Section 4.1 Vector Spaces

Gexin Yu gyu@wm.edu

College of William and Mary

Gexin Yu gyu@wm.edu Section 4.1 Vector Spaces

イロン イヨン イヨン イヨン

1 if $u, v \in V$, then $u + v \in V$. (closed under addition)

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R}$):
 - **1** if $u, v \in V$, then $u + v \in V$. (closed under addition)
 - 2 u + v = v + u. (commutative)

1 if
$$u, v \in V$$
, then $u + v \in V$. (closed under addition)

2
$$u + v = v + u$$
. (commutative)

3
$$(u + v) + w = u + (v + w)$$
. (associative)

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R}$):
 - **1** if $u, v \in V$, then $u + v \in V$. (closed under addition)
 - 2 u + v = v + u. (commutative)
 - **(**u + v) + w = u + (v + w). (associative)
 - there is a zero vector 0 in V. (zero)

1 if
$$u, v \in V$$
, then $u + v \in V$. (closed under addition)

2
$$u + v = v + u$$
. (commutative)

3
$$(u+v)+w=u+(v+w)$$
. (associative)

() for each
$$u \in V$$
, there is $-u \in V$ so that $u + (-u) = 0$. (inverse)

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R}$):
 - **1** if $u, v \in V$, then $u + v \in V$. (closed under addition)

2
$$u + v = v + u$$
. (commutative)

3
$$(u + v) + w = u + (v + w)$$
. (associative)

- there is a zero vector 0 in V. (zero)
- **5** for each $u \in V$, there is $-u \in V$ so that u + (-u) = 0. (inverse)
- **(**) for $u \in V$, $cu \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)

★週 ▶ ★ 注 ▶ ★ 注 ▶

1 if
$$u, v \in V$$
, then $u + v \in V$. (closed under addition)

2
$$u + v = v + u$$
. (commutative)

3
$$(u + v) + w = u + (v + w)$$
. (associative)

() for each
$$u \in V$$
, there is $-u \in V$ so that $u + (-u) = 0$. (inverse)

() for
$$u \in V$$
, $cu \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)

•
$$c(u + v) = cu + cv$$
 (distributive)

1 if
$$u, v \in V$$
, then $u + v \in V$. (closed under addition)

2
$$u + v = v + u$$
. (commutative)

3
$$(u + v) + w = u + (v + w)$$
. (associative)

() for each
$$u \in V$$
, there is $-u \in V$ so that $u + (-u) = 0$. (inverse)

() for
$$u \in V$$
, $cu \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)

•
$$c(u+v) = cu + cv$$
 (distributive)

$$(c+d)u = cu + du$$
 (distributive)

1 if
$$u, v \in V$$
, then $u + v \in V$. (closed under addition)

2
$$u + v = v + u$$
. (commutative)

3
$$(u + v) + w = u + (v + w)$$
. (associative)

() for each
$$u \in V$$
, there is $-u \in V$ so that $u + (-u) = 0$. (inverse)

() for
$$u \in V$$
, $cu \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)

•
$$c(u+v) = cu + cv$$
 (distributive)

$$(c+d)u = cu + du$$
 (distributive)

• A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R}$): ✓ **1** if $u, v \in V$, then $u + v \in V$. (closed under addition) ✓ ② u + v = v + u. (commutative) \checkmark (*u*+*v*)+*w* = *u*+(*v*+*w*). (associative) \checkmark 4 there is a zero vector 0 in V. (zero) **5** for each $u \in V$, there is $-u \in V$ so that u + (-u) = 0. (inverse) ✓ **6** for $u \in V$, $cu \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication) ~ 0 c(u+v) = cu + cv (distributive) ✓ (*c* + *d*)u = cu + du (distributive) $\checkmark \bigcirc c(du) = (cd)u$ (associative) (-1)(1) = -0(one) 1u = u. 1.4 SII

イロン イ部ン イヨン イヨン 三日

回 と く ヨ と く ヨ と

æ

Ex2 Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction.

. 1

Ex2 Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction.

