Section 2.2 and 2.3 The Inverse of a Matrix

Gexin Yu
gyu@wm.edu

College of William and Mary

Inverse Matrices

- An $n \times n$ matrix A is said to invertible if there is an $n \times n$ matrix C such that $C A=I_{n}$ and $A C=I_{n}$, where I_{n} is the $n \times n$ identity matrix.

Inverse Matrices

- An $n \times n$ matrix A is said to invertible if there is an $n \times n$ matrix C such that $C A=I_{n}$ and $A C=I_{n}$, where I_{n} is the $n \times n$ identity matrix.
- If C is an inverse of A, then A is also an inverse of C.

Inverse Matrices

- An $n \times n$ matrix A is said to invertible if there is an $n \times n$ matrix C such that $C A=I_{n}$ and $A C=I_{n}$, where I_{n} is the $n \times n$ identity matrix.
- If C is an inverse of A, then A is also an inverse of C.
- We should remark that C is uniquely determined by A : suppose that B is another inverse of A, then

$$
B=B I_{n}=B(A C)=(B A) C=I_{n} C=C
$$

Inverse Matrices

- An $n \times n$ matrix A is said to invertible if there is an $n \times n$ matrix C such that $C A=I_{n}$ and $A C=I_{n}$, where I_{n} is the $n \times n$ identity matrix.
- If C is an inverse of A, then A is also an inverse of C.
- We should remark that C is uniquely determined by A : suppose that B is another inverse of A, then

$$
B=B I_{n}=B(A C)=(B A) C=I_{n} C=C
$$

- So we may denote the unique inverse of A by A^{-1}. So

$$
A^{-1} A=A A^{-1}=I_{n}
$$

Inverse of 2×2 matrices

- Theorem 4: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c=0$, then A is not invertible, and if $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Inverse of 2×2 matrices

- Theorem 4: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c=0$, then A is not invertible, and if $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- The term ad -bc is called the determinant of A, and we write $\operatorname{det} A=a d-b c$.

Inverse of 2×2 matrices

- Theorem 4: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c=0$, then A is not invertible, and if $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- The term ad -bc is called the determinant of A, and we write $\operatorname{det} A=a d-b c$.
- This theorem says that a 2×2 matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

Inverse of 2×2 matrices

- Theorem 4: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c=0$, then A is not invertible, and if $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- The term ad -bc is called the determinant of A, and we write $\operatorname{det} A=a d-b c$.
- This theorem says that a 2×2 matrix A is invertible if and only if $\operatorname{det} A \neq 0$.
Ex. Find the inverse of $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]$.

Inverse of 2×2 matrices

- Theorem 4: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c=0$, then A is not invertible, and if $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- The term ad -bc is called the determinant of A, and we write $\operatorname{det} A=a d-b c$.
- This theorem says that a 2×2 matrix A is invertible if and only if $\operatorname{det} A \neq 0$.
Ex. Find the inverse of $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]$.
Soln. $A^{-1}=\frac{1}{3 \cdot 6-4 \cdot 5}\left[\begin{array}{cc}6 & -4 \\ -5 & 3\end{array}\right]=\left[\begin{array}{cc}-3 & 2 \\ 5 / 2 & -3 / 2\end{array}\right]$.

Solving equations with invertible coefficient matrices

- If $A B=A C$, and A is inevertible, then $B=C$.

Solving equations with invertible coefficient matrices

- If $A B=A C$, and A is inevertible, then $B=C$.
- Theorem 5: If A is an invertible $n \times n$ matrix, then for each b in \mathbf{R}^{n}, then equation $A x=b$ has the unique solution $x=A^{-1} b$.

Solving equations with invertible coefficient matrices

- If $A B=A C$, and A is inevertible, then $B=C$.
- Theorem 5: If A is an invertible $n \times n$ matrix, then for each b in \mathbf{R}^{n}, then equation $A x=b$ has the unique solution $x=A^{-1} b$.

Ex. Solve the following linear system

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}=3 \\
& 5 x_{1}+6 x_{2}=7
\end{aligned}
$$

Solving equations with invertible coefficient matrices

- If $A B=A C$, and A is inevertible, then $B=C$.
- Theorem 5: If A is an invertible $n \times n$ matrix, then for each b in \mathbf{R}^{n}, then equation $A x=b$ has the unique solution $x=A^{-1} b$.

