Section 3.1 Introduction to Determinants

Gexin Yu
gyu@wm.edu

College of William and Mary

Definition of Determinant

- Recall that a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if and only if its determinant $\operatorname{det}(A)=a d-b c$ is non-zero.

Definition of Determinant

- Recall that a 2×2 matrix $A=\left[\begin{array}{ll}\infty & b \\ 2\end{array}\right]$ is invertible if and only if its determinant $\operatorname{det}(A)=a d-b c$ is non-zero.
- We now study the determinant for general $n \times n$ matrices, and hope to use it to determine whether the matrices are invertible.

Definition of Determinant

- Recall that a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if and only if its determinant $\operatorname{det}(A)=a d-b c$ is non-zero.
- We now study the determinant for general $n \times n$ matrices, and hope to use it to determine whether the matrices are invertible.
- Let's take a look at the 2×2 matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \rightarrow\left[\begin{array}{cc}
a & b \\
a c & a d
\end{array}\right] \rightarrow\left[\begin{array}{cc}
a & b \\
0 & a d-b c
\end{array}\right]
$$

where $a d-b c$ is the determinant of the matrix.

- So 3×3 matrix:

- So 3×3 matrix:

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] } & \rightarrow\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{11} a_{21} & a_{11} a_{22} & a_{11} a_{23} \\
a_{11} a_{31} & a_{11} a_{32} & a_{11} a_{33}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
\end{aligned}
$$

where
$\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$

- If A is invertible, then Δ must be nonzero. We will see that the converse is also true.
- So 3×3 matrix:

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] } & \rightarrow\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{11} a_{21} & a_{11} a_{22} & a_{11} a_{23} \\
a_{11} a_{31} & a_{11} a_{32} & a_{11} a_{33}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
\end{aligned}
$$

where
$\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$

- If A is invertible, then Δ must be nonzero. We will see that the converse is also true.
- We call the Δ to be the determinant of the 3×3 matrix A.
- We could group the terms in Δ and get that

$$
\Delta=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

- We could group the terms in Δ and get that

$$
\Delta=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

- If we use $A_{i j}$ to denote the matrix obtained from matrix A by deleting the i -th row and j -th column of A, then Δ can be written as

$$
\Delta=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
$$

- We could group the terms in Δ and get that

$$
\Delta=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

- If we use $A_{i j}$ to denote the matrix obtained from matrix A by deleting the i -th row and j -th column of A, then Δ can be written as

$$
\Delta=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
$$

- This will help us to give the definition of determinant of $n \times n$ matrices.
- We could group the terms in Δ and get that

$$
\Delta=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

- If we use $A_{i j}$ to denote the matrix obtained from matrix A by deleting the i -th row and j -th column of A, then Δ can be written as

$$
\Delta=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
$$

- This will help us to give the definition of determinant of $n \times n$ matrices.
- Definition: For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is $\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+a_{13} \operatorname{det}\left(A_{13}\right)+\ldots+(-1)^{n+1} a_{1 n} \operatorname{det}($
- We could group the terms in Δ and get that

$$
\Delta=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

- If we use $A_{i j}$ to denote the matrix obtained from matrix A by deleting the i -th row and j -th column of A, then Δ can be written as

$$
\Delta=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
$$

- This will help us to give the definition of determinant of $n \times n$ matrices.
- Definition: For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is $\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+a_{13} \operatorname{det}\left(A_{13}\right)+\ldots+(-1)^{n+1} a_{1 n} \operatorname{det}($
- instead of $\operatorname{det}(A)$, sometimes we also use $|A|$ to denote the determinant of A.

Examples

- Ex1: compute the determinant of $A_{1}=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.

Examples

- Ex1: compute the determinant of $A_{1}=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.
- Soln: $\operatorname{det}\left(A_{1}\right)=(1(0-2)-5(0-0)+(0 \gamma-4-0)=-2$.

