Section 4.1 Vector Spaces

Gexin Yu
gyu@wm.edu

College of William and Mary

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R}):$

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
(2) $u+v=v+u$. (commutative)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
(2) $u+v=v+u$. (commutative)
(3) $(u+v)+w=u+(v+w)$. (associative)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
(2) $u+v=v+u$. (commutative)
(3) $(u+v)+w=u+(v+w)$. (associative)
(9) there is a zero vector 0 in V. (zero)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
(2) $u+v=v+u$. (commutative)
(3) $(u+v)+w=u+(v+w)$. (associative)
(9) there is a zero vector 0 in V. (zero)
(0) for each $u \in V$, there is $-u \in V$ so that $u+(-u)=0$. (inverse)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
(2) $u+v=v+u$. (commutative)
(3) $(u+v)+w=u+(v+w)$. (associative)
(9) there is a zero vector 0 in V. (zero)
(3) for each $u \in V$, there is $-u \in V$ so that $u+(-u)=0$. (inverse)
(0) for $u \in V, c u \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
(2) $u+v=v+u$. (commutative)
(3) $(u+v)+w=u+(v+w)$. (associative)
(9) there is a zero vector 0 in V. (zero)
(3) for each $u \in V$, there is $-u \in V$ so that $u+(-u)=0$. (inverse)
(0) for $u \in V, c u \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)
(1) $c(u+v)=c u+c v$ (distributive)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
(2) $u+v=v+u$. (commutative)
(3) $(u+v)+w=u+(v+w)$. (associative)
(9) there is a zero vector 0 in V. (zero)
(3) for each $u \in V$, there is $-u \in V$ so that $u+(-u)=0$. (inverse)
(0) for $u \in V, c u \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)
(3) $c(u+v)=c u+c v$ (distributive)
(8) $(c+d) u=c u+d u$ (distributive)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
(1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
(2) $u+v=v+u$. (commutative)
(3) $(u+v)+w=u+(v+w)$. (associative)
(9) there is a zero vector 0 in V. (zero)
(3) for each $u \in V$, there is $-u \in V$ so that $u+(-u)=0$. (inverse)
(0) for $u \in V, c u \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)
(3) $c(u+v)=c u+c v$ (distributive)
(8) $(c+d) u=c u+d u$ (distributive)
(0) $c(d u)=(c d) u$ (associative)

Vector Space

- A vector space is a nonempty set V of objects, called vectors, with two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below (where $u, v, w \in V$ and $c, d \in \mathbf{R})$:
\checkmark (1) if $u, v \in V$, then $u+v \in V$. (closed under addition)
- (2) $u+v=v+u$. (commutative)
-3 $(u+v)+w=u+(v+w)$. (associative)
\checkmark (9) there is a zero vector 0 in V. (zero)
(3) for each $u \in V$, there is $-u \in V$ so that $u+(-u)=0$. (inverse)
(0) for $u \in V, c u \in V$ for any $c \in \mathbf{R}$. (closed under scalar multiplication)
~(0) $c(u+v)=c u+c v$ (distributive)
-(8) $(c+d) u=c u+d u$ (distributive)
• $c(d u)=(c d) u$ (associative)
(10) $1 u=u$. (one)

$$
(-1) u=-u
$$

$$
\operatorname{lon}=u
$$

Examples

Ex1 \mathbf{R}^{n} is a vector space. (check the ten rules)

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \begin{gathered}
u+v \\
c \cdot u
\end{gathered}
$$

Examples

Ex1 \mathbf{R}^{n} is a vector space. (check the ten rules)

Ex2 Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction.

Examples

Ex1 \mathbf{R}^{n} is a vector space. (check the ten rules)

Ex2 Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction.

Define addition by the parallelogram rule, and for each $v \in V$, define $c v$ to be the arrow whose length is $|c|$ times the length of v, pointing in the same direction as v if $c \geq 0$ and otherwise pointing in the opposite direction.

Examples

Ex1 \mathbf{R}^{n} is a vector space. (check the ten rules)

Ex2 Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction.

Define addition by the parallelogram rule, and for each $v \in V$, define $c v$ to be the arrow whose length is $|c|$ times the length of v, pointing in the same direction as v if $c \geq 0$ and otherwise pointing in the opposite direction.

This gives a vector space.

Ex3 For $n \geq 0$, the set P_{n} of polynomials of degree at most n. So P_{n} consists of all polynomials of the form $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}$, where coefficients $a_{0}, a_{1}, \ldots, a_{n}$ and the variable t are real numbers.

Ex For $n \geq 0$, the set P_{n} of polynomials of degree at most n. So P_{n} consists of all polynomials of the form $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}$, where coefficients $a_{0}, a_{1}, \ldots, a_{n}$ and the variable t are real numbers.

