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Transformationa

@ A transformation (or function or mapping) T from R” to R™ is a rule
that assigns to each vector x in R” a vector T(x) in R™.
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Transformationa

@ A transformation (or function or mapping) T from R” to R™ is a rule
that assigns to each vector x in R” a vector T(x) in R™.

@ The set R" is called domain of T, and R™ is called the codomain of
T.
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Transformationa

@ A transformation (or function or mapping) T from R” to R™ is a rule
that assigns to each vector x in R” a vector T(x) in R™.

@ The set R" is called domain of T, and R™ is called the codomain of
T.

@ The notation T : R — R™ indicates that the domain of T is R" and
the codomain is R™.

Gexin Yu gyu@um.edu Section 1.8-1.9 Introduction to Linear Transformation



Transformationa

@ A transformation (or function or mapping) T from R” to R™ is a rule
that assigns to each vector x in R” a vector T(x) in R™.

@ The set R" is called domain of T, and R™ is called the codomain of
T.

@ The notation T : R — R™ indicates that the domain of T is R" and
the codomain is R™.

e For x in R”, the vector T(x) in R™ is called the image of x (under
the action of T).
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Transformationa

@ A transformation (or function or mapping) T from R” to R™ is a rule
that assigns to each vector x in R” a vector T(x) in R™.

@ The set R" is called domain of T, and R™ is called the codomain of
T.

@ The notation T : R — R™ indicates that the domain of T is R" and
the codomain is R™.

e For x in R”, the vector T(x) in R™ is called the image of x (under
the action of T).

@ The set of all images T(x) is called the range of T. See the figure on
the next slide.

Domain Codomain

Domain, codomain, and range
of T: R" — IR,
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Matrix Transformations

@ For each x in R", T(x) is computed as Ax, where A is an m x n
matrix.
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Matrix Transformations

@ For each x in R", T(x) is computed as Ax, where A is an m x n
matrix.

@ For simplicity, we denote such a matrix transformation by x as Ax.
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Matrix Transformations

@ For each x in R", T(x) is computed as Ax, where A is an m x n
matrix.

@ For simplicity, we denote such a matrix transformation by x as Ax.

@ The domain of T is R", when A has n columns and the codomain of
T is R™, when each column of A has m entries.

Gexin Yu gyu@um.edu Section 1.8-1.9 Introduction to Linear Transformation



Matrix Transformations

For each x in R", T(x) is computed as Ax, where A is an m x n
matrix.

For simplicity, we denote such a matrix transformation by x as Ax.

The domain of T is R”, when A has n columns and the codomain of
T is R™, when each column of A has m entries.

The range of T is the set of all linear combinations of the columns of
A, because each image T(x) is of the form Ax.
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1 -3 5 3
o Exl:LetA=|3 5 ,u:[_l},c: 2 |. Define a
-1 7 -5

transformation T : R? — R3 by T(x) = Ax, so that

T(x)=Ax={3 5 = | 3x1 +5x

1 -3 X1 — 3X2
N
-1 7 —x1 + 7xo
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1 -3 5 3
o Exl:LetA=|3 5 ,u:[_l},c: 2 |. Define a
-1 7 -5

transformation T : R? — R3 by T(x) = Ax, so that

T(x)=Ax={3 5 = | 3x1 +5x

1 -3 X1 — 3X2
N
-1 7 —x1 + 7xo

(a) Find T(u), the image of u under the transformation T.

Gexin Yu gyu@um.edu Section 1.8-1.9 Introduction to Linear Transformation



1 -3 5
o Exl:LetA=|3 5 ,u:[ },c: 2 |. Define a
1
-1 7
transformation T : R? — R3 by T(x) = Ax, so that

w

T(x)=Ax={3 5 = | 3x1 +5x

1 -3 X1 — 3X2
N
-1 7 —x1 + 7xo

(a) Find T(u), the image of u under the transformation T.
(b) Find an x in R? whose image under T is c.
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1 -3 5 3
o Exl:LetA=|3 5 ,u:[_l},c: 2 |. Define a
-1 7 -5

transformation T : R? — R3 by T(x) = Ax, so that

1 -3 X1 — 3X2
T(x)=Ax= |3 5 [Xl} = | 3x1 + 5%
-1 7 —x1 + 7xo
(a) Find T(u), the image of u under the transformation T.
(b) Find an x in R? whose image under T is c.

