Section 4.4 Coordinate systems and 4.7 Change of basis

Gexin Yu
gyu@wm.edu

College of William and Mary

Unique Representation Theorem

Thm (Unique Representation Theorem) let $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then for each $x \in V$, there exists a unique set of scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that $x=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$.

Unique Representation Theorem

Thm (Unique Representation Theorem) let $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then for each $x \in V$, there exists a unique set of scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that $x=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$.

Pf. Since \mathcal{B} spans V, there exist such scalars.

Unique Representation Theorem

Thm (Unique Representation Theorem) let $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then for each $x \in V$, there exists a unique set of scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that $x=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$.

Pf. Since \mathcal{B} spans V, there exist such scalars.

- Suppose that x also has the representation $x=d_{1} b_{1}+d_{2} b_{2}+\ldots+d_{n} b_{n}$ for scalars $d_{1}, d_{2}, \ldots, d_{n}$.

Unique Representation Theorem

Thm (Unique Representation Theorem) let $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then for each $x \in V$, there exists a unique set of scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that $x=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$.

Pf. Since \mathcal{B} spans V, there exist such scalars.

- Suppose that x also has the representation $x=d_{1} b_{1}+d_{2} b_{2}+\ldots+d_{n} b_{n}$ for scalars $d_{1}, d_{2}, \ldots, d_{n}$.
- Then we have $0=x-x=\left(c_{1}-d_{1}\right) b_{1}+\left(c_{2}-d_{2}\right) b_{2}+\ldots+\left(c_{n}-d_{n}\right) b_{n}$.

Unique Representation Theorem

Thm (Unique Representation Theorem) let $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then for each $x \in V$, there exists a unique set of scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that $x=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$.

Pf. Since \mathcal{B} spans V, there exist such scalars.

- Suppose that x also has the representation $x=d_{1} b_{1}+d_{2} b_{2}+\ldots+d_{n} b_{n}$ for scalars $d_{1}, d_{2}, \ldots, d_{n}$.
- Then we have $0=x-x=\left(c_{1}-d_{1}\right) b_{1}+\left(c_{2}-d_{2}\right) b_{2}+\ldots+\left(c_{n}-d_{n}\right) b_{n}$.
- Since \mathcal{B} is linearly independent, all the weights must be zeros. That is, $c_{1}=d_{1}, c_{2}=d_{2}, \ldots, c_{n}=d_{n}$.

Coordinates

- Definition: Suppose $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis for V and x is in V. The coordinates of x relative to the basis B (or the B-coordinate of x) are the weights $c_{1}, c_{2}, \ldots, c_{n}$ so that

$$
c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}=x
$$

Coordinates

- Definition: Suppose $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis for V and x is in V. The coordinates of x relative to the basis B (or the B-coordinate of x) are the weights $c_{1}, c_{2}, \ldots, c_{n}$ so that

$$
c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}=x
$$

- If $c_{1}, c_{2}, \ldots, c_{n}$ are the B-coordinates of x, then the vector
$[x]_{B}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]$ is the coordinate vector of x, or the B-coordinate vector of x.

Coordinates

- Definition: Suppose $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis for V and x is in V. The coordinates of x relative to the basis B (or the B-coordinate of x) are the weights $c_{1}, c_{2}, \ldots, c_{n}$ so that

$$
c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}=x
$$

- If $c_{1}, c_{2}, \ldots, c_{n}$ are the B-coordinates of x, then the vector
$[x]_{B}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]$ is the coordinate vector of x, or the B-coordinate vector of x.
- The mapping $x \rightarrow[x]_{B}$ is the coordinate mapping determined by B.

Coordinates

- Definition: Suppose $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis for V and x is in V. The coordinates of x relative to the basis B (or the B-coordinate of x) are the weights $c_{1}, c_{2}, \ldots, c_{n}$ so that

$$
c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}=x
$$

- If $c_{1}, c_{2}, \ldots, c_{n}$ are the B-coordinates of x, then the vector
$[x]_{B}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]$ is the coordinate vector of x, or the B-coordinate vector of x.
- The mapping $x \rightarrow[x]_{B}$ is the coordinate mapping determined by B.
- When a basis B is fixed for \mathbf{R}^{n}, it is easy to find the B-coordinate vector of a specified x.

Example

Ex. Let $b_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], b_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ and $B=\left\{b_{1}, b_{2}\right\}$. Find the coordinate vector $[x]_{B}$ of x.

