Section 2.1 Matrix operations

Gexin Yu
gyu@wm.edu
College of William and Mary

Notations in a matrix

- A $m \times n$ matrix is a rectangular array of numbers, (symbols or expressions,) with m rows and n columns. The individual items in a matrix are called its elements or entries.

Notations in a matrix

- A $m \times n$ matrix is a rectangular array of numbers, (symbols or expressions,) with m rows and n columns. The individual items in a matrix are called its elements or entries.
- If the element at the i-th row and j-th column is $a_{i j}$, which we call (i, j)-entry, then the matrix can be denoted as $\left(a_{i j}\right)_{m \times n}$.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Notations in a matrix

- A $m \times n$ matrix is a rectangular array of numbers, (symbols or expressions,) with m rows and n columns. The individual items in a matrix are called its elements or entries.
- If the element at the i -th row and j -th column is $a_{i j}$, which we call (i, j)-entry, then the matrix can be denoted as $\left(a_{i j}\right)_{m \times n}$.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

- The diagonal entries in an $m \times n$ matrix $A=\left(a_{i j}\right)$ are a_{11}, a_{22}, \ldots, , and they are form the main diagonal of A.
- A diagonal matrix is a $n \times m$ matrix whose non-diagonal entries are zero.
- A diagonal matrix is a $n \times m$ matrix whose non-diagonal entries are zero.
- The $n \times n$ diagonal matrix whose entries are ones is the identity matrix, denoted by I_{n}.
- A diagonal matrix is a $n \times m$ matrix whose non-diagonal entries are zero.
- The $n \times n$ diagonal matrix whose entries are ones is the identity matrix, denoted by I_{n}.
- An $m \times n$ matrix whose entries are all zero is a zero matrix and is written as 0 .
- A diagonal matrix is a $n \times m$ matrix whose non-diagonal entries are zero.
- The $n \times n$ diagonal matrix whose entries are ones is the identity matrix, denoted by I_{n}.
- An $m \times n$ matrix whose entries are all zero is a zero matrix and is written as 0 .
- The two matrices are equal if they have the same size (i.e., the same number of rows and the same number of columns) and if their corresponding entries are equal.

Sum, Scalar multiples, and Transpose

- Let A and B be two $m \times n$ matrices. Then the sum $A+B$ is the $m \times n$ matrix whose entries are the sum of corresponding entries in A and B.

Sum, Scalar multiples, and Transpose

- Let A and B be two $m \times n$ matrices. Then the sum $A+B$ is the $m \times n$ matrix whose entries are the sum of corresponding entries in A and B.
- So $A+B$ is defined only when A and B have the same size.

Sum, Scalar multiples, and Transpose

- Let A and B be two $m \times n$ matrices. Then the sum $A+B$ is the $m \times n$ matrix whose entries are the sum of corresponding entries in A and B.
- So $A+B$ is defined only when A and B have the same size.
- If r is a scalar and A is a matrix, then the scalar multiple $r A$ is the matrix whose entries are r times the corresponding entries in A.

Sum, Scalar multiples, and Transpose

- Let A and B be two $m \times n$ matrices. Then the sum $A+B$ is the $m \times n$ matrix whose entries are the sum of corresponding entries in A and B.
- So $A+B$ is defined only when A and B have the same size.
- If r is a scalar and A is a matrix, then the scalar multiple $r A$ is the matrix whose entries are r times the corresponding entries in A.
- Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.

Sum, Scalar multiples, and Transpose

- Let A and B be two $m \times n$ matrices. Then the sum $A+B$ is the $m \times n$ matrix whose entries are the sum of corresponding entries in A and B.
- So $A+B$ is defined only when A and B have the same size.
- If r is a scalar and A is a matrix, then the scalar multiple $r A$ is the matrix whose entries are r times the corresponding entries in A.
- Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.
- So if $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, and $r \in \mathbf{R}$, then

$$
A+B=\left(a_{i j}+b_{i j}\right), r A=\left(r a_{i j}\right), A^{T}=\left(a_{j i}\right)
$$

Example

Ex1: Let $A=\left[\begin{array}{ccc}4 & 0 & 5 \\ -1 & 3 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 7\end{array}\right]$. Find $A+B, 3 A, B^{T}$.

Example

Ex1: Let $A=\left[\begin{array}{ccc}4 & 0 & 5 \\ -1 & 3 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 7\end{array}\right]$. Find $A+B, 3 A, B^{T}$.