Ex. Solve the following linear system

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}=3 \\
& 5 x_{1}+6 x_{2}=7
\end{aligned}
$$

Soln. The solution is $x=A^{-1} b=\left[\begin{array}{cc}-3 & 2 \\ 5 / 2 & -3 / 2\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]=\left[\begin{array}{c}5 \\ -3\end{array}\right]$.

Properties of invertible matrices

- Theorem 6: The following are true:

Properties of invertible matrices

- Theorem 6: The following are true:
(a) If A is invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A .
$$

Properties of invertible matrices

- Theorem 6: The following are true:
(a) If A is invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A .
$$

(b) If A and B are $n \times n$ invertible matrices, then $A B$ is also invertible, and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Properties of invertible matrices

- Theorem 6: The following are true:
(a) If A is invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A .
$$

(b) If A and B are $n \times n$ invertible matrices, then $A B$ is also invertible, and

$$
(A B)^{-1}=B^{-1} A^{-1} .
$$

(c) If A is invertible, then so is A^{T}, and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

Elementary Matrices

- If A in invertible, then A can be row reduced to an identity matrix.

Elementary Matrices

- If A in invertible, then A can be row reduced to an identity matrix.
- We now find A^{-1} by watching the row reduction of A to I.

Elementary Matrices

- If A in invertible, then A can be row reduced to an identity matrix.
- We now find A^{-1} by watching the row reduction of A to I.
- An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

Ex. Compute $E_{1} A, E_{2} A, E_{3} A$, and describe how these product can be obtained by elementary row operations on A, where

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right] \quad A=\left[\begin{array}{lll}
a & b & v \\
d & e & f \\
g & h & i
\end{array}\right]
$$

Ex. Compute $E_{1} A, E_{2} A, E_{3} A$, and describe how these product can be obtained by elementary row operations on A, where

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right] \quad A=\left[\begin{array}{lll}
a & b & v \\
d & e & f \\
g & h & i
\end{array}\right]
$$

- $E_{1} A$ is the same as R3+(-4)R1, $E_{2} A$ is the same as interchange R1 and R2, and $E_{3} A$ is the same as $5 R 3$.
- If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as $E A$, where the $m \times m$ matrix E is the corresponding elementary matrix.
- If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as $E A$, where the $m \times m$ matrix E is the corresponding elementary matrix.
- Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.
- If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as $E A$, where the $m \times m$ matrix E is the corresponding elementary matrix.
- Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.

$$
\text { if } E=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
d & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, then } E^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-d & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}; furthermore, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.
- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}; furthermore, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

Pf. Suppose A is equivalent to I_{n}.

- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}; furthermore, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

Pf. Suppose A is equivalent to I_{n}.

- Then there are elementary matrices $E_{1}, E_{2}, \ldots, E_{p}$ so that $E_{p} \ldots E_{2} E_{1} A=I_{n}$.
- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}; furthermore, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

Pf. Suppose A is equivalent to I_{n}.

- Then there are elementary matrices $E_{1}, E_{2}, \ldots, E_{p}$ so that $E_{p} \ldots E_{2} E_{1} A=I_{n}$.
- As $E_{i} \mathrm{~s}$ are invertible, their product is also invertible, so we have

$$
\left(E_{p} \ldots E_{2} E_{1}\right)^{-1}\left(E_{p} \ldots E_{2} E_{1}\right) A=\left(E_{p} \ldots E_{2} E_{1}\right)^{-1} I_{n}
$$

- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}; furthermore, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

Pf. Suppose A is equivalent to I_{n}.

- Then there are elementary matrices $E_{1}, E_{2}, \ldots, E_{p}$ so that $E_{p} \ldots E_{2} E_{1} A=I_{n}$.
- As $E_{i} \mathrm{~s}$ are invertible, their product is also invertible, so we have

$$
\left(E_{p} \ldots E_{2} E_{1}\right)^{-1}\left(E_{p} \ldots E_{2} E_{1}\right) A=\left(E_{p} \ldots E_{2} E_{1}\right)^{-1} I_{n}
$$

- So we have $A=\left(E_{p} \ldots E_{1}\right)^{-1}$.
- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}; furthermore, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

Pf. Suppose A is equivalent to I_{n}.