Example

Ex. Let $b_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], b_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ and $B=\left\{b_{1}, b_{2}\right\}$. Find the coordinate vector $[x]_{B}$ of x.

Sol. The B-coordinate c_{1}, c_{2} of x satisfy $c_{1} b_{1}+c_{2} b_{2}=x$.

Example

Ex. Let $b_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], b_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ and $B=\left\{b_{1}, b_{2}\right\}$. Find the coordinate vector $[x]_{B}$ of x.

Sol. The B-coordinate c_{1}, c_{2} of x satisfy $c_{1} b_{1}+c_{2} b_{2}=x$.

- So we have the following matrix equation $\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.

Example

Ex. Let $b_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], b_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ and $B=\left\{b_{1}, b_{2}\right\}$. Find the coordinate vector $[x]_{B}$ of x.

Sol. The B-coordinate c_{1}, c_{2} of x satisfy $c_{1} b_{1}+c_{2} b_{2}=x$.

- So we have the following matrix equation $\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
- It can be easily solved (how many ways can you think of?) that $c_{1}=3$ and $c_{2}=2$.

Example

Ex. Let $b_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], b_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ and $B=\left\{b_{1}, b_{2}\right\}$. Find the coordinate vector $[x]_{B}$ of x.

Sol. The B-coordinate c_{1}, c_{2} of x satisfy $c_{1} b_{1}+c_{2} b_{2}=x$.

- So we have the following matrix equation $\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
- It can be easily solved (how many ways can you think of?) that $c_{1}=3$ and $c_{2}=2$.
- So $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

Coordinates in \mathbf{R}^{n}

- In the above example, we change the standard coordinate of $x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ to the B-coordinate $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$, through the matrix equation

$$
x=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right][x]_{B}
$$

Coordinates in \mathbf{R}^{n}

- In the above example, we change the standard coordinate of $x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ to the B-coordinate $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$, through the matrix equation

$$
x=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right][x]_{B}
$$

- This approach can be generalized to \mathbf{R}^{n} for a basis

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}
$$

Coordinates in \mathbf{R}^{n}

- In the above example, we change the standard coordinate of $x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ to the B-coordinate $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$, through the matrix equation

$$
x=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right][x]_{B}
$$

- This approach can be generalized to \mathbf{R}^{n} for a basis

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}
$$

- Let $P_{B}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]$, which we call change-of-coordinates matrix from B to standard basis in \mathbf{R}^{n}.

Coordinates in \mathbf{R}^{n}

- In the above example, we change the standard coordinate of $x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ to the B-coordinate $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$, through the matrix equation

$$
x=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right][x]_{B}
$$

- This approach can be generalized to \mathbf{R}^{n} for a basis

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}
$$

- Let $P_{B}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]$, which we call change-of-coordinates matrix from B to standard basis in \mathbf{R}^{n}.
- Then the vector equation $x=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$ can be written as

$$
x=P_{B} \cdot[x]_{B}
$$

- Since the columns of P_{B} form a basis for \mathbf{R}^{n}, P_{B} is invertible (by the Invertible Matrix Theorem).
- Since the columns of P_{B} form a basis for \mathbf{R}^{n}, P_{B} is invertible (by the Invertible Matrix Theorem).
- So we also have

$$
[x]_{B}=P_{B}^{-1} \cdot x
$$

- Since the columns of P_{B} form a basis for \mathbf{R}^{n}, P_{B} is invertible (by the Invertible Matrix Theorem).
- So we also have

$$
[x]_{B}=P_{B}^{-1} \cdot x
$$

- The mapping $x \rightarrow[x]_{B}$ given by $[x]_{B}=P_{B}^{-1} \cdot x$ is the coordinate mapping, which is one-to-one and onto, by IMT.
- Since the columns of P_{B} form a basis for \mathbf{R}^{n}, P_{B} is invertible (by the Invertible Matrix Theorem).
- So we also have

$$
[x]_{B}=P_{B}^{-1} \cdot x
$$

- The mapping $x \rightarrow[x]_{B}$ given by $[x]_{B}=P_{B}^{-1} \cdot x$ is the coordinate mapping, which is one-to-one and onto, by IMT.
- This is not only true from \mathbf{R}^{n} to \mathbf{R}^{n}, but also holds for a vector space with a basis of n vectors to \mathbf{R}^{n}.