Define addition by the parallelogram rule, and for each $v \in V$, define cv to be the arrow whose length is |c| times the length of v, pointing in the same direction as v if $c \ge 0$ and otherwise pointing in the opposite direction.

(E) → (E) →

Ex2 Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction.

Define addition by the parallelogram rule, and for each $v \in V$, define cv to be the arrow whose length is |c| times the length of v, pointing in the same direction as v if $c \ge 0$ and otherwise pointing in the opposite direction.

This gives a vector space.

▶ < 문 ▶ < 문 ▶</p>

Ex3 For $n \ge 0$, the set P_n of polynomials of degree at most n. So P_n consists of all polynomials of the form $p(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n$, where coefficients a_0, a_1, \ldots, a_n and the variable t are real numbers. Ex3 For $n \ge 0$, the set P_n of polynomials of degree at most n. So P_n consists of all polynomials of the form $p(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n$, where coefficients a_0, a_1, \ldots, a_n and the variable t are real numbers.

Let
$$p(t) = a_0 + a_1t + a_2t^2 + ... + a_nt^n$$
 and
 $q(t) = b_0 + b_1t + b_2t^2 + ... + b_nt^n$, we define addition as
 $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 + ... + (a_n + b_n)t^n$
and scalar multiplication as

$$(cp)(t) = cp(t) = ca_0 + (ca_1)t + (ca_2)t^2 + \ldots + (ca_n)t^n$$

P(t) = q(t) \Leftrightarrow $q_i = b_i \text{ for all } i$

Ex3 For $n \ge 0$, the set P_n of polynomials of degree at most n. So P_n consists of all polynomials of the form $p(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n$, where coefficients a_0, a_1, \ldots, a_n and the variable t are real numbers.

Let
$$p(t) = a_0 + a_1t + a_2t^2 + ... + a_nt^n$$
 and
 $q(t) = b_0 + b_1t + b_2t^2 + ... + b_nt^n$, we define addition as
 $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 + ... + (a_n + b_n)t^n$
and scalar multiplication as

$$(cp)(t) = cp(t) = ca_0 + (ca_1)t + (ca_2)t^2 + \ldots + (ca_n)t^n$$

This is a vector space (of polynomials of degree at most n)

• A subspace of a vector space V is a subset H of V that has three properties:

- 17

→ Ξ → < Ξ →</p>

æ

• A subspace of a vector space V is a subset H of V that has three properties:

1 the zero vector of V is in H

< 注 → < 注 →

- A subspace of a vector space V is a subset H of V that has three properties:
 - **1** the zero vector of V is in H
 - 2) if $u, v \in H$, then $u + v \in H$.

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:
 - **1** the zero vector of V is in H
 - 2 if $u, v \in H$, then $u + v \in H$.
 - **3** if $u \in H$, then $cu \in H$

- A subspace of a vector space V is a subset H of V that has three properties:
 - **1** the zero vector of V is in H
 - 2) if $u, v \in H$, then $u + v \in H$.
 - **③** if $u \in H$, then $cu \in H$
- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V.

- A subspace of a vector space V is a subset H of V that has three properties:
 - **1** the zero vector of V is in H
 - 2) if $u, v \in H$, then $u + v \in H$.
 - **③** if $u \in H$, then $cu \in H$
- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V.
- Every subspace is a vector space.

- A subspace of a vector space V is a subset H of V that has three properties:
 - **1** the zero vector of V is in H
 - 2) if $u, v \in H$, then $u + v \in H$.
 - **3** if $u \in H$, then $cu \in H$
- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V.
- Every subspace is a vector space.
- Conversely, every vector space is a subspace (of itself and possibly of other larger spaces).

- A subspace of a vector space V is a subset H of V that has three properties:
- 1 the zero vector of V is in H

- 2 if
$$u, v \in H$$
, then $u + v \in H$.

③ if
$$u \in H$$
, then $cu \in H$

- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V.
- Every subspace is a vector space.
- Conversely, every vector space is a subspace (of itself and possibly of other larger spaces).
- The set consisting of only the zero vector in a vector space V is a subspace of V, called the zero subspace and written as {0}.

Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on **R**.

回 と く ヨ と く ヨ と

- Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on **R**.
- Ex. P_n is a subspace of P.

白 ト く ヨ ト く ヨ ト

- Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on **R**.
- Ex. P_n is a subspace of P.
- Ex. The vector space \mathbf{R}^2 is NOT a subspace of \mathbf{R}^3 , as \mathbf{R}^2 is not a subset of \mathbf{R}^3 .

- Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on **R**.
- Ex. P_n is a subspace of P.
- Ex. The vector space \mathbf{R}^2 is NOT a subspace of \mathbf{R}^3 , as \mathbf{R}^2 is not a subset of \mathbf{R}^3 .
- Ex. The set $H = \{(s, t, 0)^T : s, t \in \mathbf{R}\}$ is a subset of \mathbf{R}^3 . And it is a subspace of \mathbf{R}^3 .

- Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on **R**.
- Ex. P_n is a subspace of P.
- Ex. The vector space \mathbf{R}^2 is NOT a subspace of \mathbf{R}^3 , as \mathbf{R}^2 is not a subset of \mathbf{R}^3 .
- Ex. The set $H = \{(s, t, 0)^T : s, t \in \mathbf{R}\}$ is a subset of \mathbf{R}^3 . And it is a subspace of \mathbf{R}^3 .

Ex. A plane in \mathbb{R}^3 not through the origin is not a subspace of \mathbb{R}^3 .

물 제 문 제 문 제

 As the term linear combination refers to any sum of scalar multiples of vectors, and Span{v₁,..., v_p} denotes the set of all vectors that can be written as linear combinations of v₁,..., v_p.

- As the term linear combination refers to any sum of scalar multiples of vectors, and Span{v₁,..., v_p} denotes the set of all vectors that can be written as linear combinations of v₁,..., v_p.
- Ex. Given v_1 and v_2 in a vector space V, let $H = Span\{v_1, v_2\}$. Show that H is a subspace of V.

- As the term linear combination refers to any sum of scalar multiples of vectors, and Span{v₁,..., v_p} denotes the set of all vectors that can be written as linear combinations of v₁,..., v_p.
- Ex. Given v_1 and v_2 in a vector space V, let $H = Span\{v_1, v_2\}$. Show that H is a subspace of V.
- Proof. we need to verify the three conditions:

HEV Kisasubset of V.

- As the term linear combination refers to any sum of scalar multiples of vectors, and Span{v₁,..., v_p} denotes the set of all vectors that can be written as linear combinations of v₁,..., v_p.
- Ex. Given v_1 and v_2 in a vector space V, let $H = Span\{v_1, v_2\}$. Show that H is a subspace of V.

Proof. we need to verify the three conditions:

• Zero is in *H*, as $0 = 0v_1 + 0v_2$.

- As the term linear combination refers to any sum of scalar multiples of vectors, and Span{v₁,..., v_p} denotes the set of all vectors that can be written as linear combinations of v₁,..., v_p.
- Ex. Given v_1 and v_2 in a vector space V, let $H = Span\{v_1, v_2\}$. Show that H is a subspace of V.

Proof. we need to verify the three conditions:

- Zero is in *H*, as $0 = 0v_1 + 0v_2$.
- ▶ If $u, w \in H$, then $u = s_1v_1 + s_2v_2$ and $w = t_1v_1 + t_2v_2$ for some $s_1, s_2, t_1, t_2 \in \mathbf{R}$.

- As the term linear combination refers to any sum of scalar multiples of vectors, and Span{v₁,..., v_p} denotes the set of all vectors that can be written as linear combinations of v₁,..., v_p.
- Ex. Given v_1 and v_2 in a vector space V, let $H = Span\{v_1, v_2\}$. Show that H is a subspace of V.