(c) Is there more than one x whose image under T is ¢?
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1 -3 5
o Exl:LetA=|3 5 ,u:[ },c: 2 |. Define a
1
-1 7
transformation T : R? — R3 by T(x) = Ax, so that

w

1 -3 X1 — 3X2

T(x)=Ax= |3 5 [Xl} = | 3x1 + 5%
-1 7 —x1 + 7xo

(a) Find T(u), the image of u under the transformation T.

(b) Find an x in R? whose image under T is c.

(c) Is there more than one x whose image under T is ¢?

(d) Determine if c is in the range of the transformation T.
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1 -3 5
o Exl:LetA=|3 5 ,u:[ },c: 2 |. Define a
1
-1 7
transformation T : R? — R3 by T(x) = Ax, so that

w

1 -3 X1 — 3X2
T(x)=Ax= |3 5 [Xl} = | 3x1 + 5%
-1 7 —x1 + 7xo
(a) Find T(u), the image of u under the transformation T.
(b) Find an x in R? whose image under T is c.

(c) Is there more than one x whose image under T is ¢?

(d) Determine if c is in the range of the transformation T.

e (a). Compute T(u):
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@ (b) Solve T(x) = c for x. That is, solve Ax = c:

. 3
3 5 Lj]: 2
2 -5
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@ (b) Solve T(x) = c for x. That is, solve Ax = c:

1 -3 . 3
3 5 Lj]: 2
~1 7|7 -5
@ Row reduce the augmented matrix:
1 -3 3 1 -3 3 1 -3 3 1 0 15
3 5 2(—-1]10 14 -7{—-1]10 1 -5 —10 1 —-05
-1 7 -5 0 4 =2 0 0 O 00 O
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@ (b) Solve T(x) = c for x. That is, solve Ax = c:
1 =3 3
3 5 Lj] =2
-1 7| -5

@ Row reduce the augmented matrix:

1 -3 3 1 -3 3 1 -3 3 1 0 15
3 5 2| —»10 14 -7/ —-10 1 -5|—10 1 -05
-1 7 -5 0o 4 -2 0 O 0 00 0

@ Hence x; =1.5,x = —0.5 and x = [_1055]
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@ (b) Solve T(x) = c for x. That is, solve Ax = c:
1 =3 3
3 5 Lj] =2
-1 7| -5

@ Row reduce the augmented matrix:

1 -3 3 1 -3 3 1 -3 3 1 0 15
3 5 2| —»10 14 -7/ —-10 1 -5|—10 1 -05
-1 7 -5 0o 4 -2 0 O 0 00 0

@ Hence x; =1.5,x = —0.5 and x = [_1055]

@ The image of this vector x under T is the given vector c.
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@ (c) Any x whose image under T is ¢ must satisfy the matrix equation
in (b). But it is clear from (b) that the matrix equation has a unique
solution. So there is exactly one x whose image is c.
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@ (c) Any x whose image under T is ¢ must satisfy the matrix equation
in (b). But it is clear from (b) that the matrix equation has a unique
solution. So there is exactly one x whose image is c.

@ (d) The vector c is in the range of T if c is the image of some x in
R?, that is, if c = T(x) for some x.

Gexin Yu gyu@um.edu Section 1.8-1.9 Introduction to Linear Transformation



@ (c) Any x whose image under T is ¢ must satisfy the matrix equation
in (b). But it is clear from (b) that the matrix equation has a unique
solution. So there is exactly one x whose image is c.

@ (d) The vector c is in the range of T if c is the image of some x in
R?, that is, if c = T(x) for some x.