The Coordinate Mapping

Thm. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping $x \rightarrow[x]_{B}$ is a one-to-one and onto linear transformation from V to \mathbf{R}^{n}.

The Coordinate Mapping

Thm. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping $x \rightarrow[x]_{B}$ is a one-to-one and onto linear transformation from V to \mathbf{R}^{n}.

Pf. We need to show it is a linear transformation, one-to-one, and onto.

The Coordinate Mapping

Thm. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping $x \rightarrow[x]_{B}$ is a one-to-one and onto linear transformation from V to \mathbf{R}^{n}.

Pf. We need to show it is a linear transformation, one-to-one, and onto.

- To show it is a linear transformation, we need to check it preserves addition (of vectors) and scalar multiplication.

The Coordinate Mapping

Thm. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping $x \rightarrow[x]_{B}$ is a one-to-one and onto linear transformation from V to \mathbf{R}^{n}.

Pf. We need to show it is a linear transformation, one-to-one, and onto.

- To show it is a linear transformation, we need to check it preserves addition (of vectors) and scalar multiplication.
- That is, $[u+v]_{B}=[u]_{B}+[v]_{B}$ and $[c u]_{B}=c[u]_{B}$.

The Coordinate Mapping

Thm. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping $x \rightarrow[x]_{B}$ is a one-to-one and onto linear transformation from V to \mathbf{R}^{n}.
Pf. We need to show it is a linear transformation, one-to-one, and onto.

- To show it is a linear transformation, we need to check it preserves addition (of vectors) and scalar multiplication.
- That is, $[u+v]_{B}=[u]_{B}+[v]_{B}$ and $[c u]_{B}=c[u]_{B}$.
- Let $u=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$ and $v=d_{1} b_{1}+d_{2} b_{2}+\ldots+d_{n} b_{n}$. Then

$$
u+v=\left(c_{1}+d_{1}\right) b_{1}+\left(c_{2}+d_{2}\right) b_{2}+\ldots+\left(c_{n}+d_{n}\right) b_{n}
$$

and

$$
c u=\left(c c_{1}\right) b_{1}+\left(c c_{2}\right) b_{2}+\ldots+\left(c c_{n}\right) b_{n}
$$

- So $[u+v]_{B}=\left[\begin{array}{c}c_{1}+d_{1} \\ c_{2}+d_{2} \\ \ldots \\ c_{n}+d_{n}\end{array}\right]=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]+\left[\begin{array}{c}d_{1} \\ d_{2} \\ \ldots \\ d_{n}\end{array}\right]=[u]_{B}+[v]_{B}$.
- So $[u+v]_{B}=\left[\begin{array}{c}c_{1}+d_{1} \\ c_{2}+d_{2} \\ \ldots \\ c_{n}+d_{n}\end{array}\right]=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]+\left[\begin{array}{c}d_{1} \\ d_{2} \\ \ldots \\ d_{n}\end{array}\right]=[u]_{B}+[v]_{B}$.
- And $[c u]_{B}=\left[\begin{array}{c}c c_{1} \\ c c_{2} \\ \ldots \\ c c_{n}\end{array}\right]=c\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]=c[u]_{B}$.
- So $[u+v]_{B}=\left[\begin{array}{c}c_{1}+d_{1} \\ c_{2}+d_{2} \\ \ldots \\ c_{n}+d_{n}\end{array}\right]=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]+\left[\begin{array}{c}d_{1} \\ d_{2} \\ \ldots \\ d_{n}\end{array}\right]=[u]_{B}+[v]_{B}$.
- And $[c u]_{B}=\left[\begin{array}{c}c c_{1} \\ c c_{2} \\ \ldots \\ c c_{n}\end{array}\right]=c\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]=c[u]_{B}$.
- We skip the proof for one-to-one and onto (homework).

Isomorphism

- The linearity of the coordinate mapping extends to linear combinations.

Isomorphism

- The linearity of the coordinate mapping extends to linear combinations.
- If u_{1}, \ldots, u_{p} are in V and if c_{1}, \ldots, c_{p} are scalars, then

$$
\left[c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right]_{B}=c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}
$$

Isomorphism

- The linearity of the coordinate mapping extends to linear combinations.
- If u_{1}, \ldots, u_{p} are in V and if c_{1}, \ldots, c_{p} are scalars, then

$$
\left[c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right]_{B}=c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}
$$

- In words, the above equation says that the B-coordinate vector of a linear combination of u_{1}, \ldots, u_{p} is the same linear combination of their coordinate vectors.