- $A+B=\left[\begin{array}{lll}5 & 1 & 6 \\ 2 & 8 & 9\end{array}\right]$

Example

Ex1: Let $A=\left[\begin{array}{ccc}4 & 0 & 5 \\ -1 & 3 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 7\end{array}\right]$. Find $A+B, 3 A, B^{T}$.

- $A+B=\left[\begin{array}{lll}5 & 1 & 6 \\ 2 & 8 & 9\end{array}\right]$
- $3 A=\left[\begin{array}{ccc}12 & 0 & 15 \\ -3 & 9 & 6\end{array}\right]$

Example

Ex1: Let $A=\left[\begin{array}{ccc}4 & 0 & 5 \\ -1 & 3 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 7\end{array}\right]$. Find $A+B, 3 A, B^{T}$.

- $A+B=\left[\begin{array}{lll}5 & 1 & 6 \\ 2 & 8 & 9\end{array}\right]$
- $3 A=\left[\begin{array}{ccc}12 & 0 & 15 \\ -3 & 9 & 6\end{array}\right]$
- $B^{T}=\left[\begin{array}{ll}1 & 3 \\ 1 & 5 \\ 1 & 7\end{array}\right]$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$
(4) $r(A+B)=r A+r B$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$
(1) $r(A+B)=r A+r B$
(5) $(r+s) A=r A+s A$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$
(1) $r(A+B)=r A+r B$
(3) $(r+s) A=r A+s A$
(0) $r(s A)=(r s) A$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$
(1) $r(A+B)=r A+r B$
(6) $(r+s) A=r A+s A$
(0) $r(s A)=(r s) A$
- Let A and B be matrices with the same size. Then

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$
(1) $r(A+B)=r A+r B$
(6) $(r+s) A=r A+s A$
(0) $r(s A)=(r s) A$
- Let A and B be matrices with the same size. Then
(1) $\left(A^{T}\right)^{T}=A$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$
(1) $r(A+B)=r A+r B$
(6) $(r+s) A=r A+s A$
(0) $r(s A)=(r s) A$
- Let A and B be matrices with the same size. Then
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$

Properties of the basic operations

- Theorem 1: Let A, B, C be matrices of the same size, and let r, s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$
(1) $r(A+B)=r A+r B$
(6) $(r+s) A=r A+s A$
(0) $r(s A)=(r s) A$
- Let A and B be matrices with the same size. Then
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) For any scalar $r,(r A)^{T}=r A^{T}$

Matrix Multiplication

- When a matrix B multiplies a vector x, it transforms x into the vector $B x$.

Matrix Multiplication

- When a matrix B multiplies a vector x, it transforms x into the vector $B x$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B x)$.

Matrix Multiplication

- When a matrix B multiplies a vector x, it transforms x into the vector $B x$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B x)$.
- Thus $A(B x)$ is produced from x by a composition of mappings--the linear transformations.

Matrix Multiplication

- When a matrix B multiplies a vector x, it transforms x into the vector $B x$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B x)$.
- Thus $A(B x)$ is produced from x by a composition of mappings-the linear transformations.
- To represent this composition, we may think the vector x is multiplied by a single matrix, denoted by $A B$, so that $A(B x)=(A B) x$.

Matrix Multiplication

- When a matrix B multiplies a vector x, it transforms x into the vector $B x$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B x)$.
- Thus $A(B x)$ is produced from x by a composition of mappings-the linear transformations.
- To represent this composition, we may think the vector x is multiplied by a single matrix, denoted by $A B$, so that $A(B x)=(A B) x$.
- If A is $m \times n, B$ is $n \times p$ with columns $b_{1}, b_{2}, \ldots, b_{p}$, and x is in \mathbf{R}^{p}, then

$$
B x=x_{1} b_{1}+x_{2} b_{2}+\ldots+x_{p} b_{p}
$$

Matrix Multiplication

- When a matrix B multiplies a vector x, it transforms x into the vector $B x$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B x)$.
- Thus $A(B x)$ is produced from x by a composition of mappings-the linear transformations.
- To represent this composition, we may think the vector x is multiplied by a single matrix, denoted by $A B$, so that $A(B x)=(A B) x$.
- If A is $m \times n, B$ is $n \times p$ with columns $b_{1}, b_{2}, \ldots, b_{p}$, and x is in \mathbf{R}^{p}, then

$$
B x=x_{1} b_{1}+x_{2} b_{2}+\ldots+x_{p} b_{p}
$$

- So when multiply the vector $B x$ by A, we have

$$
A(B x)=A\left(x_{1} b_{1}\right)+A\left(x_{2} b_{2}\right)+\ldots+A\left(x_{p} b_{p}\right)=x_{1} A b_{1}+x_{2} A b_{2}+\ldots+x_{p} A b_{p}
$$

