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Cramer’s Rule

Determinants can be used to find the solution of matrix equation
Ax = b if A is invertible.

Suppose that A =
[
a1 a2 . . . an

]
is an n × n matrix. For any

b ∈ Rn, we define

Ai (b) =
[
a1 . . . ai−1 b ai+1 . . . an

]
Theorem (Cramer’s Rule) Suppose that A is an n × n invertible
matrix. For any b ∈ Rn, the unique solution to Ax = b has entries
given by

xi =
det(Ai (b))

det(A)
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Examples

Ex: Use Cramer’s rule to solve Ax = b where A =

[
2 −1
3 4

]
and

b =

[
3

43

]
.

Soln: A1(b) =

[
3 −1

43 4

]
and A2(b) =

[
2 3
3 43

]
.

So det(A) = 11, det(A1(b)) = 55, det(A2(b)) = 77.

Therefore x1 = 55
11 = 5 and x2 = 77

11 = 7, and x =

[
5
7

]
.
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Proof of Cramer’s Rule

We have

A · Ii (x) =
[
Ae1 Ae2 . . .Aei−1 Ax Aei+1 . . . Aen

]
=
[
a1 a2 . . . ai−1 b ai+1 . . . an

]
= Ai (b)

So we have det(A) det(Ii (x)) = det(Ai (b)).

Since A is invertible, we may write det(Ii (x)) = det(Ai (b))
det(A) .

The theorem follows from that fact that det(Ii (x)) = xi .
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An inverse formula

Suppose that A is an n × n matrix. We define the n × n adjoint of A
as

Adj(A) =


C11 C21 . . . Cn1

C12 C22 . . . Cn2

. . .
C1n C2n . . . Cnn


where Cij = (−1)i+j det(Aij).

Theorem: Suppose that A is an invertible n × n matrix. Then

A−1 =
1

det(A)
Adj(A)

Ex. Compute A−1 if A =

1 0 0
2 3 0
3 2 1

.
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Areas and Volumes as determinants

Theorem:

1 if A is a 2× 2 matrix, then the area of the parallelogram determined by
its column vectors is | det(A)|.

2 if A is a 3× 3 matrix, then the volume of the parallelepiped determined
by its column vectors is | det(A)|.

Ex: Calculate the area of the parallelogram determined by the points
(0, 0), (2, 5), (6, 1) and (8, 6).

Soln: Note that (8, 6) = (2, 5) + (6, 1). So the parallelogram is determined
by vectors (2, 5) and (6, 1).

So the area is

∥∥∥∥2 6
5 1

∥∥∥∥ = | − 28| = 28.
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Area of triangles

Theorem: suppose that points P = (x1, y1),Q = (x2, y2) and
R = (x3, y3) form a triangle. The area of the triangle PQR is

1

2

∥∥∥∥∥∥
1 x1 y1
1 x2 y2
1 x3 y3

∥∥∥∥∥∥

Pf: we could form two vectors PQ = (x2 − x1, y2 − y1) and
PR = (x3 − x1, y3 − y1).

The area of the parallelogram determined by the two vectors PQ and

PR is

∥∥∥∥x2 − x1 x3 − x1
y2 − y1 y3 − y1

∥∥∥∥
The above determinant is the same as the determinant of the∣∣∣∣∣∣

1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣
The area of the triangle is half of the area of the parallelogram.
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Linear Transformations

Theorem 10:

1 Let T : R2 → R2 be a linear transformation with 2× 2 matrix A. If S
is a parallelogram in R2, then Area(T (S)) = | det(A)| · Area(S).

2 Let T : R3 → R3 be a linear transformation and S is a parallelepiped,
then Vol(T (S)) = | det(A)| · Vol(S).

Ex: Suppose that a and b be positive integers. Find the area bounded by

the ellipse
x21
a2

+
x22
b2

= 1.

Soln: We claim that the ellipse E is the image of the unit disk D under the

linear transformation T determined by the matrix A =

[
a 0
0 b

]
.

To see this, if u =

[
u1
u2

]
, then x = Au =

[
x1/a
x2/b

]
. So u21 + u22 = 1,

which means u is on the unit circle.

Therefore, Area(E ) = | det(A)| · Area(D) = ab · π(1)2 = πab.
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