Isomorphism

- The linearity of the coordinate mapping extends to linear combinations.
- If u_{1}, \ldots, u_{p} are in V and if c_{1}, \ldots, c_{p} are scalars, then

$$
\left[c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right]_{B}=c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}
$$

- In words, the above equation says that the B-coordinate vector of a linear combination of u_{1}, \ldots, u_{p} is the same linear combination of their coordinate vectors.
- The coordinate mapping in Theorem 8 is an important example of an isomorphism from V onto W.

Isomorphism

- The linearity of the coordinate mapping extends to linear combinations.
- If u_{1}, \ldots, u_{p} are in V and if c_{1}, \ldots, c_{p} are scalars, then

$$
\left[c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right]_{B}=c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}
$$

- In words, the above equation says that the B-coordinate vector of a linear combination of u_{1}, \ldots, u_{p} is the same linear combination of their coordinate vectors.
- The coordinate mapping in Theorem 8 is an important example of an isomorphism from V onto W.
- In general, a one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism from V onto W.

Isomorphism

- The linearity of the coordinate mapping extends to linear combinations.
- If u_{1}, \ldots, u_{p} are in V and if c_{1}, \ldots, c_{p} are scalars, then

$$
\left[c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right]_{B}=c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}
$$

- In words, the above equation says that the B-coordinate vector of a linear combination of u_{1}, \ldots, u_{p} is the same linear combination of their coordinate vectors.
- The coordinate mapping in Theorem 8 is an important example of an isomorphism from V onto W.
- In general, a one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism from V onto W.
- The notation and terminology for V and W may differ, but the two spaces are indistinguishable as vector spaces, if there is an isomorphism between them.

Example

Ex. Use coordinate vectors to verify that the polynomials $1+2 t^{2}, 4+t+5 t^{2}$ and $3+2 t$ are linearly dependent in P_{2}.

Example

Ex. Use coordinate vectors to verify that the polynomials $1+2 t^{2}, 4+t+5 t^{2}$ and $3+2 t$ are linearly dependent in P_{2}.
Pf. The coordinate vectors of the polynomials (over the standard basis $\left.B=\left\{1, t, t^{2}\right\}\right)$ are $(1,0,2),(4,1,5)$ and $(3,2,0)$, respectively.

Example

Ex. Use coordinate vectors to verify that the polynomials $1+2 t^{2}, 4+t+5 t^{2}$ and $3+2 t$ are linearly dependent in P_{2}.
Pf. The coordinate vectors of the polynomials (over the standard basis $\left.B=\left\{1, t, t^{2}\right\}\right)$ are $(1,0,2),(4,1,5)$ and $(3,2,0)$, respectively.

- Writing the vector as the columns of a matrix A, and determine their independence by row reducing the augmented matrix for $A x=0$:

$$
\left[\begin{array}{llll}
1 & 4 & 3 & 0 \\
0 & 1 & 2 & 0 \\
2 & 5 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 4 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example

Ex. Use coordinate vectors to verify that the polynomials $1+2 t^{2}, 4+t+5 t^{2}$ and $3+2 t$ are linearly dependent in P_{2}.
Pf. The coordinate vectors of the polynomials (over the standard basis $\left.B=\left\{1, t, t^{2}\right\}\right)$ are $(1,0,2),(4,1,5)$ and $(3,2,0)$, respectively.

- Writing the vector as the columns of a matrix A, and determine their independence by row reducing the augmented matrix for $A x=0$:

$$
\left[\begin{array}{llll}
1 & 4 & 3 & 0 \\
0 & 1 & 2 & 0 \\
2 & 5 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 4 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- The columns of A are linearly dependent, so the corresponding polynomials are linearly dependent.

Example

Ex. Use coordinate vectors to verify that the polynomials $1+2 t^{2}, 4+t+5 t^{2}$ and $3+2 t$ are linearly dependent in P_{2}.
Pf. The coordinate vectors of the polynomials (over the standard basis $\left.B=\left\{1, t, t^{2}\right\}\right)$ are $(1,0,2),(4,1,5)$ and $(3,2,0)$, respectively.

