Section 3.3 Cramer's Rule, Volume, and Linear Transformations

Gexin Yu
gyu@wm.edu

College of William and Mary

Cramer's Rule

- Determinants can be used to find the solution of matrix equation $A x=b$ if A is invertible.

Cramer's Rule

- Determinants can be used to find the solution of matrix equation $A x=b$ if A is invertible.
- Suppose that $A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$ is an $n \times n$ matrix. For any $b \in \mathbf{R}^{n}$, we define

$$
A_{i}(b)=\left[\begin{array}{llllll}
a_{1} & \ldots a_{i-1} & b & a_{i+1} & \ldots & a_{n}
\end{array}\right]
$$

Cramer's Rule

- Determinants can be used to find the solution of matrix equation $A x=b$ if A is invertible.
- Suppose that $A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$ is an $n \times n$ matrix. For any $b \in \mathbf{R}^{n}$, we define

$$
A_{i}(b)=\left[\begin{array}{llllll}
a_{1} & \ldots a_{i-1} & b & a_{i+1} & \ldots & a_{n}
\end{array}\right]
$$

- Theorem (Cramer's Rule) Suppose that A is an $n \times n$ invertible matrix. For any $b \in \mathbf{R}^{n}$, the unique solution to $A x=b$ has entries given by

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}(b)\right)}{\operatorname{det}(A)}
$$

Examples

Ex: Use Cramer's rule to solve $A x=b$ where $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$ and

$$
b=\left[\begin{array}{c}
3 \\
43
\end{array}\right]
$$

Examples

Ex: Use Cramer's rule to solve $A x=b$ where $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$ and $b=\left[\begin{array}{c}3 \\ 43\end{array}\right]$.

Soln: $A_{1}(b)=\left[\begin{array}{cc}3 & -1 \\ 43 & 4\end{array}\right]$ and $A_{2}(b)=\left[\begin{array}{cc}2 & 3 \\ 3 & 43\end{array}\right]$.

Examples

Ex: Use Cramer's rule to solve $A x=b$ where $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$ and

$$
b=\left[\begin{array}{c}
3 \\
43
\end{array}\right]
$$

Soln: $A_{1}(b)=\left[\begin{array}{cc}3 & -1 \\ 43 & 4\end{array}\right]$ and $A_{2}(b)=\left[\begin{array}{cc}2 & 3 \\ 3 & 43\end{array}\right]$.

- So $\operatorname{det}(A)=11, \operatorname{det}\left(A_{1}(b)\right)=55, \operatorname{det}\left(A_{2}(b)\right)=77$.

Examples

Ex: Use Cramer's rule to solve $A x=b$ where $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$ and

$$
b=\left[\begin{array}{c}
3 \\
43
\end{array}\right]
$$

Soln: $A_{1}(b)=\left[\begin{array}{cc}3 & -1 \\ 43 & 4\end{array}\right]$ and $A_{2}(b)=\left[\begin{array}{cc}2 & 3 \\ 3 & 43\end{array}\right]$.

- So $\operatorname{det}(A)=11, \operatorname{det}\left(A_{1}(b)\right)=55, \operatorname{det}\left(A_{2}(b)\right)=77$.
- Therefore $x_{1}=\frac{55}{11}=5$ and $x_{2}=\frac{77}{11}=7$, and $x=\left[\begin{array}{l}5 \\ 7\end{array}\right]$.

Proof of Cramer's Rule

- We have

$$
\left.\begin{array}{rl}
A \cdot I_{i}(x) & =\left[\begin{array}{lllllll}
A e_{1} & A e_{2} & \ldots A e_{i-1} & A x & A e_{i+1} & \ldots & A e_{n}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
a_{1} & a_{2} & \ldots a_{i-1} & b & a_{i+1} & \ldots
\end{array} a_{n}\right.
\end{array}\right]
$$

Proof of Cramer's Rule

- We have

$$
\left.\begin{array}{rl}
A \cdot I_{i}(x) & =\left[\begin{array}{lllllll}
A e_{1} & A e_{2} & \ldots A e_{i-1} & A x & A e_{i+1} & \ldots & A e_{n}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
a_{1} & a_{2} & \ldots a_{i-1} & b & a_{i+1} & \ldots
\end{array} a_{n}\right.
\end{array}\right]
$$

- So we have $\operatorname{det}(A) \operatorname{det}\left(I_{i}(x)\right)=\operatorname{det}\left(A_{i}(b)\right)$.