- The vector $A(B x)$ is a linear combination of the vectors $A b_{1}, \ldots, A b_{p}$, using entries in x as weights.
- The vector $A(B x)$ is a linear combination of the vectors $A b_{1}, \ldots, A b_{p}$, using entries in x as weights.
- In matrix notation, this linear combination is written as

$$
A(B x)=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{p}
\end{array}\right] x
$$

- The vector $A(B x)$ is a linear combination of the vectors $A b_{1}, \ldots, A b_{p}$, using entries in x as weights.
- In matrix notation, this linear combination is written as

$$
A(B x)=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{p}
\end{array}\right] x
$$

- Definition: If A is an $m \times n$ matrix, and B is an $n \times p$ matrix with columns $b_{1}, b_{2}, \ldots, b_{p}$, then the product $A B$ is the $m \times p$ matrix whose columns are $A b_{1}, A b_{2}, \ldots, A b_{p}$.
- The vector $A(B x)$ is a linear combination of the vectors $A b_{1}, \ldots, A b_{p}$, using entries in x as weights.
- In matrix notation, this linear combination is written as

$$
A(B x)=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{p}
\end{array}\right] x
$$

- Definition: If A is an $m \times n$ matrix, and B is an $n \times p$ matrix with columns $b_{1}, b_{2}, \ldots, b_{p}$, then the product $A B$ is the $m \times p$ matrix whose columns are $A b_{1}, A b_{2}, \ldots, A b_{p}$.
- That is

$$
A B=A\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{p}
\end{array}\right]=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{p}
\end{array}\right]
$$

- The vector $A(B x)$ is a linear combination of the vectors $A b_{1}, \ldots, A b_{p}$, using entries in x as weights.
- In matrix notation, this linear combination is written as

$$
A(B x)=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{p}
\end{array}\right] x
$$

- Definition: If A is an $m \times n$ matrix, and B is an $n \times p$ matrix with columns $b_{1}, b_{2}, \ldots, b_{p}$, then the product $A B$ is the $m \times p$ matrix whose columns are $A b_{1}, A b_{2}, \ldots, A b_{p}$.
- That is

$$
A B=A\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{p}
\end{array}\right]=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{p}
\end{array}\right]
$$

- If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, then $A B=\left(c_{i j}\right)_{m \times p}$ with

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}
$$

- The vector $A(B x)$ is a linear combination of the vectors $A b_{1}, \ldots, A b_{p}$, using entries in x as weights.
- In matrix notation, this linear combination is written as

$$
A(B x)=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{p}
\end{array}\right] x
$$

- Definition: If A is an $m \times n$ matrix, and B is an $n \times p$ matrix with columns $b_{1}, b_{2}, \ldots, b_{p}$, then the product $A B$ is the $m \times p$ matrix whose columns are $A b_{1}, A b_{2}, \ldots, A b_{p}$.
- That is

$$
A B=A\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{p}
\end{array}\right]=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{p}
\end{array}\right]
$$

- If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, then $A B=\left(c_{i j}\right)_{m \times p}$ with

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}
$$

- That is, the (i, j)-entry in $A B$ is the dot product of the i-th row of A and j -th column of B.

Examples

Ex2: Let A be a 3×5 matrix and B be $m \times n$ matrix. If $A B$ and $B A$ are defined, what are m and n ?

Examples

Ex2: Let A be a 3×5 matrix and B be $m \times n$ matrix. If $A B$ and $B A$ are defined, what are m and n ?

Soln: As $A B$ is defined, $m=5$; and as $B A$ is defined, $n=3$.

Examples

Ex2: Let A be a 3×5 matrix and B be $m \times n$ matrix. If $A B$ and $B A$ are defined, what are m and n ?

Soln: As $A B$ is defined, $m=5$; and as $B A$ is defined, $n=3$.
Ex3: compute $A B$, where $A=\left[\begin{array}{cc}2 & 3 \\ 1 & -5\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & 3 & 9 \\ 1 & -2 & 3\end{array}\right]$.

Examples

Ex2: Let A be a 3×5 matrix and B be $m \times n$ matrix. If $A B$ and $B A$ are defined, what are m and n ?