@ This is another way of asking if the equation Ax = ¢ is consistent.

Gexin Yu gyu@um.edu Section 1.8-1.9 Introduction to Linear Transformation



@ (c) Any x whose image under T is ¢ must satisfy the matrix equation
in (b). But it is clear from (b) that the matrix equation has a unique
solution. So there is exactly one x whose image is c.

@ (d) The vector c is in the range of T if c is the image of some x in
R?, that is, if c = T(x) for some x.
@ This is another way of asking if the equation Ax = ¢ is consistent.

@ To find the answer, row reduce the augmented matrix:

1 -3 3 1 -3 3 1 -3 3 1 -3 3
3 5 2|—-|0 14 -7/ =0 1 2|—=10 1 2
-1 7 5 0 4 8 0 14 -7 0 0 =35
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@ (c) Any x whose image under T is ¢ must satisfy the matrix equation
in (b). But it is clear from (b) that the matrix equation has a unique
solution. So there is exactly one x whose image is c.

(d) The vector c is in the range of T if c is the image of some x in
R?, that is, if c = T(x) for some x.

@ This is another way of asking if the equation Ax = ¢ is consistent.

@ To find the answer, row reduce the augmented matrix:
1 -3 3 1 -3 3 1 -3 3 1 -3 3
3 5 2|—-10 14 -7\ —-10 1 2(|(—=>10 1 2
-1 7 5 0 4 8 0 14 -7 0 0 =35

So the system is inconsistent. That is, ¢ is not in the range of T.
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Shear Transformation
o Let A= [ ﬂ The transformation T : R?2 — R? defined by

1
0
T(x) = Ax is called a shear transformation.
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Shear Transformation

o Let A= [é ﬂ The transformation T : R?2 — R? defined by
T(x) = Ax is called a shear transformation.
@ It can be shown that if T acts on each point in the 2 x 2 square, then

the set of images forms a parallelogram.

X, X,
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Shear Transformation

o Let A= [é ﬂ The transformation T : R?2 — R? defined by
T(x) = Ax is called a shear transformation.
@ It can be shown that if T acts on each point in the 2 x 2 square, then

the set of images forms a parallelogram.

X, X,

T ! - N

@ The key idea is to show that T maps line segments onto line
segments and then to check that the corners of the square map onto
the vertices of the parallelogram.
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Shear Transformation

o Let A= [é ﬂ The transformation T : R?2 — R? defined by
T(x) = Ax is called a shear transformation.
@ It can be shown that if T acts on each point in the 2 x 2 square, then

the set of images forms a parallelogram.

2 2
T
—_—
2 2
T x

2 ‘ [ 2 s

@ The key idea is to show that T maps line segments onto line
segments and then to check that the corners of the square map onto
the vertices of the parallelogram.

S IR H  AHIHR
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Shear Transformation

o Let A= [é ﬂ The transformation T : R?2 — R? defined by
T(x) = Ax is called a shear transformation.
@ It can be shown that if T acts on each point in the 2 x 2 square, then

the set of images forms a parallelogram.

2 2
T
—_—
2 2
T x

2 ‘ [ 2 s

@ The key idea is to show that T maps line segments onto line
segments and then to check that the corners of the square map onto
the vertices of the parallelogram.

« TP =o [ = [ ip=1lo 2} 1= [3]

@ T deforms the square as if the top of the square were pushed to the
right while the base is held fixed.
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Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
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Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
(a) T(u+v)=T(u)+ T(v) for all u, v in the domain of T
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Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
(a) T(u+v)=T(u)+ T(v) for all u, v in the domain of T
(b) T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.
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Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
(a) T(u+v)=T(u)+ T(v) for all u, v in the domain of T
(b) T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.

@ Linear transformations preserve the operations of vector addition and
scalar multiplication.
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Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
(a) T(u+v)=T(u)+ T(v) for all u, v in the domain of T
(b) T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.

@ Linear transformations preserve the operations of vector addition and
scalar multiplication.