Proof of Cramer's Rule

- We have

$$
\left.\begin{array}{rl}
A \cdot I_{i}(x) & =\left[\begin{array}{lllllll}
A e_{1} & A e_{2} & \ldots A e_{i-1} & A x & A e_{i+1} & \ldots & A e_{n}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
a_{1} & a_{2} & \ldots a_{i-1} & b & a_{i+1} & \ldots
\end{array} a_{n}\right.
\end{array}\right]
$$

- So we have $\operatorname{det}(A) \operatorname{det}\left(I_{i}(x)\right)=\operatorname{det}\left(A_{i}(b)\right)$.
- Since A is invertible, we may write $\operatorname{det}\left(I_{i}(x)\right)=\frac{\operatorname{det}\left(A_{i}(b)\right)}{\operatorname{det}(A)}$.

Proof of Cramer's Rule

- We have

$$
\left.\begin{array}{rl}
A \cdot I_{i}(x) & =\left[\begin{array}{lllllll}
A e_{1} & A e_{2} & \ldots A e_{i-1} & A x & A e_{i+1} & \ldots & A e_{n}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
a_{1} & a_{2} & \ldots a_{i-1} & b & a_{i+1} & \ldots
\end{array} a_{n}\right.
\end{array}\right]
$$

- So we have $\operatorname{det}(A) \operatorname{det}\left(I_{i}(x)\right)=\operatorname{det}\left(A_{i}(b)\right)$.
- Since A is invertible, we may write $\operatorname{det}\left(I_{i}(x)\right)=\frac{\operatorname{det}\left(A_{i}(b)\right)}{\operatorname{det}(A)}$.
- The theorem follows from that fact that $\operatorname{det}\left(I_{i}(x)\right)=x_{i}$.

An inverse formula

- Suppose that A is an $n \times n$ matrix. We define the $n \times n$ adjoint of A as

$$
\operatorname{Adj}(A)=\left[\begin{array}{llll}
C_{11} & C_{21} & \ldots & C_{n 1} \\
C_{12} & C_{22} & \ldots & C_{n 2} \\
\ldots & & & \\
C_{1 n} & C_{2 n} & \ldots & C_{n n}
\end{array}\right]
$$

where $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

An inverse formula

- Suppose that A is an $n \times n$ matrix. We define the $n \times n$ adjoint of A as

$$
\operatorname{Adj}(A)=\left[\begin{array}{llll}
C_{11} & C_{21} & \ldots & C_{n 1} \\
C_{12} & C_{22} & \ldots & C_{n 2} \\
\ldots & & & \\
C_{1 n} & C_{2 n} & \ldots & C_{n n}
\end{array}\right]
$$

where $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

- Theorem: Suppose that A is an invertible $n \times n$ matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{Adj}(A)
$$

An inverse formula

- Suppose that A is an $n \times n$ matrix. We define the $n \times n$ adjoint of A as

$$
\operatorname{Adj}(A)=\left[\begin{array}{llll}
C_{11} & C_{21} & \ldots & C_{n 1} \\
C_{12} & C_{22} & \ldots & C_{n 2} \\
\ldots & & & \\
C_{1 n} & C_{2 n} & \ldots & C_{n n}
\end{array}\right]
$$

where $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

- Theorem: Suppose that A is an invertible $n \times n$ matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{Adj}(A)
$$

Ex. Compute A^{-1} if $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 1\end{array}\right]$.

Areas and Volumes as determinants

- Theorem:

Areas and Volumes as determinants

- Theorem:
(1) if A is a 2×2 matrix, then the area of the parallelogram determined by its column vectors is $|\operatorname{det}(A)|$.

