Section 3.3 Cramer's Rule, Volume, and Linear Transformations

Gexin Yu gyu@wm.edu

College of William and Mary

Gexin Yu gyu@wm.edu Section 3.3 Cramer's Rule, Volume, and Linear Transformation

・ロト ・回ト ・ヨト ・ヨト

• Determinants can be used to find the solution of matrix equation Ax = b if A is invertible.

- Determinants can be used to find the solution of matrix equation Ax = b if A is invertible.
- Suppose that $A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$ is an $n \times n$ matrix. For any $b \in \mathbf{R}^n$, we define

$$A_i(b) = \begin{bmatrix} a_1 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \end{bmatrix}$$

(本間) (本語) (本語) (語)

- Determinants can be used to find the solution of matrix equation Ax = b if A is invertible.
- Suppose that $A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$ is an $n \times n$ matrix. For any $b \in \mathbf{R}^n$, we define

$$A_i(b) = \begin{bmatrix} a_1 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \end{bmatrix}$$

 Theorem (Cramer's Rule) Suppose that A is an n × n invertible matrix. For any b ∈ Rⁿ, the unique solution to Ax = b has entries given by

$$x_i = \frac{\det(A_i(b))}{\det(A)}$$

- 4 周 ト 4 日 ト 4 日 ト - 日

Ex: Use Cramer's rule to solve Ax = b where $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ and

$$b = \begin{bmatrix} 3 \\ 43 \end{bmatrix}$$
.

・ロン ・回 と ・ ヨ と ・ ヨ と

Examples

Ex: Use Cramer's rule to solve Ax = b where $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ 43 \end{bmatrix}$.

Soln:
$$A_1(b) = \begin{bmatrix} 3 & -1 \\ 43 & 4 \end{bmatrix}$$
 and $A_2(b) = \begin{bmatrix} 2 & 3 \\ 3 & 43 \end{bmatrix}$.

・ 回 と ・ ヨ と ・ ヨ と

Ex: Use Cramer's rule to solve Ax = b where $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ 43 \end{bmatrix}$.

Soln:
$$A_1(b) = \begin{bmatrix} 3 & -1 \\ 43 & 4 \end{bmatrix}$$
 and $A_2(b) = \begin{bmatrix} 2 & 3 \\ 3 & 43 \end{bmatrix}$.

• So det(A) = 11, $det(A_1(b)) = 55$, $det(A_2(b)) = 77$.

マロト イヨト イヨト 二日

Ex: Use Cramer's rule to solve Ax = b where $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ 43 \end{bmatrix}$.

Soln:
$$A_1(b) = \begin{bmatrix} 3 & -1 \\ 43 & 4 \end{bmatrix}$$
 and $A_2(b) = \begin{bmatrix} 2 & 3 \\ 3 & 43 \end{bmatrix}$.

• So det(A) = 11, $det(A_1(b)) = 55$, $det(A_2(b)) = 77$.

• Therefore
$$x_1 = \frac{55}{11} = 5$$
 and $x_2 = \frac{77}{11} = 7$, and $x = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• We have

$$A \cdot I_i(x) = \begin{bmatrix} Ae_1 & Ae_2 & \dots & Ae_{i-1} & Ax & Ae_{i+1} & \dots & Ae_n \end{bmatrix}$$
$$= \begin{bmatrix} a_1 & a_2 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \end{bmatrix}$$
$$= A_i(b)$$

・ロン ・四と ・ヨン ・ヨン

æ

We have

$$A \cdot I_i(x) = \begin{bmatrix} Ae_1 & Ae_2 & \dots & Ae_{i-1} & Ax & Ae_{i+1} & \dots & Ae_n \end{bmatrix}$$
$$= \begin{bmatrix} a_1 & a_2 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \end{bmatrix}$$
$$= A_i(b)$$

• So we have $det(A) det(I_i(x)) = det(A_i(b))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We have

$$A \cdot I_i(x) = \begin{bmatrix} Ae_1 & Ae_2 & \dots & Ae_{i-1} & Ax & Ae_{i+1} & \dots & Ae_n \end{bmatrix}$$
$$= \begin{bmatrix} a_1 & a_2 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \end{bmatrix}$$
$$= A_i(b)$$

• So we have $det(A) det(I_i(x)) = det(A_i(b))$.

