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Unique Representation Theorem

Thm (Unique Representation Theorem) let B = {b1, b2, . . . , bn} be a basis
for a vector space V . Then for each x ∈ V , there exists a unique set
of scalars c1, c2, . . . , cn such that x = c1b1 + c2b2 + . . . + cnbn.

Pf. Since B spans V , there exist such scalars.

Suppose that x also has the representation
x = d1b1 + d2b2 + . . . + dnbn for scalars d1, d2, . . . , dn.

Then we have
0 = x − x = (c1 − d1)b1 + (c2 − d2)b2 + . . . + (cn − dn)bn.

Since B is linearly independent, all the weights must be zeros. That
is, c1 = d1, c2 = d2, . . . , cn = dn.
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Coordinates

Definition: Suppose B = {b1, b2, . . . , bn} is a basis for V and x is in
V . The coordinates of x relative to the basis B (or the B-coordinate
of x) are the weights c1, c2, . . . , cn so that

c1b1 + c2b2 + . . . + cnbn = x

If c1, c2, . . . , cn are the B-coordinates of x , then the vector

[x ]B =


c1
c2
. . .
cn

 is the coordinate vector of x , or the B-coordinate

vector of x .

The mapping x → [x ]B is the coordinate mapping determined by B.

When a basis B is fixed for Rn, it is easy to find the B-coordinate
vector of a specified x .
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Example

Ex. Let b1 =

[
2
1

]
, b2 =

[
−1
1

]
, x =

[
4
5

]
and B = {b1, b2}. Find the

coordinate vector [x ]B of x .

Sol. The B-coordinate c1, c2 of x satisfy c1b1 + c2b2 = x .

So we have the following matrix equation

[
2 −1
1 1

] [
c1
c2

]
=

[
4
5

]
.

It can be easily solved (how many ways can you think of?) that
c1 = 3 and c2 = 2.

So [x ]B =

[
3
2

]
.
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Coordinates in Rn

In the above example, we change the standard coordinate of x =

[
4
5

]
to the B-coordinate [x ]B =

[
3
2

]
, through the matrix equation

x =

[
2 −1
1 1

]
[x ]B .

This approach can be generalized to Rn for a basis

B = {b1, b2, . . . , bn}

Let PB = [b1 b2 . . . bn], which we call change-of-coordinates matrix
from B to standard basis in Rn.

Then the vector equation x = c1b1 + c2b2 + . . . + cnbn can be written
as

x = PB · [x ]B
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Since the columns of PB form a basis for Rn, PB is invertible (by the
Invertible Matrix Theorem).

So we also have
[x ]B = P−1B · x

The mapping x → [x ]B given by [x ]B = P−1B · x is the coordinate
mapping, which is one-to-one and onto, by IMT.

This is not only true from Rn to Rn, but also holds for a vector space
with a basis of n vectors to Rn.
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The Coordinate Mapping

Thm. Let B = {b1, b2, . . . , bn} be a basis for a vector space V . Then the
coordinate mapping x → [x ]B is a one-to-one and onto linear
transformation from V to Rn.

Pf. We need to show it is a linear transformation, one-to-one, and onto.

To show it is a linear transformation, we need to check it preserves
addition (of vectors) and scalar multiplication.

That is, [u + v ]B = [u]B + [v ]B and [cu]B = c[u]B .

Let u = c1b1 + c2b2 + . . . + cnbn and v = d1b1 + d2b2 + . . . + dnbn.
Then

u + v = (c1 + d1)b1 + (c2 + d2)b2 + . . . + (cn + dn)bn

and
cu = (cc1)b1 + (cc2)b2 + . . . + (ccn)bn
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So [u + v ]B =


c1 + d1
c2 + d2
. . .

cn + dn

 =


c1
c2
. . .
cn

+


d1
d2
. . .
dn

 = [u]B + [v ]B .

And [cu]B =


cc1
cc2
. . .
ccn

 = c


c1
c2
. . .
cn

 = c[u]B .

We skip the proof for one-to-one and onto (homework).
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Isomorphism

The linearity of the coordinate mapping extends to linear
combinations.

If u1, . . . , up are in V and if c1, . . . , cp are scalars, then

[c1u1 + c2u2 + . . . + cpup]B = c1[u1]B + c2[u2]B + . . . + cp[up]B

In words, the above equation says that the B-coordinate vector of a
linear combination of u1, . . . , up is the same linear combination of
their coordinate vectors.

The coordinate mapping in Theorem 8 is an important example of an
isomorphism from V onto W .

In general, a one-to-one linear transformation from a vector space V
onto a vector space W is called an isomorphism from V onto W .