@ These two properties lead to the following useful facts:

Gexin Yu gyu@wm.edu Section 1.8-1.9 Introduction to Linear Transformation



Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
(a) T(u+v)=T(u)+ T(v) for all u, v in the domain of T
(b) T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.

@ Linear transformations preserve the operations of vector addition and
scalar multiplication.

@ These two properties lead to the following useful facts:
(c) If T is a linear transformation, then T(0) = 0.
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Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
(a) T(u+v)=T(u)+ T(v) for all u, v in the domain of T
(b) T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.

@ Linear transformations preserve the operations of vector addition and
scalar multiplication.

@ These two properties lead to the following useful facts:

(c) If T is a linear transformation, then T(0) = 0.
(d) T(cu+ dv)=cT(u)+ dT(v) for all vectors u, v and scalars c, d.
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Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
(a) T(u+v)=T(u)+ T(v) for all u, v in the domain of T
(b) T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.

@ Linear transformations preserve the operations of vector addition and
scalar multiplication.

@ These two properties lead to the following useful facts:

(c) If T is a linear transformation, then T(0) = 0.
(d) T(cu+ dv)=cT(u)+ dT(v) for all vectors u, v and scalars c, d.

o Note that property (d) implies property (c).
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Linear Transformations

@ Definition: A transformation (or mapping) T is linear if
(a) T(u+v)=T(u)+ T(v) for all u, v in the domain of T
(b) T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.

@ Linear transformations preserve the operations of vector addition and
scalar multiplication.

@ These two properties lead to the following useful facts:

(c) If T is a linear transformation, then T(0) = 0.
(d) T(cu+ dv)=cT(u)+ dT(v) for all vectors u, v and scalars c, d.

Note that property (d) implies property (c).

Any transformation is linear if and only if it satisfies (d).
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Example

e Ex: Given a scalar r, define T : RZ — R2 by T(x) = rx. Show that T
is a linear transformation.
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e Ex: Given a scalar r, define T : RZ — R2 by T(x) = rx. Show that T
is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in R? and ¢,d € R.
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e Ex: Given a scalar r, define T : RZ — R2 by T(x) = rx. Show that T
is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in R? and ¢,d € R.

T(cu+ dv) = r(cu+ dv)
= rcu + rdv
= c(ru) + d(rv)
=cT(u)+dT(v)
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e Ex: Given a scalar r, define T : RZ — R2 by T(x) = rx. Show that T
is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in R? and ¢,d € R.

T(cu+ dv) = r(cu+ dv)
= rcu + rdv
= c(ru) + d(rv)
=cT(u)+dT(v)

So T is a linear transformation.

Gexin Yu gyu@um.edu Section 1.8-1.9 Introduction to Linear Transformation



e Ex: Given a scalar r, define T : RZ — R2 by T(x) = rx. Show that T
is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in R? and ¢,d € R.

T(cu+ dv) = r(cu+ dv)
= rcu + rdv
= c(ru) + d(rv)
=cT(u)+dT(v)

So T is a linear transformation.

@ T is called a contraction when 0 < r <1 and a dilation when r > 1.
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Superposition principle

@ Repeated application of (d) produces a useful generalization:

T(C1V1 +ow+...+ vap) =C T(Vl) + G T(VQ) + ...+ ¢ T(Vp)
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Superposition principle

@ Repeated application of (d) produces a useful generalization:
T(C1V1 +ow+...+ vap) =C T(Vl) + o T(Vg) + ...+ Cp T(Vp)

@ In engineering and physics, the above equation is referred to as a
superposition principle.

Gexin Yu gyu@um.edu Section 1.8-1.9 Introduction to Linear Transformation



Superposition principle

@ Repeated application of (d) produces a useful generalization:
T(C1V1 +ow+...+ vap) =C T(Vl) + o T(Vz) + ...+ Cp T(Vp)

@ In engineering and physics, the above equation is referred to as a
superposition principle.