- Then there are elementary matrices $E_{1}, E_{2}, \ldots, E_{p}$ so that $E_{p} \ldots E_{2} E_{1} A=I_{n}$.
- As $E_{i} \mathrm{~s}$ are invertible, their product is also invertible, so we have

$$
\left(E_{p} \ldots E_{2} E_{1}\right)^{-1}\left(E_{p} \ldots E_{2} E_{1}\right) A=\left(E_{p} \ldots E_{2} E_{1}\right)^{-1} I_{n}
$$

- So we have $A=\left(E_{p} \ldots E_{1}\right)^{-1}$.
- It follows that $A^{-1}=\left(\left(E_{p} \ldots E_{1}\right)^{-1}\right)^{-1}=E_{p} \ldots E_{1}$.
- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}; furthermore, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

Pf. Suppose A is equivalent to I_{n}.

- Then there are elementary matrices $E_{1}, E_{2}, \ldots, E_{p}$ so that $E_{p} \ldots E_{2} E_{1} A=I_{n}$.
- As $E_{i} \mathrm{~s}$ are invertible, their product is also invertible, so we have

$$
\left(E_{p} \ldots E_{2} E_{1}\right)^{-1}\left(E_{p} \ldots E_{2} E_{1}\right) A=\left(E_{p} \ldots E_{2} E_{1}\right)^{-1} I_{n}
$$

- So we have $A=\left(E_{p} \ldots E_{1}\right)^{-1}$.
- It follows that $A^{-1}=\left(\left(E_{p} \ldots E_{1}\right)^{-1}\right)^{-1}=E_{p} \ldots E_{1}$.
- Then $A^{-1}=E_{p} \ldots E_{1}$, which says that A^{-1} results from applying E_{1}, \ldots, E_{p} successively to I_{n}.
- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}; furthermore, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

Pf. Suppose A is equivalent to I_{n}.

- Then there are elementary matrices $E_{1}, E_{2}, \ldots, E_{p}$ so that $E_{p} \ldots E_{2} E_{1} A=I_{n}$.
- As $E_{i} \mathrm{~s}$ are invertible, their product is also invertible, so we have

$$
\left(E_{p} \ldots E_{2} E_{1}\right)^{-1}\left(E_{p} \ldots E_{2} E_{1}\right) A=\left(E_{p} \ldots E_{2} E_{1}\right)^{-1} I_{n}
$$

- So we have $A=\left(E_{p} \ldots E_{1}\right)^{-1}$.
- It follows that $A^{-1}=\left(\left(E_{p} \ldots E_{1}\right)^{-1}\right)^{-1}=E_{p} \ldots E_{1}$.
- Then $A^{-1}=E_{p} \ldots E_{1}$, which says that A^{-1} results from applying E_{1}, \ldots, E_{p} successively to I_{n}.
- This is the same sequence that reduced A to I_{n}.

Algorithm to find A^{-1}

- If we place A and I side-by-side to form an augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$, then row operations on this matrix produce identical operations on A and on I.

Algorithm to find A^{-1}

- If we place A and I side-by-side to form an augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$, then row operations on this matrix produce identical operations on A and on I.
- By Theorem 7, either there are row operations that transform A to I_{n} and I_{n} to A^{-1}, or else A is not invertible.

Algorithm to find A^{-1}

- If we place A and I side-by-side to form an augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$, then row operations on this matrix produce identical operations on A and on I.
- By Theorem 7, either there are row operations that transform A to I_{n} and I_{n} to A^{-1}, or else A is not invertible.
- That is,

$$
\left[\begin{array}{ll}
A & I
\end{array}\right] \rightarrow\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right]
$$

Algorithm to find A^{-1} —-Example

Ex. Find the inverse of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$, if it exists.

Algorithm to find A^{-1} —-Example

Ex. Find the inverse of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$, if it exists.

Soln. $\left[\begin{array}{ll}A & I\end{array}\right]=\left[\begin{array}{cccccc}0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 0 & -9 / 2 & 7 & -3 / 2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3 / 2 & -2 & 1 / 2\end{array}\right]$.

Algorithm to find A^{-1}-Example

Ex. Find the inverse of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$, if it exists.

Soln. $\left[\begin{array}{ll}A & I\end{array}\right]=\left[\begin{array}{cccccc}0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 0 & -9 / 2 & 7 & -3 / 2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3 / 2 & -2 & 1 / 2\end{array}\right]$.

- So $A^{-1}=\left[\begin{array}{ccc}-9 / 2 & 7 & -3 / 2 \\ -2 & 4 & -1 \\ 3 / 2 & -2 & 1 / 2\end{array}\right]$.

Invertible Linear Transformations

- Matrix multiplication corresponds to composition of linear transformations.