- Writing the vector as the columns of a matrix A, and determine their independence by row reducing the augmented matrix for $A x=0$:

$$
\left[\begin{array}{llll}
1 & 4 & 3 & 0 \\
0 & 1 & 2 & 0 \\
2 & 5 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 4 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- The columns of A are linearly dependent, so the corresponding polynomials are linearly dependent.
- Furthermore, $c_{3}=2 c_{2}-5 c_{1}$. So we have

$$
3+2 t=2\left(4+t+5 t^{2}\right)-5\left(1+2 t^{2}\right)
$$

Basis and coordinates

- When a basis B is given for an n-dimensional vector space V, every vector x in V can be uniquely identified by its B-coordinate vector $[x]_{B}$.

Basis and coordinates

- When a basis B is given for an n-dimensional vector space V, every vector x in V can be uniquely identified by its B-coordinate vector $[x]_{B}$.
- Namely, if $x=x_{1} b_{1}+x_{2} b_{2}+\ldots+x_{n} b_{n}$, then $[x]_{B}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{T}$.

Basis and coordinates

- When a basis B is given for an n-dimensional vector space V, every vector x in V can be uniquely identified by its B-coordinate vector $[x]_{B}$.
- Namely, if $x=x_{1} b_{1}+x_{2} b_{2}+\ldots+x_{n} b_{n}$, then $[x]_{B}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{T}$.
- In applications, we may know the B-coordinate for the vector, but need to know its C-coordinate for another basis C.

Basis and coordinates

- When a basis B is given for an n-dimensional vector space V, every vector x in V can be uniquely identified by its B-coordinate vector $[x]_{B}$.
- Namely, if $x=x_{1} b_{1}+x_{2} b_{2}+\ldots+x_{n} b_{n}$, then $[x]_{B}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{T}$.
- In applications, we may know the B-coordinate for the vector, but need to know its C-coordinate for another basis C.
- We will give a way to build connection between $[x]_{B}$ and $[x]_{C}$, in particular, we will find the change-of-coordinates matrix from B to C.

Example

Ex. Consider two bases $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$ for a vector space V, such that

$$
b_{1}=4 c_{1}+c_{2}, \quad b_{2}=-6 c_{1}+c_{2}
$$

Suppose that $x=3 b_{1}+b_{2}$, find $[x]_{C}$.

Example

Ex. Consider two bases $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$ for a vector space V, such that

$$
b_{1}=4 c_{1}+c_{2}, \quad b_{2}=-6 c_{1}+c_{2}
$$

Suppose that $x=3 b_{1}+b_{2}$, find $[x]_{c}$.

Sol. Note that $[x]_{C}=\left[3 b_{1}+b_{2}\right]_{c}=3\left[b_{1}\right]_{C}+\left[b_{2}\right]_{c}=\left[\begin{array}{ll}{\left[b_{1}\right]_{C}} & {\left[b_{2}\right]_{C}}\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]$.

Example

Ex. Consider two bases $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$ for a vector space V, such that

$$
b_{1}=4 c_{1}+c_{2}, b_{2}=-6 c_{1}+c_{2}
$$

Suppose that $x=3 b_{1}+b_{2}$, find $[x]_{C}$.

Sol. Note that $[x]_{C}=\left[3 b_{1}+b_{2}\right]_{C}=3\left[b_{1}\right]_{C}+\left[b_{2}\right]_{C}=\left[\begin{array}{ll}{\left[b_{1}\right]_{C}} & \left.\left[b_{2}\right]_{C}\right]\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]$.

As $\left[b_{1}\right]_{C}=\left[\begin{array}{ll}4 & 1\end{array}\right]^{T},\left[b_{2}\right]_{C}=\left[\begin{array}{ll}-6 & 1\end{array}\right]^{T}$, we have

$$
[x]_{C}=\left[\begin{array}{cc}
4 & -6 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right] .
$$

Change of basis

- The previous example actually can be generalized.

Change of basis

- The previous example actually can be generalized.

THM. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be bases of a vector of a vector space V. Then there is a unique $n \times n$ matrix $P_{B \rightarrow C}$ such that

$$
[x]_{C}=P_{B \rightarrow C} \cdot[x]_{B}
$$

Here the change-of-coordinates matrix from B to C is

$$
P_{B \rightarrow C}=\left[\begin{array}{llll}
{\left[b_{1}\right]_{C}} & {\left[b_{2}\right]_{C}} & \ldots & {\left[b_{n}\right]_{C}}
\end{array}\right]
$$

Change of basis

- The previous example actually can be generalized.