@ Think of vq,..., v, as signals that go into a system and
T(v1),..., T(vp) as the responses of that system to the signals.
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Superposition principle

@ Repeated application of (d) produces a useful generalization:
T(C1V1 +ow+...+ vap) =C T(Vl) + o T(Vz) + ...+ Cp T(Vp)

@ In engineering and physics, the above equation is referred to as a
superposition principle.

@ Think of vq,..., v, as signals that go into a system and
T(v1),..., T(vp) as the responses of that system to the signals.

@ The system satisfies the superposition principle if whenever an input
is expressed as a linear combination of such signals, the systems
response is the same linear combination of the responses to the
individual signals.
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The matrix of linear transformation

@ Theorem 10: Let T : R” — R™ be a linear transformation. Then
there exists a unique matrix A such that T(x) = Ax for all x € R".
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The matrix of linear transformation

@ Theorem 10: Let T : R” — R™ be a linear transformation. Then
there exists a unique matrix A such that T(x) = Ax for all x € R".

@ In fact, let &; = [O 0 ... 10 ... O] with 1 being in the i-th
entry, then A= [T(e1) T(e2) ... T(en)]
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The matrix of linear transformation

@ Theorem 10: Let T : R” — R™ be a linear transformation. Then
there exists a unique matrix A such that T(x) = Ax for all x € R".

@ In fact, let ¢; = [O 0O ... 1.0 ... O] with 1 being in the i-th
entry, then A= [T(e1) T(e2) ... T(en)]
@ Proof: Let x = I,x = [el e ... e,,]x:xlel + x0€ + ...+ Xpep.
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The matrix of linear transformation

@ Theorem 10: Let T : R” — R™ be a linear transformation. Then
there exists a unique matrix A such that T(x) = Ax for all x € R".

@ In fact, let ¢; = [O 0O ... 1.0 ... O] with 1 being in the i-th
entry, then A= [T(e1) T(e2) ... T(en)]
@ Proof: Let x = I,x = [el e ... e,,]x:xlel + x0€ + ...+ Xpep.

Use the linearity of T, we have

T(x) = T(x1e1 + x2€2 + ... + xnen)
= X1 T(el) —+ Xo T(e2) 4+ ...+ x,,T(e,,)
X1

= [T(e1) T(e2) ... T(en)] X2 = Ax

Xn
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The matrix of linear transformation

@ Theorem 10: Let T : R” — R™ be a linear transformation. Then
there exists a unique matrix A such that T(x) = Ax for all x € R".

@ In fact, let ¢; = [O 0O ... 1.0 ... O] with 1 being in the i-th
entry, then A= [T(e1) T(e2) ... T(en)]
@ Proof: Let x = I,x = [el e ... e,,]x:xlel + x0€ + ...+ Xpep.

Use the linearity of T, we have

T(x) = T(x1e1 + x2€2 + ... + xnen)
= X1 T(el) + X2 T(e2) + ...+ x,,T(e,,)
X1
= [T(e1) T(e2) ... T(en)] X2 = Ax

Xn

@ The matrix A is called the standard matrix for T.
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@ Ex 2: Find the standard matrix A for the dilation transformation
T(x) = 3x for x € R2.
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@ Ex 2: Find the standard matrix A for the dilation transformation
T(x) = 3x for x € R2.

Soln: As T(e1) = 3e1 = [3

3 o Tie) =30~ |

0 30
3],wehaveA— [0 3].
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@ Ex 2: Find the standard matrix A for the dilation transformation
T(x) = 3x for x € R2.

3 0
] and T(e) =3e = [3] we have A = [0 3

30
0 :

Soln: As T(e1) =3¢ = [
@ Ex3: Let T : R?2 = R? be the transformation that rotates each point
in R? about the origin through an angle #, with counterclockwise
rotation for a positive angle. Find the standard matrix A of this
transformation.
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@ Ex 2: Find the standard matrix A for the dilation transformation
T(x) = 3x for x € R2.

Soln: As T(e1) = 3e1 = [0 0 3

3] and T(e) =3e = B] we have A = [3 O].