Examples

- Ex1: compute the determinant of $A_{1}=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.
- Soln: $\operatorname{det}\left(A_{1}\right)=1(0-2)-5(0-0)+0(-4-0)=-2$.
- Ex2: compute the determinant of $A_{2}=\left[\begin{array}{ccccc}3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0\end{array}\right]$

Examples

- Ex1: compute the determinant of $A_{1}=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.
- Soln: $\operatorname{det}\left(A_{1}\right)=1(0-2)-5(0-0)+0(-4-0)=-2$.
- Ex2: compute the determinant of $A_{2}=\left[\begin{array}{ccccc}3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0\end{array}\right]$
- Soln: it is complicated....

Examples

- Ex1: compute the determinant of $A_{1}=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.
- Soln: $\operatorname{det}\left(A_{1}\right)=1(0-2)-5(0-0)+0(-4-0)=-2$.
- Ex2: compute the determinant of $A_{2}=\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 0 \\ 0\end{array} \begin{array}{cccc}-7 & 8 & 9 & -6 \\ 2 & -5 & 7 & 3 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 4 & -1 \\ 0 & 0 & -2 & 0\end{array}\right]$
- Soln: it is complicated....
- BUT it should not be, as if you look at the first column instead of first row....

Another definition

- Given $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}$ given by

$$
C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)
$$

Another definition

- Given $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}$ given by

$$
C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)
$$

- Theorem 1: the determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or any column. So

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}
$$

and

$$
\operatorname{det}(A)=a_{1 j} C_{i j}+a_{2 j} C_{2 j}+\ldots+a_{n j} C_{n j}
$$

- So in the previous example

$$
\begin{aligned}
\operatorname{det}\left(A_{2}\right) & =3 \operatorname{det}\left[\begin{array}{cccc}
2 & -5 & 7 & 3 \\
0 & 1 & 5 & 0 \\
0 & 0 & 4 & -1 \\
0 & 0 & -2 & 0
\end{array}\right]=3 \cdot 2 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 5 & 0 \\
0 & 4 & -1 \\
0-2 & 0
\end{array}\right] \\
& =3 \cdot 2 \cdot 1 \cdot \operatorname{det}\left[\begin{array}{cc}
4 & -1 \\
-2 & 0
\end{array}\right]=3 \cdot 2 \cdot 1 \cdot(4 \cdot 0-(-1) \cdot(-2))=-+\mathbb{Z}
\end{aligned}
$$

- So in the previous example

$$
\begin{aligned}
\operatorname{det}\left(A_{2}\right) & =3 \operatorname{det}\left[\begin{array}{cccc}
2 & -5 & 7 & 3 \\
0 & 1 & 5 & 0 \\
0 & 0 & 4 & -1 \\
0 & 0 & -2 & 0
\end{array}\right]=3 \cdot 2 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 5 & 0 \\
0 & 4 & -1 \\
0-2 & 0
\end{array}\right] \\
& =3 \cdot 2 \cdot 1 \cdot \operatorname{det}\left[\begin{array}{cc}
4 & -1 \\
-2 & 0
\end{array}\right]=3 \cdot 2 \cdot 1 \cdot(4 \cdot 0-(-1) \cdot(-2))=-1
\end{aligned}
$$

- Theorem 2: if A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of A.

- So in the previous example

$$
\begin{aligned}
\operatorname{det}\left(A_{2}\right) & =3 \operatorname{det}\left[\begin{array}{cccc}
2 & -5 & 7 & 3 \\
0 & 1 & 5 & 0 \\
0 & 0 & 4 & -1 \\
0 & 0 & -2 & 0
\end{array}\right]=3 \cdot 2 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & 5 & 0 \\
0 & 4 & -1 \\
0-2 & 0
\end{array}\right] \\
& =3 \cdot 2 \cdot 1 \cdot \operatorname{det}\left[\begin{array}{cc}
4 & -1 \\
-2 & 0
\end{array}\right]=3 \cdot 2 \cdot 1 \cdot(4 \cdot 0-(-1) \cdot(-2))=-1
\end{aligned}
$$

- Theorem 2: if A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of A.
- When we use row operations on a matrix, how does the determinant change? Note that we can always reduce it to a triangular matrix, which is easy to find its determinant.

