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Transformationa

A transformation (or function or mapping) T from Rn to Rm is a rule
that assigns to each vector x in Rn a vector T (x) in Rm.

The set Rn is called domain of T , and Rm is called the codomain of
T .

The notation T : Rn → Rm indicates that the domain of T is Rn and
the codomain is Rm.

For x in Rn, the vector T (x) in Rm is called the image of x (under
the action of T ).

The set of all images T (x) is called the range of T . See the figure on
the next slide.
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Matrix Transformations

For each x in Rn, T (x) is computed as Ax , where A is an m × n
matrix.

For simplicity, we denote such a matrix transformation by x as Ax .

The domain of T is Rn, when A has n columns and the codomain of
T is Rm, when each column of A has m entries.

The range of T is the set of all linear combinations of the columns of
A, because each image T (x) is of the form Ax .
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Example

Ex 1: Let A =

 1 −3
3 5
−1 7

 , u =

[
2
−1

]
, c =

 3
2
−5

. Define a

transformation T : R2 → R3 by T (x) = Ax , so that

T (x) = Ax =

 1 −3
3 5
−1 7

[x1
x2

]
=

 x1 − 3x2
3x1 + 5x2
−x1 + 7x2



(a) Find T (u), the image of u under the transformation T .
(b) Find an x in R2 whose image under T is c .
(c) Is there more than one x whose image under T is c?
(d) Determine if c is in the range of the transformation T .

(a). Compute T (u):

T (u) = Au =

 1 −3
3 5
−1 7

[ 2
−1

]
=

 5
1
−9


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(b) Solve T (x) = c for x . That is, solve Ax = c : 1 −3
3 5
−1 7

[x1
x2

]
=

 3
2
−5



Row reduce the augmented matrix: 1 −3 3
3 5 2
−1 7 −5

→
1 −3 3

0 14 −7
0 4 −2

→
1 −3 3

0 1 −5
0 0 0

→
1 0 1.5

0 1 −0.5
0 0 0


Hence x1 = 1.5, x2 = −0.5 and x =

[
1.5
−0.5

]

The image of this vector x under T is the given vector c .
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(c) Any x whose image under T is c must satisfy the matrix equation
in (b). But it is clear from (b) that the matrix equation has a unique
solution. So there is exactly one x whose image is c .

(d) The vector c is in the range of T if c is the image of some x in
R2, that is, if c = T (x) for some x .

This is another way of asking if the equation Ax = c is consistent.

To find the answer, row reduce the augmented matrix: 1 −3 3
3 5 2
−1 7 5

→
1 −3 3

0 14 −7
0 4 8

→
1 −3 3

0 1 2
0 14 −7

→
1 −3 3

0 1 2
0 0 −35


So the system is inconsistent. That is, c is not in the range of T .
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Shear Transformation

Let A =

[
1 3
0 1

]
. The transformation T : R2 → R2 defined by

T (x) = Ax is called a shear transformation.

It can be shown that if T acts on each point in the 2× 2 square, then
the set of images forms a parallelogram.

The key idea is to show that T maps line segments onto line
segments and then to check that the corners of the square map onto
the vertices of the parallelogram.

T (

[
0
2

]
) =

[
1 3
0 1

] [
0
2

]
=

[
6
2

]
, and T (

[
2
2

]
) =

[
1 3
0 1

] [
2
2

]
=

[
8
2

]
.

T deforms the square as if the top of the square were pushed to the
right while the base is held fixed.
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Linear Transformations

Definition: A transformation (or mapping) T is linear if

(a) T (u + v) = T (u) + T (v) for all u, v in the domain of T
(b) T (cu) = cT (u) for all scalars c and all u in the domain of T .

Linear transformations preserve the operations of vector addition and
scalar multiplication.

These two properties lead to the following useful facts:

(c) If T is a linear transformation, then T (0) = 0.
(d) T (cu + dv) = cT (u) + dT (v) for all vectors u, v and scalars c , d .