• Since A is invertible, we may write $det(I_i(x)) = \frac{det(A_i(b))}{det(A)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

We have

$$A \cdot I_i(x) = \begin{bmatrix} Ae_1 & Ae_2 & \dots & Ae_{i-1} & Ax & Ae_{i+1} & \dots & Ae_n \end{bmatrix}$$
$$= \begin{bmatrix} a_1 & a_2 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \end{bmatrix}$$
$$= A_i(b)$$

• So we have $det(A) det(I_i(x)) = det(A_i(b))$.

• Since A is invertible, we may write $det(I_i(x)) = \frac{det(A_i(b))}{det(A)}$.

• The theorem follows from that fact that $det(I_i(x)) = x_i$.

(日本) (日本) (日本)

An inverse formula

• Suppose that A is an $n \times n$ matrix. We define the $n \times n$ adjoint of A as

$$Adj(A) = \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \dots & & & \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix}$$

where $C_{ij} = (-1)^{i+j} \det(A_{ij})$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

э

An inverse formula

Suppose that A is an n × n matrix. We define the n × n adjoint of A as

$$Adj(A) = \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \dots & & & \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix}$$

where $C_{ij} = (-1)^{i+j} \det(A_{ij})$.

• Theorem: Suppose that A is an invertible $n \times n$ matrix. Then

$$A^{-1} = \frac{1}{\det(A)} A dj(A)$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

An inverse formula

Suppose that A is an n × n matrix. We define the n × n adjoint of A as

$$Adj(A) = \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \dots & & & \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix}$$

where $C_{ij} = (-1)^{i+j} \det(A_{ij})$.

• Theorem: Suppose that A is an invertible $n \times n$ matrix. Then

$$A^{-1} = \frac{1}{\det(A)} A dj(A)$$

Ex. Compute
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 1 \end{bmatrix}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

(4回) (4回) (4回)

if A is a 2 × 2 matrix, then the area of the parallelogram determined by its column vectors is | det(A)|.

・日・ ・ヨ・ ・ヨ・

- if A is a 2 × 2 matrix, then the area of the parallelogram determined by its column vectors is | det(A)|.
- if A is a 3 × 3 matrix, then the volume of the parallelepiped determined by its column vectors is |det(A)|.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

- Theorem:
 - if A is a 2 × 2 matrix, then the area of the parallelogram determined by its column vectors is | det(A)|.
 - if A is a 3 × 3 matrix, then the volume of the parallelepiped determined by its column vectors is |det(A)|.
- Ex: Calculate the area of the parallelogram determined by the points (0,0), (2,5), (6,1) and (8,6).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Theorem:
 - if A is a 2 × 2 matrix, then the area of the parallelogram determined by its column vectors is | det(A)|.
 - if A is a 3 × 3 matrix, then the volume of the parallelepiped determined by its column vectors is |det(A)|.
- Ex: Calculate the area of the parallelogram determined by the points (0,0), (2,5), (6,1) and (8,6).
- Soln: Note that (8,6) = (2,5) + (6,1). So the parallelogram is determined by vectors (2,5) and (6,1).

(4月) (3日) (3日) 日

- if A is a 2 × 2 matrix, then the area of the parallelogram determined by its column vectors is | det(A)|.
- if A is a 3 × 3 matrix, then the volume of the parallelepiped determined by its column vectors is |det(A)|.
- Ex: Calculate the area of the parallelogram determined by the points (0,0), (2,5), (6,1) and (8,6).
- Soln: Note that (8,6) = (2,5) + (6,1). So the parallelogram is determined by vectors (2,5) and (6,1).

• So the area is
$$\begin{vmatrix} 2 & 6 \\ 5 & 1 \end{vmatrix} = |-28| = 28.$$

(4月) (3日) (3日) 日

• Theorem: suppose that points $P = (x_1, y_1), Q = (x_2, y_2)$ and $R = (x_3, y_3)$ form a triangle. The area of the triangle *PQR* is

$$\frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

• Theorem: suppose that points $P = (x_1, y_1), Q = (x_2, y_2)$ and $R = (x_3, y_3)$ form a triangle. The area of the triangle *PQR* is

$$\frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$

Pf: we could form two vectors $PQ = (x_2 - x_1, y_2 - y_1)$ and $PR = (x_3 - x_1, y_3 - y_1)$.