Let $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}$ and $q(t)=b_{0}+b_{1} t+b_{2} t^{2}+\ldots+b_{n} t^{n}$, we define addition as

$$
(p+q)(t)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\left(a_{2}+b_{2}\right) t^{2}+\ldots+\left(a_{n}+b_{n}\right) t^{n}
$$

and scalar multiplication as

$$
(c p)(t)=c p(t)=c a_{0}+\left(c a_{1}\right) t+\left(c a_{2}\right) t^{2}+\ldots+\left(c a_{n}\right) t^{n}
$$

$p(t)=q(t) . \Leftrightarrow a_{i}=b_{i}$ for all i

Ex3 For $n \geq 0$, the set P_{n} of polynomials of degree at most n. So P_{n} consists of all polynomials of the form $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}$, where coefficients $a_{0}, a_{1}, \ldots, a_{n}$ and the variable t are real numbers.

Let $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}$ and $q(t)=b_{0}+b_{1} t+b_{2} t^{2}+\ldots+b_{n} t^{n}$, we define addition as
$(p+q)(t)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\left(a_{2}+b_{2}\right) t^{2}+\ldots+\left(a_{n}+b_{n}\right) t^{n}$
and scalar multiplication as

$$
(c p)(t)=c p(t)=c a_{0}+\left(c a_{1}\right) t+\left(c a_{2}\right) t^{2}+\ldots+\left(c a_{n}\right) t^{n}
$$

This is a vector space (of polynomials of degree at most n)

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:
(1) the zero vector of V is in H

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:
(1) the zero vector of V is in H
(2) if $u, v \in H$, then $u+v \in H$.

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:
(1) the zero vector of V is in H
(2) if $u, v \in H$, then $u+v \in H$.
(3) if $u \in H$, then $c u \in H$

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:
(1) the zero vector of V is in H
(2) if $u, v \in H$, then $u+v \in H$.
(3) if $u \in H$, then $c u \in H$
- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V .

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:
(1) the zero vector of V is in H
(2) if $u, v \in H$, then $u+v \in H$.
(3) if $u \in H$, then $c u \in H$
- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V .
- Every subspace is a vector space.

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:
(1) the zero vector of V is in H
(2) if $u, v \in H$, then $u+v \in H$.
(3) if $u \in H$, then $c u \in H$
- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V .
- Every subspace is a vector space.
- Conversely, every vector space is a subspace (of itself and possibly of other larger spaces).

Subspace

- A subspace of a vector space V is a subset H of V that has three properties:
- (1) the zero vector of V is in H
- (2) if $u, v \in H$, then $u+v \in H$.
(3) if $u \in H$, then $c u \in H$
- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V .
- Every subspace is a vector space.
- Conversely, every vector space is a subspace (of itself and possibly of other larger spaces).
- The set consisting of only the zero vector in a vector space V is a subspace of V, called the zero subspace and written as $\{0\}$.

Examples

Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on \mathbf{R}.

Examples

Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on \mathbf{R}.

Ex. P_{n} is a subspace of P.

Examples

Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on \mathbf{R}.

Ex. P_{n} is a subspace of P.

Ex. The vector space \mathbf{R}^{2} is NOT a subspace of \mathbf{R}^{3}, as \mathbf{R}^{2} is not a subset of \mathbf{R}^{3}.

$$
\left[\begin{array}{c}
1 \\
2
\end{array}\right] \notin \Vdash>
$$

Examples

Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on \mathbf{R}.

Ex. P_{n} is a subspace of P.

Ex. The vector space \mathbf{R}^{2} is NOT a subspace of \mathbf{R}^{3}, as \mathbf{R}^{2} is not a subset of \mathbf{R}^{3}.

Ex. The set $H=\left\{(s, t, 0)^{T}: s, t \in \mathbf{R}\right\}$ is a subset of \mathbf{R}^{3}. And it is a subspace of \mathbf{R}^{3}.

$$
\|\left[\begin{array}{l}
s \\
t \\
0
\end{array}\right]
$$

Examples

Ex. let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on \mathbf{R}.

Ex. P_{n} is a subspace of P.

Ex. The vector space \mathbf{R}^{2} is NOT a subspace of \mathbf{R}^{3}, as \mathbf{R}^{2} is not a subset of \mathbf{R}^{3}.

Ex. The set $H=\left\{(s, t, 0)^{T}: s, t \in \mathbf{R}\right\}$ is a subset of \mathbf{R}^{3}. And it is a subspace of \mathbf{R}^{3}.

Ex. A plane in \mathbf{R}^{3} not through the origin is not a subspace of \mathbf{R}^{3}.

A subspace spanned by a set

- As the term linear combination refers to any sum of scalar multiples of vectors, and $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of v_{1}, \ldots, v_{p}.

