) produces a useful generalization:

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\ldots+c_{p} T\left(v_{p}\right)
$$

Superposition principle

- Repeated application of (d) produces a useful generalization:

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\ldots+c_{p} T\left(v_{p}\right)
$$

- In engineering and physics, the above equation is referred to as a superposition principle.

Superposition principle

- Repeated application of (d) produces a useful generalization:

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\ldots+c_{p} T\left(v_{p}\right)
$$

- In engineering and physics, the above equation is referred to as a superposition principle.
- Think of v_{1}, \ldots, v_{p} as signals that go into a system and $T\left(v_{1}\right), \ldots, T\left(v_{p}\right)$ as the responses of that system to the signals.

Superposition principle

- Repeated application of (d) produces a useful generalization:

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\ldots+c_{p} T\left(v_{p}\right)
$$

- In engineering and physics, the above equation is referred to as a superposition principle.
- Think of v_{1}, \ldots, v_{p} as signals that go into a system and $T\left(v_{1}\right), \ldots, T\left(v_{p}\right)$ as the responses of that system to the signals.
- The system satisfies the superposition principle if whenever an input is expressed as a linear combination of such signals, the systems response is the same linear combination of the responses to the individual signals.

The matrix of linear transformation

- Theorem 10: Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(x)=A x$ for all $x \in \mathbf{R}^{n}$.

The matrix of linear transformation

- Theorem 10: Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(x)=A x$ for all $x \in \mathbf{R}^{n}$.
- In fact, let $e_{i}=\left[\begin{array}{lllllll}0 & 0 & \ldots & 1 & 0 & \ldots & 0\end{array}\right]$ with 1 being in the i-th entry, then $A=\left[\begin{array}{llll}T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)\end{array}\right]$

The matrix of linear transformation

- Theorem 10: Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(x)=A x$ for all $x \in \mathbf{R}^{n}$.
- In fact, let $e_{i}=\left[\begin{array}{lllllll}0 & 0 & \ldots & 1 & 0 & \ldots & 0\end{array}\right]$ with 1 being in the i-th entry, then $A=\left[\begin{array}{llll}T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)\end{array}\right]$
- Proof: Let $x=I_{n} x=\left[\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right] x=x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}$.

The matrix of linear transformation

- Theorem 10: Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(x)=A x$ for all $x \in \mathbf{R}^{n}$.
- In fact, let $e_{i}=\left[\begin{array}{lllllll}0 & 0 & \ldots & 1 & 0 & \ldots & 0\end{array}\right]$ with 1 being in the i-th entry, then $A=\left[\begin{array}{llll}T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)\end{array}\right]$
- Proof: Let $x=I_{n} x=\left[\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right] x=x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}$. Use the linearity of T, we have

$$
\begin{aligned}
T(x) & =T\left(x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}\right) \\
& =x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right)+\ldots+x_{n} T\left(e_{n}\right) \\
& =\left[\begin{array}{llll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]=A x
\end{aligned}
$$

The matrix of linear transformation

- Theorem 10: Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(x)=A x$ for all $x \in \mathbf{R}^{n}$.
- In fact, let $e_{i}=\left[\begin{array}{lllllll}0 & 0 & \ldots & 1 & 0 & \ldots & 0\end{array}\right]$ with 1 being in the i-th entry, then $A=\left[\begin{array}{llll}T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)\end{array}\right]$
- Proof: Let $x=I_{n} x=\left[\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right] x=x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}$. Use the linearity of T, we have

$$
\begin{aligned}
T(x) & =T\left(x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}\right) \\
& =x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right)+\ldots+x_{n} T\left(e_{n}\right) \\
& =\left[\begin{array}{llll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]=A x
\end{aligned}
$$

- The matrix A is called the standard matrix for T.

Examples

- Ex 2: Find the standard matrix A for the dilation transformation $T(x)=3 x$ for $x \in \mathbf{R}^{2}$.

Examples

- Ex 2: Find the standard matrix A for the dilation transformation $T(x)=3 x$ for $x \in \mathbf{R}^{2}$.
Soln: As $T\left(e_{1}\right)=3 e_{1}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $T\left(e_{2}\right)=3 e_{2}=\left[\begin{array}{l}0 \\ 3\end{array}\right]$, we have $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.

Examples

- Ex 2: Find the standard matrix A for the dilation transformation $T(x)=3 x$ for $x \in \mathbf{R}^{2}$.
Soln: As $T\left(e_{1}\right)=3 e_{1}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $T\left(e_{2}\right)=3 e_{2}=\left[\begin{array}{l}0 \\ 3\end{array}\right]$, we have $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.
- Ex3: Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the transformation that rotates each point in \mathbf{R}^{2} about the origin through an angle θ, with counterclockwise rotation for a positive angle. Find the standard matrix A of this transformation.