Row operations

- Theorem 3: Let A be a square matrix

Row operations

- Theorem 3: Let A be a square matrix
(1) if B is obtained from A by replacement (a multiple of one row is added to another row), then $\operatorname{det}(B)=\operatorname{det}(A)$.

Row operations

- Theorem 3: Let A be a square matrix
(1) if B is obtained from A by replacement (a multiple of one row is added to another row), then $\operatorname{det}(B)=\operatorname{det}(A)$.
(2) if B is obtained from A by row interchange, then $\operatorname{det}(B)=-\operatorname{det}(A)$.

Row operations

- Theorem 3: Let A be a square matrix
(1) if B is obtained from A by replacement (a multiple of one row is added to another row), then $\operatorname{det}(B)=\operatorname{det}(A)$.
(2) if B is obtained from A by row interchange, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(3) if B is obtained from A by multiplying a row by k, then $\operatorname{det}(B)=k \operatorname{det}(A)$.

Row operations

- Theorem 3: Let A be a square matrix
(1) if B is obtained from A by replacement (a multiple of one row is added to another row), then $\operatorname{det}(B)=\operatorname{det}(A)$.
(2) if B is obtained from A by row interchange, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(3) if B is obtained from A by multiplying a row by k, then $\operatorname{det}(B)=k \operatorname{det}(A)$.

$$
\operatorname{det}(A)=\frac{1}{k} \cdot \operatorname{det}(B)
$$

- This theorem provides an efficient way to compute the determinant of a matrix.

Examples

Ex3: Compute $\operatorname{det}(A)$, where $A=\left[\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$.

Examples

Ex3: Compute $\operatorname{det}(A)$, where $A=\left[\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$.

- Soltion: $|A|=\left|\begin{array}{ccc}1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2\end{array}\right|=-\left|\begin{array}{ccc}1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5\end{array}\right|=-(1)(3)(-5)=15$

Examples

Ex3: Compute $\operatorname{det}(A)$, where $A=\left[\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$.

- Soltion: $|A|=\left|\begin{array}{ccc}1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2\end{array}\right|=-\left|\begin{array}{ccc}1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5\end{array}\right|=-(1)(3)(-5)=15$

Ex4: Compute $\operatorname{det}(A)$, where $A=\left[\begin{array}{cccc}2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6\end{array}\right]$.

Examples

Ex3: Compute $\operatorname{det}(A)$, where $A=\left[\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$.

- Soltion: $|A|=\left|\begin{array}{ccc}1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2\end{array}\right|=-\left|\begin{array}{ccc}1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5\end{array}\right|=-(1)(3)(-5)=15$

Ex4: Compute $\operatorname{det}(A)$, where $A=\left[\begin{array}{cccc}2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6\end{array}\right]$.

- Solution:

$$
|A|=2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right|=2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & 0 & 1
\end{array}\right|=2(1)(3)(-6)(1)
$$

Invertible matrix and determinant

- Suppose that a square matrix A has been reduced to an echelon form U by row replacements and r row interchanges, then $\operatorname{det}(A)=(-1)^{r} \operatorname{det}(U)$.

Invertible matrix and determinant

- Suppose that a square matrix A has been reduced to an echelon form U by row replacements and r row interchanges, then $\operatorname{det}(A)=(-1)^{r} \operatorname{det}(U)$.
- As U is in echelon form, it is triangular, and so $\operatorname{det}(U)$ is the product of the diagonal entries $u_{11}, u_{22}, \ldots, u_{n n}$.

Invertible matrix and determinant

- Suppose that a square matrix A has been reduced to an echelon form U by row replacements and r row interchanges, then $\operatorname{det}(A)=(-1)^{r} \operatorname{det}(U)$.
- As U is in echelon form, it is triangular, and so $\operatorname{det}(U)$ is the product of the diagonal entries $u_{11}, u_{22}, \ldots, u_{n n}$.
- If A is invertible, then the entries $u_{i i}$ are all pivots, and if A is not invertible, then at least $u_{n n}=0$.