A subspace spanned by a set

- As the term linear combination refers to any sum of scalar multiples of vectors, and $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of v_{1}, \ldots, v_{p}.
Ex. Given v_{1} and v_{2} in a vector space V, let $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that H is a subspace of V.

A subspace spanned by a set

- As the term linear combination refers to any sum of scalar multiples of vectors, and $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of v_{1}, \ldots, v_{p}.
Ex. Given v_{1} and v_{2} in a vector space V, let $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that H is a subspace of V

Proof. we need to verify the three conditions:

$$
H \subseteq V \quad H \text { is a subset of } V
$$

A subspace spanned by a set

- As the term linear combination refers to any sum of scalar multiples of vectors, and $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of v_{1}, \ldots, v_{p}.
Ex. Given v_{1} and v_{2} in a vector space V, let $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that H is a subspace of V.

Proof. we need to verify the three conditions:

- Zero is in H, as $0=0 v_{1}+0 v_{2}$.

A subspace spanned by a set

- As the term linear combination refers to any sum of scalar multiples of vectors, and $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of v_{1}, \ldots, v_{p}.
Ex. Given v_{1} and v_{2} in a vector space V, let $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that H is a subspace of V.

Proof. we need to verify the three conditions:

- Zero is in H, as $0=0 v_{1}+0 v_{2}$.
- If $u, w \in H$, then $u=s_{1} v_{1}+s_{2} v_{2}$ and $w=t_{1} v_{1}+t_{2} v_{2}$ for some $s_{1}, s_{2}, t_{1}, t_{2} \in \mathbf{R}$.

A subspace spanned by a set

- As the term linear combination refers to any sum of scalar multiples of vectors, and $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of v_{1}, \ldots, v_{p}.
Ex. Given v_{1} and v_{2} in a vector space V, let $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that H is a subspace of V.

Proof. we need to verify the three conditions:

- Zero is in H, as $0=0 v_{1}+0 v_{2}$.
- If $u, w \in H$, then $u=s_{1} v_{1}+s_{2} v_{2}$ and $w=t_{1} v_{1}+t_{2} v_{2}$ for some $s_{1}, s_{2}, t_{1}, t_{2} \in \mathbf{R}$.
Then $u+w=\left(s_{1}+t_{1}\right) v_{1}+\left(s_{2}+t_{2}\right) v_{2} \in H$.

A subspace spanned by a set

- As the term linear combination refers to any sum of scalar multiples of vectors, and $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of v_{1}, \ldots, v_{p}.
Ex. Given v_{1} and v_{2} in a vector space V, let $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that H is a subspace of V.

Proof. we need to verify the three conditions:

- Zero is in H, as $0=0 v_{1}+0 v_{2}$.
- If $u, w \in H$, then $u=s_{1} v_{1}+s_{2} v_{2}$ and $w=t_{1} v_{1}+t_{2} v_{2}$ for some $s_{1}, s_{2}, t_{1}, t_{2} \in \mathbf{R}$.
Then $u+w=\left(s_{1}+t_{1}\right) v_{1}+\left(s_{2}+t_{2}\right) v_{2} \in H$.
- For any $c \in \mathbf{R}$ and $u \in H$, we have $c u=\left(c s_{1}\right) v_{1}+\left(c s_{2}\right) v_{2} \in H$.

A subspace spanned by a set

- As the term linear combination refers to any sum of scalar multiples of vectors, and $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of v_{1}, \ldots, v_{p}.
Ex. Given v_{1} and v_{2} in a vector space V, let $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that H is a subspace of V
Proof. we need to verify the four
- Zero is in H, as $0=0 v_{1}+0 v_{2}$.
- If $u, w \in H$, then $u=s_{1} v_{1}+s_{2} v_{2}$ and $w=t_{1} v_{1}+t_{2} v_{2}$ for some $s_{1}, s_{2}, t_{1}, t_{2} \in \mathbf{R}$.
Then $u+w=\left(s_{1}+t_{1}\right) v_{1}+\left(s_{2}+t_{2}\right) v_{2} \in H$.
- For any $c \in \mathbf{R}$ and $u \in H$, we have $c u=\left(c s_{1}\right) v_{1}+\left(c s_{2}\right) v_{2} \in H$.
- So H is a subspace of V.
- Theorem. If v_{1}, \ldots, v_{p} are in a vector space V, then $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ is a subspace of V.
- Theorem. If v_{1}, \ldots, v_{p} are in a vector space V, then $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ is a subspace of V.
- We call $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ the subspace spanned (or generated) by $\left\{v_{1}, \ldots, v_{p}\right\}$.
- Theorem. If v_{1}, \ldots, v_{p} are in a vector space V, then $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ is a subspace of V.
- We call $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ the subspace spanned (or generated) by $\left\{v_{1}, \ldots, v_{p}\right\}$.
- Given any subspace H of V, a spanning (or generating) set for H is a set $\left\{v_{1}, \ldots, v_{p}\right\}$ in H such that $H=\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$.