The notation and terminology for V and W may differ, but the two
spaces are indistinguishable as vector spaces, if there is an
isomorphism between them.
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Example

Ex. Use coordinate vectors to verify that the polynomials
1 + 2t2, 4 + t + 5t2 and 3 + 2t are linearly dependent in P2.

Pf. The coordinate vectors of the polynomials (over the standard basis
B = {1, t, t2}) are (1, 0, 2), (4, 1, 5) and (3, 2, 0), respectively.

Writing the vector as the columns of a matrix A, and determine their
independence by row reducing the augmented matrix for Ax = 0:1 4 3 0

0 1 2 0
2 5 0 0

→
1 4 3 0

0 1 2 0
0 0 0 0


The columns of A are linearly dependent, so the corresponding
polynomials are linearly dependent.

Furthermore, c3 = 2c2 − 5c1. So we have

3 + 2t = 2(4 + t + 5t2)− 5(1 + 2t2).
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Basis and coordinates

When a basis B is given for an n-dimensional vector space V , every
vector x in V can be uniquely identified by its B-coordinate vector
[x ]B .

Namely, if x = x1b1 + x2b2 + . . . + xnbn, then [x ]B = [x1 x2 . . . xn]T .

In applications, we may know the B-coordinate for the vector, but
need to know its C -coordinate for another basis C .

We will give a way to build connection between [x ]B and [x ]C , in
particular, we will find the change-of-coordinates matrix from B to C .
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Example

Ex. Consider two bases B = {b1, b2} and C = {c1, c2} for a vector space
V , such that

b1 = 4c1 + c2, b2 = −6c1 + c2

Suppose that x = 3b1 + b2, find [x ]C .

Sol. Note that [x ]C = [3b1 + b2]C = 3[b1]C + [b2]C =
[
[b1]C [b2]C

] [3
1

]
.

As [b1]C = [4 1]T , [b2]C = [−6 1]T , we have

[x ]C =

[
4 −6
1 1

] [
3
1

]
=

[
6
4

]
.
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Change of basis

The previous example actually can be generalized.

THM. Let B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn} be bases of a
vector of a vector space V . Then there is a unique n × n matrix
PB→C such that

[x ]C = PB→C · [x ]B .

Here the change-of-coordinates matrix from B to C is

PB→C =
[
[b1]C [b2]C . . . [bn]C

]
Note that the columns of PB→C are linearly independent and it is a
square matrix, it must be an invertible matrix. So we also have the
following

[x ]B = P−1B→C · [x ]C .

In other words,
PC→B = P−1B→C
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Change of basis in Rn

We now consider a special case, when the vector space is Rn.

Let B = {b1, b2, . . . , bn} be a basis of Rn and E = {e1, e2, . . . , en} be
the standard basis of Rn.

Then [b1]E = b1. So PB→E = [ b1 b2 . . . bn ] = PB .

Let x = [x1 x2 . . . xn] be a vector in Rn (by using the standard basis).

Then we have
[x ] = PB · [x ]B

Let C be another basis of Rn. Then [x ] = PC · [x ]C = PB · [x ]B .

That is,
PB · [x ]B = PC · [x ]C
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So we have
[x ]C = P−1C · PB · [x ]B

This is the change-of-coordinate matrix PB→C = P−1C · PB .

Note that

P−1C · [PC PB ] = [P−1C · PC P−1C PB ] = [I PB→C ]

So we actually have an algorithm to find PB→C , instead of P−1C · PB :

I Write down the matrix [PC PB ]
I Row reduce the matrix so that PC becomes In.
I the matrix PB becomes PB→C .
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Example

Ex. Let b1 = [1 − 3]T , b2 = [−2 4]T , c1 = [−7 9]T , c2 = [−5 7]T , and
consider the bases for R2 given by B = {b1, b2} and C = {c1, c2}.

I Find the change-of-coordinate matrix from C to B.
I Find the change-of-coordinate matrix from B to C .

To find PC→B , we consider the matrix [PC PB ]:

[PB PC ] =

[
1 −2 −7 −5
−3 4 9 7

]
→
[

1 0 5 3
0 1 6 4

]

So PC→B =

[
5 3
6 4

]
.

To find PB→C , we just need to find P−1C→B :

PB→C = P−1C→B =
1

2
·
[

4 −3
−6 5

]
=

[
2 −3/2
−3 5/2

]
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To find PC→B , we consider the matrix [PC PB ]:

[PB PC ] =

[
1 −2 −7 −5
−3 4 9 7

]
→
[

1 0 5 3
0 1 6 4

]

So PC→B =

[
5 3
6 4

]
.

To find PB→C , we just need to find P−1C→B :

PB→C = P−1C→B =
1

2
·
[

4 −3
−6 5

]
=

[
2 −3/2
−3 5/2

]
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