Invertible Linear Transformations

- Matrix multiplication corresponds to composition of linear transformations.
- When a matrix A is invertible, the equation $A^{-1} A x=x$ can be viewed as a statement about linear transformations.

Invertible Linear Transformations

- Matrix multiplication corresponds to composition of linear transformations.
- When a matrix A is invertible, the equation $A^{-1} A x=x$ can be viewed as a statement about linear transformations.
- See the following figure.

Multiplication

A^{-1} transforms $A \mathbf{x}$ back to \mathbf{x}.

- A linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is said to be invertible if there exists a function $S: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that

$$
\begin{align*}
& S(T(x))=x \text { for all } x \text { in } \mathbf{R}^{n} \tag{1}\\
& T(S(x))=x \text { for all } x \text { in } \mathbf{R}^{n} \tag{2}
\end{align*}
$$

- A linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is said to be invertible if there exists a function $S: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that

$$
\begin{align*}
& S(T(x))=x \text { for all } x \text { in } \mathbf{R}^{n} \tag{1}\\
& T(S(x))=x \text { for all } x \text { in } \mathbf{R}^{n} \tag{2}
\end{align*}
$$

- Theorem 9: Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(x)=A^{-1} x$ is the unique function satisfying equation (1) and (2).

Pf: Suppose that T is invertible.

Pf: Suppose that T is invertible.

- The (2) shows that T is onto \mathbf{R}^{n}, for if b is in \mathbf{R}^{n} and $x=S(b)$, then $T(x)=T(S(b))=b$, so each b is in the range of T.

Pf: Suppose that T is invertible.

- The (2) shows that T is onto \mathbf{R}^{n}, for if b is in \mathbf{R}^{n} and $x=S(b)$, then $T(x)=T(S(b))=b$, so each b is in the range of T.
- Thus A is invertible, by the Invertible Matrix Theorem, statement (i).

Pf: Suppose that T is invertible.

- The (2) shows that T is onto \mathbf{R}^{n}, for if b is in \mathbf{R}^{n} and $x=S(b)$, then $T(x)=T(S(b))=b$, so each b is in the range of T.
- Thus A is invertible, by the Invertible Matrix Theorem, statement (i).
- Conversely, suppose that A is invertible, and let $S(x)=A^{-1} x$. Then, S is a linear transformation, and S satisfies (1) and (2).

Pf: Suppose that T is invertible.

- The (2) shows that T is onto \mathbf{R}^{n}, for if b is in \mathbf{R}^{n} and $x=S(b)$, then $T(x)=T(S(b))=b$, so each b is in the range of T.
- Thus A is invertible, by the Invertible Matrix Theorem, statement (i).
- Conversely, suppose that A is invertible, and let $S(x)=A^{-1} x$. Then, S is a linear transformation, and S satisfies (1) and (2).
- For instance, $S(T(x))=S(A x)=A^{-1}(A x)=x$.

Pf: Suppose that T is invertible.

- The (2) shows that T is onto \mathbf{R}^{n}, for if b is in \mathbf{R}^{n} and $x=S(b)$, then $T(x)=T(S(b))=b$, so each b is in the range of T.
- Thus A is invertible, by the Invertible Matrix Theorem, statement (i).
- Conversely, suppose that A is invertible, and let $S(x)=A^{-1} x$. Then, S is a linear transformation, and S satisfies (1) and (2).
- For instance, $S(T(x))=S(A x)=A^{-1}(A x)=x$.
- Thus, T is invertible.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution.
(e) The columns of A form a linearly independent set.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $x \rightarrow A x$ is one-to-one.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $x \rightarrow A x$ is one-to-one.
(g) The equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $x \rightarrow A x$ is one-to-one.
(g) The equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}.
(h) The columns of A span \mathbf{R}^{n}.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $x \rightarrow A x$ is one-to-one.
(g) The equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}.
(h) The columns of A span \mathbf{R}^{n}.
(i) The linear transformation $x \rightarrow A x$ maps \mathbf{R}^{n} onto \mathbf{R}^{n}.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $x \rightarrow A x$ is one-to-one.
(g) The equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}.
(h) The columns of A span \mathbf{R}^{n}.
(i) The linear transformation $x \rightarrow A x$ maps \mathbf{R}^{n} onto \mathbf{R}^{n}.
(j) There is an $n \times n$ matrix C such that $C A=I$.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix.
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $x \rightarrow A x$ is one-to-one.
(g) The equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}.
(h) The columns of A span \mathbf{R}^{n}.
(i) The linear transformation $x \rightarrow A x$ maps \mathbf{R}^{n} onto \mathbf{R}^{n}.
(j) There is an $n \times n$ matrix C such that $C A=I$.
(k) There is an $n \times n$ matrix D such that $A D=I$.