Note that property (d) implies property (c).

Any transformation is linear if and only if it satisfies (d).
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Example

Ex: Given a scalar r , define T : R2 → R2 by T (x) = rx . Show that T
is a linear transformation.

Pf: We check if T satisfies (d). Let u, v be in R2 and c , d ∈ R.

T (cu + dv) = r(cu + dv)

= rcu + rdv

= c(ru) + d(rv)

= cT (u) + dT (v)

So T is a linear transformation.

T is called a contraction when 0 ≤ r ≤ 1 and a dilation when r > 1.
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Superposition principle

Repeated application of (d) produces a useful generalization:

T (c1v1 + c2v2 + . . .+ cpvp) = c1T (v1) + c2T (v2) + . . .+ cpT (vp)

In engineering and physics, the above equation is referred to as a
superposition principle.

Think of v1, . . . , vp as signals that go into a system and
T (v1), . . . ,T (vp) as the responses of that system to the signals.

The system satisfies the superposition principle if whenever an input
is expressed as a linear combination of such signals, the systems
response is the same linear combination of the responses to the
individual signals.
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The matrix of linear transformation

Theorem 10: Let T : Rn → Rm be a linear transformation. Then
there exists a unique matrix A such that T (x) = Ax for all x ∈ Rn.

In fact, let ei =
[
0 0 . . . 1 0 . . . 0

]
with 1 being in the i-th

entry, then A =
[
T (e1) T (e2) . . . T (en)

]
Proof: Let x = Inx =

[
e1 e2 . . . en

]
x = x1e1 + x2e2 + . . .+ xnen.

Use the linearity of T , we have

T (x) = T (x1e1 + x2e2 + . . .+ xnen)

= x1T (e1) + x2T (e2) + . . .+ xnT (en)

=
[
T (e1) T (e2) . . . T (en)

] 
x1
x2
. . .
xn

 = Ax

The matrix A is called the standard matrix for T .
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Examples

Ex 2: Find the standard matrix A for the dilation transformation
T (x) = 3x for x ∈ R2.

Soln: As T (e1) = 3e1 =

[
3
0

]
and T (e2) = 3e2 =

[
0
3

]
, we have A =

[
3 0
0 3

]
.

Ex3: Let T : R2 → R2 be the transformation that rotates each point
in R2 about the origin through an angle θ, with counterclockwise
rotation for a positive angle. Find the standard matrix A of this
transformation.

Soln: Under T ,

[
1
0

]
rotates into

[
cos θ
sin θ

]
, and

[
0
1

]
rotates into

[
− sin θ
cos θ

]
.

So A =

[
cos θ − sin θ
sin θ cos θ

]
.
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Examples

Ex3: Let T : R2 → R2 first reflects points through the horizontal
x1-axis and then reflects points through the line x2 = x1. Find the
standard matrix for T .

Soln: Under T ,

[
1
0

]
rotates into

[
0
1

]
, and

[
0
1

]
rotates into

[
−1
0

]
.

So A =

[
0 −1
1 0

]
.
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Onto and one-to-one mappings

Defn: A mapping T : Rn → Rm is said to be onto Rm if each b in Rm

is the image of at least one x in Rn.

Equivalently, if T is onto, then the co-domain Rn is also the range of
T . So each b in Rn, T (x) = b has at least one solution.

Defn: A mapping T : Rn → Rm is one-to-one if each b in Rm is the
image of at most one x in Rn.

Equivalently, T is one-to-one, if for each b in Rm, T (x) = b has at
most one solution.
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Example

Ex. Let T be the linear transformation whose standard matrix is

A =

1 −4 8 1
0 2 −1 3
0 0 0 5


Does T map R4 onto R3? Is T a one-to-one mapping?

As A is in echelon form, A has a pivot position in each row. So for
each b in Rm, Ax = b is consistent. Therefore T is onto.

We also note that A has a free variable x3, for each b in Rm, Ax = b
has infinite many solutions. So T is not one-to-one.
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