Proof. we need to verify the three conditions:

• If $u, w \in H$, then $u = s_1v_1 + s_2v_2$ and $w = t_1v_1 + t_2v_2$ for some $s_1, s_2, t_1, t_2 \in \mathbb{R}$. Then $u + w = (s_1 + t_1)v_1 + (s_2 + t_2)v_2 \in H$.

- As the term linear combination refers to any sum of scalar multiples of vectors, and Span{v₁,..., v_p} denotes the set of all vectors that can be written as linear combinations of v₁,..., v_p.
- Ex. Given v_1 and v_2 in a vector space V, let $H = Span\{v_1, v_2\}$. Show that H is a subspace of V.

Proof. we need to verify the three conditions:

- Zero is in *H*, as $0 = 0v_1 + 0v_2$.
- If $u, w \in H$, then $u = s_1v_1 + s_2v_2$ and $w = t_1v_1 + t_2v_2$ for some $s_1, s_2, t_1, t_2 \in \mathbb{R}$. Then $u + w = (s_1 + t_1)v_1 + (s_2 + t_2)v_2 \in H$.
- For any $c \in \mathbf{R}$ and $u \in H$, we have $cu = (cs_1)v_1 + (cs_2)v_2 \in H$.

個 と く ヨ と く ヨ と …

- As the term linear combination refers to any sum of scalar multiples of vectors, and Span{v₁,..., v_p} denotes the set of all vectors that can be written as linear combinations of v₁,..., v_p.
- Ex. Given v_1 and v_2 in a vector space V, let $H = Span\{v_1, v_2\}$. Show that H is a subspace of V_{r}
- Proof. we need to verify the three conditions: $H \leq V$.
 - Zero is in H, as $0 = 0v_1 + 0v_2$.
 - If $u, w \in H$, then $u = s_1v_1 + s_2v_2$ and $w = t_1v_1 + t_2v_2$ for some $s_1, s_2, t_1, t_2 \in \mathbb{R}$. Then $u + w = (s_1 + t_1)v_1 + (s_2 + t_2)v_2 \in H$.

For any $c \in \mathbf{R}$ and $u \in H$, we have $cu = (cs_1)v_1 + (cs_2)v_2 \in H$.

• So H is a subspace of V.

• Theorem. If v_1, \ldots, v_p are in a vector space V, then $Span\{v_1, \ldots, v_p\}$ is a subspace of V.

個 と く ヨ と く ヨ と …

æ

• Theorem. If v_1, \ldots, v_p are in a vector space V, then $Span\{v_1, \ldots, v_p\}$ is a subspace of V.

• We call $Span\{v_1, \ldots, v_p\}$ the subspace spanned (or generated) by $\{v_1, \ldots, v_p\}$.

白 と く ヨ と く ヨ と …

• Theorem. If v_1, \ldots, v_p are in a vector space V, then $Span\{v_1, \ldots, v_p\}$ is a subspace of V.

• We call $Span\{v_1, \ldots, v_p\}$ the subspace spanned (or generated) by $\{v_1, \ldots, v_p\}$.

Given any subspace H of V, a spanning (or generating) set for H is a set {v₁,..., v_p} in H such that H = Span{v₁,..., v_p}.

▲□→ ▲目→ ▲目→ 三日

Ex. Let $H = \{(a - 3b, b - a, a, b)^T : a, b \in \mathbf{R}\}$. That is, H is the set of all vectors of the form $(a - 3b, b - a, a, b)^T$ where a and b are arbitrary scalars. Show that H is subspace of \mathbf{R}^4 .

 $\begin{pmatrix}
a - 3b \\
b - a \\
a \\
b
\end{pmatrix}$

Ex. Let $H = \{(a - 3b, b - a, a, b)^T : a, b \in \mathbf{R}\}$. That is, H is the set of all vectors of the form $(a - 3b, b - a, a, b)^T$ where a and b are arbitrary scalars. Show that H is subspace of \mathbf{R}^4 .