Soln: As $A B$ is defined, $m=5$; and as $B A$ is defined, $n=3$.
Ex3: compute $A B$, where $A=\left[\begin{array}{cc}2 & 3 \\ 1 & -5\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & 3 & 9 \\ 1 & -2 & 3\end{array}\right]$.
Soln: note that the (i, j)-entry is the dot product of i-th row of A and j-th column of B. So

Examples

Ex2: Let A be a 3×5 matrix and B be $m \times n$ matrix. If $A B$ and $B A$ are defined, what are m and n ?

Soln: As $A B$ is defined, $m=5$; and as $B A$ is defined, $n=3$.
Ex3: compute $A B$, where $A=\left[\begin{array}{cc}2 & 3 \\ 1 & -5\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & 3 & 9 \\ 1 & -2 & 3\end{array}\right]$.
Soln: note that the (i, j)-entry is the dot product of i-th row of A and j-th column of B. So

$$
\begin{aligned}
A B & =\left[\begin{array}{ccc}
2 \cdot 4+3 \cdot 1 & 2 \cdot 3+3 \cdot(-2) & 2 \cdot 9+3 \cdot 3 \\
1 \cdot 4+(-5) \cdot 1 & 1 \cdot 3+(-5) \cdot(-2) & 1 \cdot 9+(-5) \cdot 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
11 & 0 & 21 \\
-1 & 13 & -9
\end{array}\right]
\end{aligned}
$$

Properties of Matrix Multiplication

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then

Properties of Matrix Multiplication

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then
(1) $A(B C)=(A B) C$

Properties of Matrix Multiplication

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then
(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$

Properties of Matrix Multiplication

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then
(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$
(3) $(B+C) A=B A+C A$

Properties of Matrix Multiplication

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then
(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$
(3) $(B+C) A=B A+C A$
(9) $r(A B)=(r A) B=A(r B)$

Properties of Matrix Multiplication

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then
(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$
(3) $(B+C) A=B A+C A$
(4) $r(A B)=(r A) B=A(r B)$
(3) $I_{m} A=A=A I_{n}$.

Properties of Matrix Multiplication

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then
(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$

3) $(B+C) A=B A+C A$
(9) $r(A B)=(r A) B=A(r B)$
(3) $I_{m} A=A=A I_{n}$.

- In terms of transpose, we have $(A B)^{T}=B^{T} A^{T}$.

Remarks

- In general, $A B \neq B A$ (not commutative)

Remarks

- In general, $A B \neq B A$ (not commutative)

Let $A=\left[\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right]$, and $B=\left[\begin{array}{ll}2 & 0 \\ 4 & 3\end{array}\right]$. Find $A B$ and $B A$.

Remarks

- In general, $A B \neq B A$ (not commutative)

Let $A=\left[\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right]$, and $B=\left[\begin{array}{ll}2 & 0 \\ 4 & 3\end{array}\right]$. Find $A B$ and $B A$.

- Even if $A B=0$, we may have $A \neq 0$ and $B \neq 0$:

Remarks

- In general, $A B \neq B A$ (not commutative)

Let $A=\left[\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right]$, and $B=\left[\begin{array}{ll}2 & 0 \\ 4 & 3\end{array}\right]$. Find $A B$ and $B A$.

- Even if $A B=0$, we may have $A \neq 0$ and $B \neq 0$:

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot \text { Then } A B=0
$$

Remarks

- In general, $A B \neq B A$ (not commutative)

Let $A=\left[\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right]$, and $B=\left[\begin{array}{ll}2 & 0 \\ 4 & 3\end{array}\right]$. Find $A B$ and $B A$.

- Even if $A B=0$, we may have $A \neq 0$ and $B \neq 0$:

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot \text { Then } A B=0
$$

- The cancellation laws do not hold for matrix multiplication. That is, if $A B=A C$, then it is not always true that $B=C$.

Remarks

- In general, $A B \neq B A$ (not commutative)

Let $A=\left[\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right]$, and $B=\left[\begin{array}{ll}2 & 0 \\ 4 & 3\end{array}\right]$. Find $A B$ and $B A$.

- Even if $A B=0$, we may have $A \neq 0$ and $B \neq 0$:

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot \text { Then } A B=0
$$

- The cancellation laws do not hold for matrix multiplication. That is, if $A B=A C$, then it is not always true that $B=C$.
- If A is an $n \times n$ matrix, and k is a positive integer, then A^{k} denote the product of k copies of A : $A^{k}=A A \ldots A$. Moreover, we denote A^{0} to eve the identity matrix.