@ Ex3: Let T : R?2 = R? be the transformation that rotates each point
in R? about the origin through an angle #, with counterclockwise
rotation for a positive angle. Find the standard matrix A of this
transformation.

Soln: Under T, L rotates into C?SH , and 0 rotates into —sin0 )
0 sind 1 cos 6
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@ Ex 2: Find the standard matrix A for the dilation transformation
T(x) = 3x for x € R2.

Soln: As T(e1) = 3e1 = [3] and T(e) =3e = B] we have A = [

30
0 :

0 3
@ Ex3: Let T : R?2 = R? be the transformation that rotates each point
in R? about the origin through an angle #, with counterclockwise

rotation for a positive angle. Find the standard matrix A of this
transformation.

Soln: Under T, [1] rotates into [C?SH], and [ﬂ rotates into [_ smﬁ]

0 sind cos
cos —sinf
S0 A= [sin& cosﬁ]'
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@ Ex3: Let T : R?2 — R? first reflects points through the horizontal
x1-axis and then reflects points through the line xo = x;. Find the
standard matrix for T.
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@ Ex3: Let T : R?2 — R? first reflects points through the horizontal
x1-axis and then reflects points through the line xo = x;. Find the

standard matrix for T.

1 ) 0 0 ) -1
Soln: Under T, [0] rotates into [1] and [J rotates into [O ]

Section 1.8-1.9 Introduction to Linear Transformation

Gexin Yu gyu@um.edu



@ Ex3: Let T : R?2 — R? first reflects points through the horizontal
x1-axis and then reflects points through the line xo = x;. Find the
standard matrix for T.

1 ) 0 0 ) -1
Soln: Under T, [0] rotates into [1] and [J rotates into [O ]
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Onto and one-to-one mappings

@ Defn: A mapping T : R” — R is said to be onto R” if each b in R™
is the image of at least one x in R".
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Onto and one-to-one mappings

@ Defn: A mapping T : R” — R is said to be onto R” if each b in R™
is the image of at least one x in R".

e Equivalently, if T is onto, then the co-domain R” is also the range of
T. So each b in R", T(x) = b has at least one solution.

Gexin Yu gyu@um.edu Section 1.8-1.9 Introduction to Linear Transformation



Onto and one-to-one mappings

@ Defn: A mapping T : R” — R is said to be onto R” if each b in R™
is the image of at least one x in R".

e Equivalently, if T is onto, then the co-domain R” is also the range of
T. So each b in R", T(x) = b has at least one solution.

@ Defn: A mapping T : R” — R™ is one-to-one if each b in R is the
image of at most one x in R".
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Onto and one-to-one mappings

@ Defn: A mapping T : R” — R is said to be onto R” if each b in R™
is the image of at least one x in R".

e Equivalently, if T is onto, then the co-domain R” is also the range of
T. So each b in R", T(x) = b has at least one solution.

@ Defn: A mapping T : R” — R™ is one-to-one if each b in R is the
image of at most one x in R".

e Equivalently, T is one-to-one, if for each b in R™, T(x) = b has at
most one solution.
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Ex. Let T be the linear transformation whose standard matrix is

1 -4 8 1
A=10 2 -1 3
0 0 0 5

Does T map R* onto R3? Is T a one-to-one mapping?
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Ex. Let T be the linear transformation whose standard matrix is

1 -4 8 1
A=10 2 -1 3
0 0 0 5

Does T map R* onto R3? Is T a one-to-one mapping?

@ As Ais in echelon form, A has a pivot position in each row. So for
each b in R™, Ax = b is consistent. Therefore T is onto.
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Ex. Let T be the linear transformation whose standard matrix is

1 -4 8 1
A=10 2 -1 3
0 0 0 5

Does T map R* onto R3? Is T a one-to-one mapping?

@ As Ais in echelon form, A has a pivot position in each row. So for
each b in R™, Ax = b is consistent. Therefore T is onto.

@ We also note that A has a free variable x3, for each bin R™, Ax = b
has infinite many solutions. So T is not one-to-one.
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