• Theorem: suppose that points $P = (x_1, y_1), Q = (x_2, y_2)$ and $R = (x_3, y_3)$ form a triangle. The area of the triangle *PQR* is

$$\frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$

- Pf: we could form two vectors $PQ = (x_2 x_1, y_2 y_1)$ and $PR = (x_3 x_1, y_3 y_1)$.
 - The area of the parallelogram determined by the two vectors PQ and PR is $\begin{vmatrix} x_2 x_1 & x_3 x_1 \\ y_2 y_1 & y_3 y_1 \end{vmatrix}$

(本間) (本語) (本語) (語)

• Theorem: suppose that points $P = (x_1, y_1), Q = (x_2, y_2)$ and $R = (x_3, y_3)$ form a triangle. The area of the triangle *PQR* is

$$\frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$

- Pf: we could form two vectors $PQ = (x_2 x_1, y_2 y_1)$ and $PR = (x_3 x_1, y_3 y_1)$.
 - The area of the parallelogram determined by the two vectors PQ and PR is $\begin{vmatrix} x_2 x_1 & x_3 x_1 \\ y_2 y_1 & y_3 y_1 \end{vmatrix}$
 - The above determinant is the same as the determinant of the

• Theorem: suppose that points $P = (x_1, y_1), Q = (x_2, y_2)$ and $R = (x_3, y_3)$ form a triangle. The area of the triangle *PQR* is

$$\frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$

- Pf: we could form two vectors $PQ = (x_2 x_1, y_2 y_1)$ and $PR = (x_3 x_1, y_3 y_1)$.
 - The area of the parallelogram determined by the two vectors PQ and PR is $\begin{vmatrix} x_2 x_1 & x_3 x_1 \\ y_2 y_1 & y_3 y_1 \end{vmatrix}$
 - The above determinant is the same as the determinant of the

• The area of the triangle is half of the area of the parallelogram.

• Theorem 10:

- Theorem 10:
 - Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then $Area(T(S)) = |\det(A)| \cdot Area(S)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Theorem 10:
 - Let T : R² → R² be a linear transformation with 2 × 2 matrix A. If S is a parallelogram in R², then Area(T(S)) = |det(A)| · Area(S).
 Let T : R³ → R³ be a linear transformation and S is a parallelepiped, then Vol(T(S)) = |det(A)| · Vol(S).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Theorem 10:
 - Let T : R² → R² be a linear transformation with 2 × 2 matrix A. If S is a parallelogram in R², then Area(T(S)) = |det(A)| · Area(S).
 Let T : R³ → R³ be a linear transformation and S is a parallelepiped, then Vol(T(S)) = |det(A)| · Vol(S).
- Ex: Suppose that *a* and *b* be positive integers. Find the area bounded by the ellipse $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$.

- Theorem 10:
 - Let T : R² → R² be a linear transformation with 2 × 2 matrix A. If S is a parallelogram in R², then Area(T(S)) = |det(A)| · Area(S).
 Let T : R³ → R³ be a linear transformation and S is a parallelepiped, then Vol(T(S)) = |det(A)| · Vol(S).
- Ex: Suppose that a and b be positive integers. Find the area bounded by the ellipse $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$.
- Soln: We claim that the ellipse *E* is the image of the unit disk *D* under the linear transformation *T* determined by the matrix $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$.

- Theorem 10:
 - Let T : R² → R² be a linear transformation with 2 × 2 matrix A. If S is a parallelogram in R², then Area(T(S)) = |det(A)| · Area(S).
 Let T : R³ → R³ be a linear transformation and S is a parallelepiped, then Vol(T(S)) = |det(A)| · Vol(S).
- Ex: Suppose that a and b be positive integers. Find the area bounded by the ellipse $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$.
- Soln: We claim that the ellipse *E* is the image of the unit disk *D* under the linear transformation *T* determined by the matrix $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$.

• To see this, if
$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, then $x = Au = \begin{bmatrix} x_1/a \\ x_2/b \end{bmatrix}$. So $u_1^2 + u_2^2 = 1$, which means u is on the unit circle.

- Theorem 10:
 - Let T : R² → R² be a linear transformation with 2 × 2 matrix A. If S is a parallelogram in R², then Area(T(S)) = |det(A)| · Area(S).
 Let T : R³ → R³ be a linear transformation and S is a parallelepiped, then Vol(T(S)) = |det(A)| · Vol(S).
- Ex: Suppose that a and b be positive integers. Find the area bounded by the ellipse $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$.
- Soln: We claim that the ellipse *E* is the image of the unit disk *D* under the linear transformation *T* determined by the matrix $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$.
 - To see this, if $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, then $x = Au = \begin{bmatrix} x_1/a \\ x_2/b \end{bmatrix}$. So $u_1^2 + u_2^2 = 1$, which means u is on the unit circle.
 - Therefore, $Area(E) = |\det(A)| \cdot Area(D) = ab \cdot \pi(1)^2 = \pi ab$.