THM. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be bases of a vector of a vector space V. Then there is a unique $n \times n$ matrix $P_{B \rightarrow C}$ such that

$$
[x]_{C}=P_{B \rightarrow C} \cdot[x]_{B}
$$

Here the change-of-coordinates matrix from B to C is

$$
P_{B \rightarrow C}=\left[\begin{array}{llll}
{\left[b_{1}\right]_{C}} & {\left[b_{2}\right]_{c}} & \ldots & {\left[b_{n}\right]_{c}}
\end{array}\right]
$$

- Note that the columns of $P_{B \rightarrow C}$ are linearly independent and it is a square matrix, it must be an invertible matrix. So we also have the following

$$
[x]_{B}=P_{B \rightarrow C}^{-1} \cdot[x]_{C}
$$

Change of basis

- The previous example actually can be generalized.

THM. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be bases of a vector of a vector space V. Then there is a unique $n \times n$ matrix $P_{B \rightarrow C}$ such that

$$
[x]_{C}=P_{B \rightarrow C} \cdot[x]_{B}
$$

Here the change-of-coordinates matrix from B to C is

$$
P_{B \rightarrow C}=\left[\begin{array}{llll}
{\left[b_{1}\right]_{C}} & {\left[b_{2}\right]_{c}} & \ldots & {\left[b_{n}\right]_{c}}
\end{array}\right]
$$

- Note that the columns of $P_{B \rightarrow C}$ are linearly independent and it is a square matrix, it must be an invertible matrix. So we also have the following

$$
[x]_{B}=P_{B \rightarrow C}^{-1} \cdot[x]_{C}
$$

- In other words,

$$
P_{C \rightarrow B}=P_{B \rightarrow C}^{-1}
$$

Change of basis in \mathbf{R}^{n}

- We now consider a special case, when the vector space is \mathbf{R}^{n}.

Change of basis in \mathbf{R}^{n}

- We now consider a special case, when the vector space is \mathbf{R}^{n}.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis of \mathbf{R}^{n} and $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis of \mathbf{R}^{n}.

Change of basis in \mathbf{R}^{n}

- We now consider a special case, when the vector space is \mathbf{R}^{n}.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis of \mathbf{R}^{n} and $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis of \mathbf{R}^{n}.
- Then $\left[b_{1}\right]_{E}=b_{1}$. So $P_{B \rightarrow E}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]=P_{B}$.

Change of basis in \mathbf{R}^{n}

- We now consider a special case, when the vector space is \mathbf{R}^{n}.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis of \mathbf{R}^{n} and $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis of \mathbf{R}^{n}.
- Then $\left[b_{1}\right]_{E}=b_{1}$. So $P_{B \rightarrow E}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]=P_{B}$.
- Let $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$ be a vector in R^{n} (by using the standard basis).

Change of basis in \mathbf{R}^{n}

- We now consider a special case, when the vector space is \mathbf{R}^{n}.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis of \mathbf{R}^{n} and $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis of \mathbf{R}^{n}.
- Then $\left[b_{1}\right]_{E}=b_{1}$. So $P_{B \rightarrow E}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]=P_{B}$.
- Let $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$ be a vector in R^{n} (by using the standard basis).
- Then we have

$$
[x]=P_{B} \cdot[x]_{B}
$$

Change of basis in \mathbf{R}^{n}

- We now consider a special case, when the vector space is \mathbf{R}^{n}.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis of \mathbf{R}^{n} and $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis of \mathbf{R}^{n}.
- Then $\left[b_{1}\right]_{E}=b_{1}$. So $P_{B \rightarrow E}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]=P_{B}$.
- Let $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$ be a vector in R^{n} (by using the standard basis).
- Then we have

$$
[x]=P_{B} \cdot[x]_{B}
$$

- Let C be another basis of \mathbf{R}^{n}. Then $[x]=P_{C} \cdot[x]_{C}=P_{B} \cdot[x]_{B}$.

Change of basis in \mathbf{R}^{n}

- We now consider a special case, when the vector space is \mathbf{R}^{n}.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis of \mathbf{R}^{n} and $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis of \mathbf{R}^{n}.
- Then $\left[b_{1}\right]_{E}=b_{1}$. So $P_{B \rightarrow E}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]=P_{B}$.
- Let $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$ be a vector in R^{n} (by using the standard basis).
- Then we have

$$
[x]=P_{B} \cdot[x]_{B}
$$

- Let C be another basis of \mathbf{R}^{n}. Then $[x]=P_{C} \cdot[x]_{C}=P_{B} \cdot[x]_{B}$.
- That is,

