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Inverse Matrices

An n × n matrix A is said to invertible if there is an n × n matrix C
such that CA = In and AC = In, where In is the n× n identity matrix.

If C is an inverse of A, then A is also an inverse of C .

We should remark that C is uniquely determined by A: suppose that
B is another inverse of A, then

B = BIn = B(AC ) = (BA)C = InC = C

So we may denote the unique inverse of A by A−1. So

A−1A = AA−1 = In
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Inverse of 2× 2 matrices

Theorem 4: Let A =

[
a b
c d

]
. If ad − bc = 0, then A is not invertible,

and if ad − bc 6= 0, then A is invertible and

A−1 =
1

ad − bc

[
d −b
−c a

]

The term ad − bc is called the determinant of A, and we write
detA = ad − bc.

This theorem says that a 2× 2 matrix A is invertible if and only if
detA 6= 0.

Ex. Find the inverse of A =

[
3 4
5 6

]
.

Soln. A−1 = 1
3·6−4·5

[
6 −4
−5 3

]
=

[
−3 2
5/2 −3/2

]
.
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Solving equations with invertible coefficient matrices

If AB = AC , and A is inevertible, then B = C .

Theorem 5: If A is an invertible n × n matrix, then for each b in Rn,
then equation Ax = b has the unique solution x = A−1b.

Ex. Solve the following linear system

3x1 + 4x2 = 3

5x1 + 6x2 = 7

Soln. The solution is x = A−1b =

[
−3 2
5/2 −3/2

] [
3
7

]
=

[
5
−3

]
.
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Properties of invertible matrices

Theorem 6: The following are true:

(a) If A is invertible matrix, then A−1 is invertible and

(A−1)−1 = A.

(b) If A and B are n× n invertible matrices, then AB is also invertible, and

(AB)−1 = B−1A−1.

(c) If A is invertible, then so is AT , and

(AT )−1 = (A−1)T .
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Elementary Matrices

If A in invertible, then A can be row reduced to an identity matrix.

We now find A−1 by watching the row reduction of A to I .

An elementary matrix is one that is obtained by performing a single
elementary row operation on an identity matrix.
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Ex. Compute E1A,E2A,E3A, and describe how these product can be
obtained by elementary row operations on A, where

E1 =

 1 0 0
0 1 0
−4 0 1

 E2 =

0 1 0
1 0 0
0 0 1

 E3 =

1 0 0
0 1 0
0 0 5

 A =

a b v
d e f
g h i



E1A is the same as R3+(-4)R1, E2A is the same as interchange R1
and R2, and E3A is the same as 5R3.
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If an elementary row operation is performed on an m × n matrix A,
the resulting matrix can be written as EA, where the m×m matrix E
is the corresponding elementary matrix.

Each elementary matrix E is invertible. The inverse of E is the
elementary matrix of the same type that transforms E back into I .

if E =


1 0 0 0
d 1 0 0
0 0 1 0
0 0 0 1

 , then E−1 =


1 0 0 0
−d 1 0 0
0 0 1 0
0 0 0 1
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Theorem 7: An n × n matrix A is invertible if and only if A is row
equivalent to In; furthermore, any sequence of elementary row
operations that reduces A to In also transforms In into A−1.

Pf. Suppose A is equivalent to In.

Then there are elementary matrices E1,E2, . . . ,Ep so that
Ep . . .E2E1A = In.

As Ei s are invertible, their product is also invertible, so we have

(Ep . . .E2E1)−1(Ep . . .E2E1)A = (Ep . . .E2E1)−1In

So we have A = (Ep . . .E1)−1.

It follows that A−1 = ((Ep . . .E1)−1)−1 = Ep . . .E1.

Then A−1 = Ep . . .E1, which says that A−1 results from applying
E1, . . . ,Ep successively to In.

This is the same sequence that reduced A to In.
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Algorithm to find A−1

If we place A and I side-by-side to form an augmented matrix
[
A I

]
,

then row operations on this matrix produce identical operations on A
and on I .

By Theorem 7, either there are row operations that transform A to In
and In to A−1, or else A is not invertible.

That is, [
A I

]
→
[
I A−1

]
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Algorithm to find A−1—-Example

Ex. Find the inverse of the matrix A =

0 1 0
1 0 3
4 −3 8

, if it exists.

Soln.
[
A I

]
=

0 1 0 1 0 0
1 0 3 0 1 0
4 −3 8 0 0 1

→
1 0 0 −9/2 7 −3/2

0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2

.

So A−1 =

−9/2 7 −3/2
−2 4 −1
3/2 −2 1/2

.
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Invertible Linear Transformations

Matrix multiplication corresponds to composition of linear
transformations.

When a matrix A is invertible, the equation A−1Ax = x can be
viewed as a statement about linear transformations.

See the following figure.
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A linear transformation T : Rn → Rn is said to be invertible if there
exists a function S : Rn → Rn such that

S(T (x)) = x for all x in Rn (1)

T (S(x)) = x for all x in Rn (2)

Theorem 9: Let T : Rn → Rn be a linear transformation and let A be
the standard matrix for T . Then T is invertible if and only if A is an
invertible matrix. In that case, the linear transformation S given by
S(x) = A−1x is the unique function satisfying equation (1) and (2).
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Pf: Suppose that T is invertible.

The (2) shows that T is onto Rn, for if b is in Rn and x = S(b), then
T (x) = T (S(b)) = b, so each b is in the range of T .

Thus A is invertible, by the Invertible Matrix Theorem, statement (i).

Conversely, suppose that A is invertible, and let S(x) = A−1x . Then,
S is a linear transformation, and S satisfies (1) and (2).

For instance, S(T (x)) = S(Ax) = A−1(Ax) = x .

Thus, T is invertible.
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The Invertible Matrix Theorem

Theorem 8: Let A be a square n × n matrix. Then the following
statements are equivalent.

(a) A is an invertible matrix.
(b) A is row equivalent to the n × n identity matrix.
(c) A has n pivot positions.
(d) The equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation x → Ax is one-to-one.
(g) The equation Ax = b has at least one solution for each b in Rn.
(h) The columns of A span Rn.
(i) The linear transformation x → Ax maps Rn onto Rn.
(j) There is an n × n matrix C such that CA = I .
(k) There is an n × n matrix D such that AD = I .
(l) AT is an invertible matrix.
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Theorem 8 could also be written as “The equation Ax = b has a
unique solution for each b in Rn.”

This statement implies (b) and hence implies that A is invertible.

The following fact follows from Theorem 8: Let A and B be square
matrices. If AB = I , then A and B are both invertible, with B = A−1

and A = B−1.

The Invertible Matrix Theorem divides the set of all n × n matrices
into two disjoint classes: the invertible (nonsingular) matrices, and
the noninvertible (singular) matrices.

Each statement in the theorem describes a property of every n × n
invertible matrix.

The negation of a statement in the theorem describes a property of
every n × n singular matrix.

For instance, an n × n singular matrix is not row equivalent to In,
does not have n pivot position, and has linearly dependent columns.

The Invertible Matrix Theorem applies only to square matrices.
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