The Invertible Matrix Theorem

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ identity matrix
(c) A has n pivot positions.
(d) The equation $A x=0$ has only the trivial solution
(e) The columns of A form a linearly independent set.
(f) The linear transformation $x \rightarrow A x$ is one-to-one.
(g) The equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}.
(h) The columns of A span \mathbf{R}^{n}.
(i) The linear transformation $x \rightarrow A x$ maps \mathbf{R}^{n} onto \mathbf{R}^{n}.
(j) There is an $n \times n$ matrix C such that $C A=l$.
(k) There is an $n \times n$ matrix D such that $A D=l$.
(I) A^{T} is an invertible matrix.

$$
a \Leftrightarrow l
$$

$$
\begin{aligned}
& a \Rightarrow j \Rightarrow d: \begin{array}{l}
A x=0 \text { \& let } C A=I \\
C A x=c \cdot 0=0 \Rightarrow I x=0 \Rightarrow x=0 \\
a \Rightarrow k \Rightarrow g: \\
\text { Let } A D=I . \text { Then } A D b=I b=b
\end{array} \\
& \text { so } D b \text { is a solution to } A x=b .
\end{aligned}
$$

- Theorem 8 could also be written as "The equation $A x=b$ has a unique solution for each b in \mathbf{R}^{n}."
- Theorem 8 could also be written as "The equation $A x=b$ has a unique solution for each b in \mathbf{R}^{n}."
- This statement implies (b) and hence implies that A is invertible.
- Theorem 8 could also be written as "The equation $A x=b$ has a unique solution for each b in \mathbf{R}^{n}."
- This statement implies (b) and hence implies that A is invertible.
- The following fact follows from Theorem 8: Let A and B be square matrices. If $A B=I$, then A and B are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.
- Theorem 8 could also be written as "The equation $A x=b$ has a unique solution for each b in \mathbf{R}^{n}."
- This statement implies (b) and hence implies that A is invertible.
- The following fact follows from Theorem 8: Let A and B be square matrices. If $A B=I$, then A and B are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.
- The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
- Theorem 8 could also be written as "The equation $A x=b$ has a unique solution for each b in \mathbf{R}^{n}."
- This statement implies (b) and hence implies that A is invertible.
- The following fact follows from Theorem 8: Let A and B be square matrices. If $A B=I$, then A and B are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.
- The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
- Each statement in the theorem describes a property of every $n \times n$ invertible matrix.
- Theorem 8 could also be written as "The equation $A x=b$ has a unique solution for each b in \mathbf{R}^{n}."
- This statement implies (b) and hence implies that A is invertible.
- The following fact follows from Theorem 8: Let A and B be square matrices. If $A B=I$, then A and B are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.
- The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
- Each statement in the theorem describes a property of every $n \times n$ invertible matrix.
- The negation of a statement in the theorem describes a property of every $n \times n$ singular matrix.
- Theorem 8 could also be written as "The equation $A x=b$ has a unique solution for each b in \mathbf{R}^{n}."
- This statement implies (b) and hence implies that A is invertible.
- The following fact follows from Theorem 8: Let A and B be square matrices. If $A B=I$, then A and B are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.
- The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
- Each statement in the theorem describes a property of every $n \times n$ invertible matrix.
- The negation of a statement in the theorem describes a property of every $n \times n$ singular matrix.
- For instance, an $n \times n$ singular matrix is not row equivalent to I_{n}, does not have n pivot position, and has linearly dependent columns.
- Theorem 8 could also be written as "The equation $A x=b$ has a unique solution for each b in \mathbf{R}^{n}."
- This statement implies (b) and hence implies that A is invertible.
- The following fact follows from Theorem 8: Let A and B be square matrices. If $A B=I$, then A and B are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.
- The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
- Each statement in the theorem describes a property of every $n \times n$ invertible matrix.
- The negation of a statement in the theorem describes a property of every $n \times n$ singular matrix.
- For instance, an $n \times n$ singular matrix is not row equivalent to I_{n}, does not have n pivot position, and has linearly dependent columns.
- The Invertible Matrix Theorem applies only to square matrices.