$$
P_{B} \cdot[x]_{B}=P_{C} \cdot[x]_{C}
$$

- So we have

$$
[x]_{C}=P_{C}^{-1} \cdot P_{B} \cdot[x]_{B}
$$

- So we have

$$
[x]_{C}=P_{C}^{-1} \cdot P_{B} \cdot[x]_{B}
$$

- This is the change-of-coordinate matrix $P_{B \rightarrow C}=P_{C}^{-1} \cdot P_{B}$.
- So we have

$$
[x]_{C}=P_{C}^{-1} \cdot P_{B} \cdot[x]_{B}
$$

- This is the change-of-coordinate matrix $P_{B \rightarrow C}=P_{C}^{-1} \cdot P_{B}$.
- Note that

$$
P_{C}^{-1} \cdot\left[P_{C} P_{B}\right]=\left[P_{C}^{-1} \cdot P_{C} P_{C}^{-1} P_{B}\right]=\left[I P_{B \rightarrow C}\right]
$$

- So we have

$$
[x]_{C}=P_{C}^{-1} \cdot P_{B} \cdot[x]_{B}
$$

- This is the change-of-coordinate matrix $P_{B \rightarrow C}=P_{C}^{-1} \cdot P_{B}$.
- Note that

$$
P_{C}^{-1} \cdot\left[P_{C} P_{B}\right]=\left[P_{C}^{-1} \cdot P_{C} P_{C}^{-1} P_{B}\right]=\left[I P_{B \rightarrow C}\right]
$$

- So we actually have an algorithm to find $P_{B \rightarrow C}$, instead of $P_{C}^{-1} \cdot P_{B}$:
- So we have

$$
[x]_{C}=P_{C}^{-1} \cdot P_{B} \cdot[x]_{B}
$$

- This is the change-of-coordinate matrix $P_{B \rightarrow C}=P_{C}^{-1} \cdot P_{B}$.
- Note that

$$
P_{C}^{-1} \cdot\left[P_{C} P_{B}\right]=\left[P_{C}^{-1} \cdot P_{C} P_{C}^{-1} P_{B}\right]=\left[I P_{B \rightarrow C}\right]
$$

- So we actually have an algorithm to find $P_{B \rightarrow C}$, instead of $P_{C}^{-1} \cdot P_{B}$:
- Write down the matrix $\left[P_{C} P_{B}\right]$
- So we have

$$
[x]_{C}=P_{C}^{-1} \cdot P_{B} \cdot[x]_{B}
$$

- This is the change-of-coordinate matrix $P_{B \rightarrow C}=P_{C}^{-1} \cdot P_{B}$.
- Note that

$$
P_{C}^{-1} \cdot\left[P_{C} P_{B}\right]=\left[P_{C}^{-1} \cdot P_{C} P_{C}^{-1} P_{B}\right]=\left[I P_{B \rightarrow C}\right]
$$

- So we actually have an algorithm to find $P_{B \rightarrow C}$, instead of $P_{C}^{-1} \cdot P_{B}$:
- Write down the matrix $\left[P_{C} P_{B}\right]$
- Row reduce the matrix so that P_{C} becomes I_{n}.
- So we have

$$
[x]_{C}=P_{C}^{-1} \cdot P_{B} \cdot[x]_{B}
$$

- This is the change-of-coordinate matrix $P_{B \rightarrow C}=P_{C}^{-1} \cdot P_{B}$.
- Note that

$$
P_{C}^{-1} \cdot\left[P_{C} P_{B}\right]=\left[P_{C}^{-1} \cdot P_{C} P_{C}^{-1} P_{B}\right]=\left[I P_{B \rightarrow C}\right]
$$

- So we actually have an algorithm to find $P_{B \rightarrow C}$, instead of $P_{C}^{-1} \cdot P_{B}$:
- Write down the matrix $\left[P_{C} P_{B}\right]$
- Row reduce the matrix so that P_{C} becomes I_{n}.
- the matrix P_{B} becomes $P_{B \rightarrow C}$.

Example

Ex. Let $b_{1}=[1-3]^{T}, b_{2}=[-24]^{T}, c_{1}=\left[\begin{array}{ll}-7 & 9\end{array}{ }^{T}, c_{2}=[-57]^{T}\right.$, and consider the bases for \mathbf{R}^{2} given by $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$.