Areas and Volumes as determinants

- Theorem:
(1) if A is a 2×2 matrix, then the area of the parallelogram determined by its column vectors is $|\operatorname{det}(A)|$.
(2) if A is a 3×3 matrix, then the volume of the parallelepiped determined by its column vectors is $|\operatorname{det}(A)|$.

Areas and Volumes as determinants

- Theorem:
(1) if A is a 2×2 matrix, then the area of the parallelogram determined by its column vectors is $|\operatorname{det}(A)|$.
(2) if A is a 3×3 matrix, then the volume of the parallelepiped determined by its column vectors is $|\operatorname{det}(A)|$.

Ex: Calculate the area of the parallelogram determined by the points $(0,0),(2,5),(6,1)$ and $(8,6)$.

Areas and Volumes as determinants

- Theorem:
(1) if A is a 2×2 matrix, then the area of the parallelogram determined by its column vectors is $|\operatorname{det}(A)|$.
(2) if A is a 3×3 matrix, then the volume of the parallelepiped determined by its column vectors is $|\operatorname{det}(A)|$.

Ex: Calculate the area of the parallelogram determined by the points $(0,0),(2,5),(6,1)$ and $(8,6)$.

Soln: Note that $(8,6)=(2,5)+(6,1)$. So the parallelogram is determined by vectors $(2,5)$ and $(6,1)$.

Areas and Volumes as determinants

- Theorem:
(1) if A is a 2×2 matrix, then the area of the parallelogram determined by its column vectors is $|\operatorname{det}(A)|$.
(2) if A is a 3×3 matrix, then the volume of the parallelepiped determined by its column vectors is $|\operatorname{det}(A)|$.

Ex: Calculate the area of the parallelogram determined by the points $(0,0),(2,5),(6,1)$ and $(8,6)$.

Soln: Note that $(8,6)=(2,5)+(6,1)$. So the parallelogram is determined by vectors $(2,5)$ and $(6,1)$.

- So the area is $\left\|\begin{array}{ll}2 & 6 \\ 5 & 1\end{array}\right\|=|-28|=28$.

Area of triangles

- Theorem: suppose that points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ and $R=\left(x_{3}, y_{3}\right)$ form a triangle. The area of the triangle $P Q R$ is

$$
\frac{1}{2}\left\|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right\|
$$

Area of triangles

- Theorem: suppose that points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ and $R=\left(x_{3}, y_{3}\right)$ form a triangle. The area of the triangle $P Q R$ is

$$
\frac{1}{2}\left\|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right\|
$$

Pf: we could form two vectors $P Q=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$ and $P R=\left(x_{3}-x_{1}, y_{3}-y_{1}\right)$.

Area of triangles

- Theorem: suppose that points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ and $R=\left(x_{3}, y_{3}\right)$ form a triangle. The area of the triangle $P Q R$ is

$$
\frac{1}{2}\left\|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right\|
$$

Pf: we could form two vectors $P Q=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$ and $P R=\left(x_{3}-x_{1}, y_{3}-y_{1}\right)$.

- The area of the parallelogram determined by the two vectors $P Q$ and $P R$ is $\left\|\begin{array}{ll}x_{2}-x_{1} & x_{3}-x_{1} \\ y_{2}-y_{1} & y_{3}-y_{1}\end{array}\right\|$

Area of triangles

- Theorem: suppose that points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ and $R=\left(x_{3}, y_{3}\right)$ form a triangle. The area of the triangle $P Q R$ is

$$
\frac{1}{2}\left\|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right\|
$$

Pf: we could form two vectors $P Q=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$ and $P R=\left(x_{3}-x_{1}, y_{3}-y_{1}\right)$.