Examples

- Ex 2: Find the standard matrix A for the dilation transformation $T(x)=3 x$ for $x \in \mathbf{R}^{2}$.
Soln: As $T\left(e_{1}\right)=3 e_{1}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $T\left(e_{2}\right)=3 e_{2}=\left[\begin{array}{l}0 \\ 3\end{array}\right]$, we have $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.
- Ex3: Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the transformation that rotates each point in \mathbf{R}^{2} about the origin through an angle θ, with counterclockwise rotation for a positive angle. Find the standard matrix A of this transformation.

Soln: Under $T,\left[\begin{array}{l}1 \\ 0\end{array}\right]$ rotates into $\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ rotates into $\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$.

Examples

- Ex 2: Find the standard matrix A for the dilation transformation $T(x)=3 x$ for $x \in \mathbf{R}^{2}$.
Soln: As $T\left(e_{1}\right)=3 e_{1}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $T\left(e_{2}\right)=3 e_{2}=\left[\begin{array}{l}0 \\ 3\end{array}\right]$, we have $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.
- Ex3: Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the transformation that rotates each point in \mathbf{R}^{2} about the origin through an angle θ, with counterclockwise rotation for a positive angle. Find the standard matrix A of this transformation.

Soln: Under $T,\left[\begin{array}{l}1 \\ 0\end{array}\right]$ rotates into $\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ rotates into $\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$.
So $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.

Examples

- Ex3: Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ first reflects points through the horizontal x_{1}-axis and then reflects points through the line $x_{2}=x_{1}$. Find the standard matrix for T.

Examples

- Ex3: Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ first reflects points through the horizontal x_{1}-axis and then reflects points through the line $x_{2}=x_{1}$. Find the standard matrix for T.

Soln: Under $T,\left[\begin{array}{l}1 \\ 0\end{array}\right]$ rotates into $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ rotates into $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

Examples

- Ex3: Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ first reflects points through the horizontal x_{1}-axis and then reflects points through the line $x_{2}=x_{1}$. Find the standard matrix for T.

Soln: Under $T,\left[\begin{array}{l}1 \\ 0\end{array}\right]$ rotates into $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ rotates into $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

So $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.

Onto and one-to-one mappings

- Defn: A mapping $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is said to be onto \mathbf{R}^{m} if each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n}.

Onto and one-to-one mappings

- Defn: A mapping $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is said to be onto \mathbf{R}^{m} if each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n}.
- Equivalently, if T is onto, then the co-domain \mathbf{R}^{n} is also the range of T. So each b in $\mathbf{R}^{n}, T(x)=b$ has at least one solution.

Onto and one-to-one mappings

- Defn: A mapping $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is said to be onto \mathbf{R}^{m} if each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n}.
- Equivalently, if T is onto, then the co-domain \mathbf{R}^{n} is also the range of T. So each b in $\mathbf{R}^{n}, T(x)=b$ has at least one solution.
- Defn: A mapping $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one if each b in \mathbf{R}^{m} is the image of at most one x in \mathbf{R}^{n}.

Onto and one-to-one mappings

- Defn: A mapping $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is said to be onto \mathbf{R}^{m} if each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n}.
- Equivalently, if T is onto, then the co-domain \mathbf{R}^{n} is also the range of T. So each b in $\mathbf{R}^{n}, T(x)=b$ has at least one solution.
- Defn: A mapping $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one if each b in \mathbf{R}^{m} is the image of at most one x in \mathbf{R}^{n}.
- Equivalently, T is one-to-one, if for each b in $\mathbf{R}^{m}, T(x)=b$ has at most one solution.

Example

Ex. Let T be the linear transformation whose standard matrix is

$$
A=\left[\begin{array}{cccc}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

Does T map \mathbf{R}^{4} onto \mathbf{R}^{3} ? Is T a one-to-one mapping?

Example

Ex. Let T be the linear transformation whose standard matrix is

$$
A=\left[\begin{array}{cccc}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

Does T map \mathbf{R}^{4} onto \mathbf{R}^{3} ? Is T a one-to-one mapping?

- As A is in echelon form, A has a pivot position in each row. So for each b in $\mathbf{R}^{m}, A x=b$ is consistent. Therefore T is onto.

Example

Ex. Let T be the linear transformation whose standard matrix is

$$
A=\left[\begin{array}{cccc}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

Does T map \mathbf{R}^{4} onto \mathbf{R}^{3} ? Is T a one-to-one mapping?

- As A is in echelon form, A has a pivot position in each row. So for each b in $\mathbf{R}^{m}, A x=b$ is consistent. Therefore T is onto.
- We also note that A has a free variable x_{3}, for each b in $\mathbf{R}^{m}, A x=b$ has infinite many solutions. So T is not one-to-one.