Example

Ex. Let $b_{1}=\left[\begin{array}{ll}1 & -3\end{array}\right]^{T}$, $b_{2}=\left[\begin{array}{ll}-2 & 4\end{array}\right]^{T}, c_{1}=\left[\begin{array}{ll}-7 & 9\end{array}\right]^{T}, c_{2}=\left[\begin{array}{ll}-5 & 7\end{array}\right]^{T}$, and consider the bases for \mathbf{R}^{2} given by $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$.

- Find the change-of-coordinate matrix from C to B.

Example

Ex. Let $b_{1}=\left[\begin{array}{ll}1 & -3\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ll}-2 & 4\end{array}\right]^{T}, c_{1}=\left[\begin{array}{ll}-7 & 9\end{array}\right]^{T}, c_{2}=\left[\begin{array}{ll}-5 & 7\end{array}\right]^{T}$, and consider the bases for \mathbf{R}^{2} given by $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$.

- Find the change-of-coordinate matrix from C to B.
- Find the change-of-coordinate matrix from B to C.

Example

Ex. Let $b_{1}=\left[\begin{array}{ll}1 & -3\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ll}-2 & 4\end{array}\right]^{T}, c_{1}=\left[\begin{array}{ll}-7 & 9\end{array}\right]^{T}, c_{2}=\left[\begin{array}{ll}-5 & 7\end{array}\right]^{T}$, and consider the bases for \mathbf{R}^{2} given by $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$.

- Find the change-of-coordinate matrix from C to B.
- Find the change-of-coordinate matrix from B to C.
- To find $P_{C \rightarrow B}$, we consider the matrix $\left[P_{C} P_{B}\right]$:

$$
\left[\begin{array}{ll}
P_{B} & P_{C}
\end{array}\right]=\left[\begin{array}{cccc}
1 & -2 & -7 & -5 \\
-3 & 4 & 9 & 7
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 5 & 3 \\
0 & 1 & 6 & 4
\end{array}\right]
$$

Example

Ex. Let $b_{1}=\left[\begin{array}{ll}1 & -3\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ll}-2 & 4\end{array}\right]^{T}, c_{1}=\left[\begin{array}{ll}-7 & 9\end{array}\right]^{T}, c_{2}=\left[\begin{array}{ll}-5 & 7\end{array}\right]^{T}$, and consider the bases for \mathbf{R}^{2} given by $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$.

- Find the change-of-coordinate matrix from C to B.
- Find the change-of-coordinate matrix from B to C.
- To find $P_{C \rightarrow B}$, we consider the matrix $\left[P_{C} P_{B}\right]$:

$$
\left[\begin{array}{ll}
P_{B} & P_{C}
\end{array}\right]=\left[\begin{array}{cccc}
1 & -2 & -7 & -5 \\
-3 & 4 & 9 & 7
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 5 & 3 \\
0 & 1 & 6 & 4
\end{array}\right]
$$

- So $P_{C \rightarrow B}=\left[\begin{array}{ll}5 & 3 \\ 6 & 4\end{array}\right]$.

Example

Ex. Let $b_{1}=\left[\begin{array}{ll}1 & -3\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ll}-2 & 4\end{array}\right]^{T}, c_{1}=\left[\begin{array}{ll}-7 & 9\end{array}\right]^{T}, c_{2}=\left[\begin{array}{ll}-5 & 7\end{array}\right]^{T}$, and consider the bases for \mathbf{R}^{2} given by $B=\left\{b_{1}, b_{2}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$.

- Find the change-of-coordinate matrix from C to B.
- Find the change-of-coordinate matrix from B to C.
- To find $P_{C \rightarrow B}$, we consider the matrix $\left[P_{C} P_{B}\right]$:

$$
\left[\begin{array}{ll}
P_{B} & P_{C}
\end{array}\right]=\left[\begin{array}{cccc}
1 & -2 & -7 & -5 \\
-3 & 4 & 9 & 7
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 5 & 3 \\
0 & 1 & 6 & 4
\end{array}\right]
$$

- So $P_{C \rightarrow B}=\left[\begin{array}{ll}5 & 3 \\ 6 & 4\end{array}\right]$.
- To find $P_{B \rightarrow C}$, we just need to find $P_{C \rightarrow B}^{-1}$:

$$
P_{B \rightarrow C}=P_{C \rightarrow B}^{-1}=\frac{1}{2} \cdot\left[\begin{array}{cc}
4 & -3 \\
-6 & 5
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 / 2 \\
-3 & 5 / 2
\end{array}\right]
$$