- The area of the parallelogram determined by the two vectors $P Q$ and $P R$ is $\left\|\begin{array}{ll}x_{2}-x_{1} & x_{3}-x_{1} \\ y_{2}-y_{1} & y_{3}-y_{1}\end{array}\right\|$
- The above determinant is the same as the determinant of the

$$
\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right|
$$

Area of triangles

- Theorem: suppose that points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ and $R=\left(x_{3}, y_{3}\right)$ form a triangle. The area of the triangle $P Q R$ is

$$
\frac{1}{2}\left\|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right\|
$$

Pf: we could form two vectors $P Q=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$ and $P R=\left(x_{3}-x_{1}, y_{3}-y_{1}\right)$.

- The area of the parallelogram determined by the two vectors $P Q$ and $P R$ is $\left\|\begin{array}{ll}x_{2}-x_{1} & x_{3}-x_{1} \\ y_{2}-y_{1} & y_{3}-y_{1}\end{array}\right\|$
- The above determinant is the same as the determinant of the

$$
\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right|
$$

- The area of the triangle is half of the area of the parallelogram.

Linear Transformations

- Theorem 10:

Linear Transformations

- Theorem 10:
(1) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation with 2×2 matrix A. If S is a parallelogram in \mathbf{R}^{2}, then $\operatorname{Area}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Area}(S)$.

Linear Transformations

- Theorem 10:
(1) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation with 2×2 matrix A. If S is a parallelogram in \mathbf{R}^{2}, then $\operatorname{Area}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Area}(S)$.
(2) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear transformation and S is a parallelepiped, then $\operatorname{Vol}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Vol}(S)$.

Linear Transformations

- Theorem 10:
(1) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation with 2×2 matrix A. If S is a parallelogram in \mathbf{R}^{2}, then $\operatorname{Area}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Area}(S)$.
(2) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear transformation and S is a parallelepiped, then $\operatorname{Vol}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Vol}(S)$.

Ex: Suppose that a and b be positive integers. Find the area bounded by the ellipse $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1$.

Linear Transformations

- Theorem 10:
(1) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation with 2×2 matrix A. If S is a parallelogram in \mathbf{R}^{2}, then $\operatorname{Area}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Area}(S)$.
(2) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear transformation and S is a parallelepiped, then $\operatorname{Vol}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Vol}(S)$.

Ex: Suppose that a and b be positive integers. Find the area bounded by the ellipse $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1$.
Soln: We claim that the ellipse E is the image of the unit disk D under the linear transformation T determined by the matrix $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$.

Linear Transformations

- Theorem 10:
(1) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation with 2×2 matrix A. If S is a parallelogram in \mathbf{R}^{2}, then $\operatorname{Area}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Area}(S)$.
(2) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear transformation and S is a parallelepiped, then $\operatorname{Vol}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Vol}(S)$.

Ex: Suppose that a and b be positive integers. Find the area bounded by the ellipse $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1$.
Soln: We claim that the ellipse E is the image of the unit disk D under the linear transformation T determined by the matrix $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$.

- To see this, if $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$, then $x=A u=\left[\begin{array}{l}x_{1} / a \\ x_{2} / b\end{array}\right]$. So $u_{1}^{2}+u_{2}^{2}=1$, which means u is on the unit circle.

Linear Transformations

- Theorem 10:
(1) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation with 2×2 matrix A. If S is a parallelogram in \mathbf{R}^{2}, then $\operatorname{Area}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Area}(S)$.
(2) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear transformation and S is a parallelepiped, then $\operatorname{Vol}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Vol}(S)$.

Ex: Suppose that a and b be positive integers. Find the area bounded by the ellipse $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1$.
Soln: We claim that the ellipse E is the image of the unit disk D under the linear transformation T determined by the matrix $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$.

- To see this, if $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$, then $x=A u=\left[\begin{array}{l}x_{1} / a \\ x_{2} / b\end{array}\right]$. So $u_{1}^{2}+u_{2}^{2}=1$, which means u is on the unit circle.
- Therefore, $\operatorname{Area}(E)=|\operatorname{det}(A)| \cdot \operatorname{Area}(D)=a b \cdot \pi(1)^{2}=\pi a b$.