Invertible matrix and determinant

- Suppose that a square matrix A has been reduced to an echelon form U by row replacements and r row interchanges, then $\operatorname{det}(A)=(-1)^{r} \operatorname{det}(U)$.
- As U is in echelon form, it is triangular, and so $\operatorname{det}(U)$ is the product of the diagonal entries $u_{11}, u_{22}, \ldots, u_{n n}$.
- If A is invertible, then the entries $u_{i i}$ are all pivots, and if A is not invertible, then at least $u_{n n}=0$.
- So we have the following

$$
\operatorname{det}(A)=\left\{\begin{array}{l}
(-1)^{r}(\text { product of pivots in } U), \text { when } A \text { is invertible } \\
0 \text { when } A \text { is not invertible }
\end{array}\right.
$$

Invertible matrix and determinant

- Suppose that a square matrix A has been reduced to an echelon form U by row replacements and r row interchanges, then $\operatorname{det}(A)=(-1)^{r} \operatorname{det}(U)$.
- As U is in echelon form, it is triangular, and so $\operatorname{det}(U)$ is the product of the diagonal entries $u_{11}, u_{22}, \ldots, u_{n n}$.
- If A is invertible, then the entries $u_{i i}$ are all pivots, and if A is not invertible, then at least $u_{n n}=0$.
- So we have the following

$$
\operatorname{det}(A)=\left\{\begin{array}{l}
(-1)^{r}(\text { product of pivots in } U), \text { when } A \text { is invertible } \\
0 \text { when } A \text { is not invertible }
\end{array}\right.
$$

- Thoerem 4: A square matrix is invertible if and only if $\operatorname{det}(A) \neq 0$.

Column operations

- Theorem 5: If A is an $n \times n$ matrix, then $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Determinant and matrix products

- Theorem 6: If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))
$$

Determinant and matrix products

- Theorem 6: If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))
$$

Ex: Compute $\operatorname{det}\left(A^{3}\right)$ if $\operatorname{det}(A)=5$.

Determinant and matrix products

- Theorem 6: If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))
$$

Ex: Compute $\operatorname{det}\left(A^{3}\right)$ if $\operatorname{det}(A)=5$.
Soln: $\operatorname{det}\left(A^{3}\right)=(\operatorname{det}(A))^{3}=5^{3}=125$.

Determinant and matrix products

- Theorem 6: If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))
$$

Ex: Compute $\operatorname{det}\left(A^{3}\right)$ if $\operatorname{det}(A)=5$.
Soln: $\operatorname{det}\left(A^{3}\right)=(\operatorname{det}(A))^{3}=5^{3}=125$.
Ex: For $n \times n$ matrices A and B, show that A is singular if $\operatorname{det}(B) \neq 0$ and $\operatorname{det}(A B)=0$.

Determinant and matrix products

- Theorem 6: If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))
$$

Ex: Compute $\operatorname{det}\left(A^{3}\right)$ if $\operatorname{det}(A)=5$.
Soln: $\operatorname{det}\left(A^{3}\right)=(\operatorname{det}(A))^{3}=5^{3}=125$.
Ex: For $n \times n$ matrices A and B, show that A is singular if $\operatorname{det}(B) \neq 0$ and $\operatorname{det}(A B)=0$.

Soln: As $\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))=0, \operatorname{det}(A)=0$ or $\operatorname{det}(B)=0$.

Determinant and matrix products

- Theorem 6: If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))
$$

Ex: Compute $\operatorname{det}\left(A^{3}\right)$ if $\operatorname{det}(A)=5$.
Soln: $\operatorname{det}\left(A^{3}\right)=(\operatorname{det}(A))^{3}=5^{3}=125$.
Ex: For $n \times n$ matrices A and B, show that A is singular if $\operatorname{det}(B) \neq 0$ and $\operatorname{det}(A B)=0$. i.e. A is not invertible.

Soln: As $\operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))=0, \operatorname{det}(A)=0$ or $\operatorname{det}(B)=0$.

- Since $\operatorname{det}(B) \neq 0, \operatorname{det}(A)=0$. That is, A is singular.