Proof. The vectors in H can be written as linear combinations:

$$\begin{aligned} \begin{bmatrix} a - 3b \\ b - a \\ a \\ b \end{bmatrix} &= a \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix} \\ V_{1} \qquad V_{2} \end{aligned}$$

$$\begin{aligned} H &= Spin \left\{ V_{1}, V_{2} \right\}. \end{aligned}$$

回 と く ヨ と く ヨ と

Ex. Let $H = \{(a - 3b, b - a, a, b)^T : a, b \in \mathbf{R}\}$. That is, H is the set of all vectors of the form $(a - 3b, b - a, a, b)^T$ where a and b are arbitrary scalars. Show that H is subspace of \mathbf{R}^4 .

Proof. The vectors in H can be written as linear combinations:

$$\begin{bmatrix} a-3b\\ b-a\\ a\\ b \end{bmatrix} = a \begin{bmatrix} 1\\ -1\\ 1\\ 0 \end{bmatrix} + b \begin{bmatrix} -3\\ 1\\ 0\\ 1 \end{bmatrix}$$

• So $H = Span\{v_1, v_2\}$ with $v_1 = (1, -1, 1, 0)^T$ and $v_2 = (-3, 1, 0, 1)^T$. Thus H is a subspace of \mathbb{R}^4 .

• For what values of h will y be in the subspace of \mathbb{R}^3 spanned by v_1, v_2, v_3 if

$$v_1 = \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}, v_2 = \begin{bmatrix} 5\\-4\\-7 \end{bmatrix}, v_3 = \begin{bmatrix} -3\\1\\0 \end{bmatrix} \begin{pmatrix} y = \begin{bmatrix} -4\\3\\h \end{bmatrix}$$

< ≣⇒

< ∃ >

æ

• For what values of *h* will *y* be in the subspace of \mathbb{R}^3 spanned by v_1, v_2, v_3 if

$$v_1 = \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}, v_2 = \begin{bmatrix} 5\\-4\\-7 \end{bmatrix}, v_3 = \begin{bmatrix} -3\\1\\0 \end{bmatrix}, y = \begin{bmatrix} -4\\3\\h \end{bmatrix}$$

Sol. let $y = x_1v_1 + x_2v_2 + x_3v_3$ with $x_1, x_2, x_3 \in \mathbf{R}$. We then have a linear system whose argumented matrix

$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ -1 & -4 & 1 & 3 \\ -2 & -7 & 0 & h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & h - 5 \end{bmatrix}$$

< 注→ < 注→

• For what values of *h* will *y* be in the subspace of \mathbb{R}^3 spanned by v_1, v_2, v_3 if

$$v_1 = \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}, v_2 = \begin{bmatrix} 5\\-4\\-7 \end{bmatrix}, v_3 = \begin{bmatrix} -3\\1\\0 \end{bmatrix}, y = \begin{bmatrix} -4\\3\\h \end{bmatrix}$$

Sol. let $y = x_1v_1 + x_2v_2 + x_3v_3$ with $x_1, x_2, x_3 \in \mathbf{R}$. We then have a linear system whose argumented matrix

$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ -1 & -4 & 1 & 3 \\ -2 & -7 & 0 & h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & h - 5 \end{bmatrix}$$

• By looking at its echelon form, we see that the linear system is consistent only if h - 5 = 0.

通 と く ヨ と く ヨ と

• For what values of h will y be in the subspace of \mathbb{R}^3 spanned by v_1, v_2, v_3 if

$$v_1 = \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}, v_2 = \begin{bmatrix} 5\\-4\\-7 \end{bmatrix}, v_3 = \begin{bmatrix} -3\\1\\0 \end{bmatrix}, y = \begin{bmatrix} -4\\3\\h \end{bmatrix}$$

Sol. let $y = x_1v_1 + x_2v_2 + x_3v_3$ with $x_1, x_2, x_3 \in \mathbf{R}$. We then have a linear system whose argumented matrix

$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ -1 & -4 & 1 & 3 \\ -2 & -7 & 0 & h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & h - 5 \end{bmatrix}$$

- By looking at its echelon form, we see that the linear system is consistent only if h 5 = 0.
- So y is in H if h = 5.

(3)