Example

Ex. Let $H=\left\{(a-3 b, b-a, a, b)^{T}: a, b \in \mathbf{R}\right\}$. That is, H is the set of all vectors of the form $(a-3 b, b-a, a, b)^{T}$ where a and b are arbitrary scalars. Show that H is subspace of \mathbf{R}^{4}.

$$
\left[\begin{array}{c}
a-3 b \\
b-a \\
a \\
b
\end{array}\right]
$$

Example

Ex. Let $H=\left\{(a-3 b, b-a, a, b)^{T}: a, b \in \mathbf{R}\right\}$. That is, H is the set of all vectors of the form $(a-3 b, b-a, a, b)^{T}$ where a and b are arbitrary scalars. Show that H is subspace of \mathbf{R}^{4}.

Proof. The vectors in H can be written as linear combinations:

$$
\begin{aligned}
& {\left[\begin{array}{c}
a-3 b \\
b-a \\
a \\
b
\end{array}\right]=a\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
V_{1} \\
0 \\
1
\end{array}\right]} \\
& V_{2} \\
& {\left[=S \operatorname{pan}\left\{V_{1}, V_{2}\right\} .\right.}
\end{aligned}
$$

Example

Ex. Let $H=\left\{(a-3 b, b-a, a, b)^{T}: a, b \in \mathbf{R}\right\}$. That is, H is the set of all vectors of the form $(a-3 b, b-a, a, b)^{T}$ where a and b are arbitrary scalars. Show that H is subspace of \mathbf{R}^{4}.

Proof. The vectors in H can be written as linear combinations:

$$
\left[\begin{array}{c}
a-3 b \\
b-a \\
a \\
b
\end{array}\right]=a\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
1 \\
0 \\
1
\end{array}\right]
$$

- So $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ with $v_{1}=(1,-1,1,0)^{T}$ and $v_{2}=(-3,1,0,1)^{T}$. Thus H is a subspace of \mathbf{R}^{4}.

Example

- For what values of h will y be in the subspace of \mathbf{R}^{3} spanned by v_{1}, v_{2}, v_{3} if

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right], v_{2}=\left[\begin{array}{c}
5 \\
-4 \\
-7
\end{array}\right], v_{3}=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]\left(y=\left[\begin{array}{c}
-4 \\
3 \\
h
\end{array}\right]\right)
$$

Example

- For what values of h will y be in the subspace of \mathbf{R}^{3} spanned by v_{1}, v_{2}, v_{3} if

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right], v_{2}=\left[\begin{array}{c}
5 \\
-4 \\
-7
\end{array}\right], v_{3}=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right], y=\left[\begin{array}{c}
-4 \\
3 \\
h
\end{array}\right]
$$

Sol. let $y=x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}$ with $x_{1}, x_{2}, x_{3} \in \mathbf{R}$. We then have a linear system whose argumented matrix

$$
\left[\begin{array}{cccc}
1 & 5 & -3 & -4 \\
-1 & -4 & 1 & 3 \\
-2 & -7 & 0 & h
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & h-5
\end{array}\right]
$$

Example

- For what values of h will y be in the subspace of \mathbf{R}^{3} spanned by v_{1}, v_{2}, v_{3} if

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right], v_{2}=\left[\begin{array}{c}
5 \\
-4 \\
-7
\end{array}\right], v_{3}=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right], y=\left[\begin{array}{c}
-4 \\
3 \\
h
\end{array}\right]
$$

Sol. let $y=x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}$ with $x_{1}, x_{2}, x_{3} \in \mathbf{R}$. We then have a linear system whose argumented matrix

$$
\left[\begin{array}{cccc}
1 & 5 & -3 & -4 \\
-1 & -4 & 1 & 3 \\
-2 & -7 & 0 & h
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & h-5
\end{array}\right]
$$

- By looking at its echelon form, we see that the linear system is consistent only if $h-5=0$.

Example

- For what values of h will y be in the subspace of \mathbf{R}^{3} spanned by v_{1}, v_{2}, v_{3} if

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right], v_{2}=\left[\begin{array}{c}
5 \\
-4 \\
-7
\end{array}\right], v_{3}=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right], y=\left[\begin{array}{c}
-4 \\
3 \\
h
\end{array}\right]
$$

Sol. let $y=x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}$ with $x_{1}, x_{2}, x_{3} \in \mathbf{R}$. We then have a linear system whose argumented matrix

$$
\left[\begin{array}{cccc}
1 & 5 & -3 & -4 \\
-1 & -4 & 1 & 3 \\
-2 & -7 & 0 & h
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & h-5
\end{array}\right]
$$

- By looking at its echelon form, we see that the linear system is consistent only if $h-5=0$.
- So y is in H if $h=5$.

