Section 4.5-4.6 Dimension and and of vector spaces

$$
\text { \& } 4.6 \text { rank } \underset{\substack{\text { Gexin Mu } \\ \text { gyu@wm.edu }}}{ } \text { matrix }
$$

College of William and Mary

Dimension of a vector space

- In the last section, we show that a vector space V with a basis B containing n vectors is isomorphic to R^{n}

$$
V \rightarrow[v]_{\&} \in \mathbb{R}^{n}
$$

Dimension of a vector space

- In the last section, we show that a vector space V with a basis B containing n vectors is isomorphic to \mathbf{R}^{n}.
- We will show that the number n actually only depends on the vector space (an invariant), and is independent of the choices of the bases.

Dimension of a vector space

- In the last section, we show that a vector space V with a basis B containing n vectors is isomorphic to \mathbf{R}^{n}.
- We will show that the number n actually only depends on the vector space (an invariant), and is independent of the choices of the bases.

Thm9 If a vector space V has a basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, then any set in V containing more than n vectors must be linearly dependent.
(ide, a basis (armet have more then r vertus)

Proof of Theorem 9

Pf: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be a set in V with more than n vectors. $p>n$

Proof of Theorem 9

Pf: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be a set in V with more than n vectors.

- The coordinate vectors $\left[u_{1}\right]_{B}, \ldots,\left[u_{p}\right]_{B}$ form a linearly dependent set in \mathbf{R}^{n}, because there are more vectors (p) than entries (n) in each vector.

Proof of Theorem 9

Pf: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be a set in V with more than n vectors.

- The coordinate vectors $\left[u_{1}\right]_{B}, \ldots,\left[u_{p}\right]_{B}$ form a linearly dependent set in \mathbf{R}^{n}, because there are more vectors (p) than entries (n) in each vector.
- So there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, such that

$$
c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}=0
$$

Proof of Theorem 9

Pf: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be a set in V with more than n vectors.

- The coordinate vectors $\left[u_{1}\right]_{B}, \ldots,\left[u_{p}\right]_{B}$ form a linearly dependent set in \mathbf{R}^{n}, because there are more vectors (p) than entries (n) in each vector.
- So there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, such that

$$
c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}=0 \in \mathbb{R}^{r}
$$

- By linearity, we have

$$
\left[c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right]_{B}=0 \in \mathbb{P}
$$

Proof of Theorem 9

Pf: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be a set in V with more than n vectors.

- The coordinate vectors $\left[u_{1}\right]_{B}, \ldots,\left[u_{p}\right]_{B}$ form a linearly dependent set in \mathbf{R}^{n}, because there are more vectors (p) than entries (n) in each vector.
- So there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, such that

$$
c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}=0
$$

- By linearity, we have

$$
\left[c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right]_{B}=\underset{\sim}{0}
$$

- It means that

$$
c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}=0 \cdot b_{1}+0 \cdot b_{2}+\ldots+0 \cdot b_{n}=0
$$

Proof of Theorem 9

Pf: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be a set in V with more than n vectors.

- The coordinate vectors $\left[u_{1}\right]_{B}, \ldots,\left[u_{p}\right]_{B}$ form a linearly dependent set in \mathbf{R}^{n}, because there are more vectors (p) than entries (n) in each vector.
- So there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, such that

$$
c_{1}\left[u_{1}\right]_{B}+c_{2}\left[u_{2}\right]_{B}+\ldots+c_{p}\left[u_{p}\right]_{B}=0
$$

- By linearity, we have

$$
\left[c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right]_{B}=0
$$

- It means that

$$
c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}=0 \cdot b_{1}+0 \cdot b_{2}+\ldots+0 \cdot b_{n}=0
$$

- Since c_{i} are not all zero, $\left\{u_{1}, \ldots, u_{p}\right\}$ is linearly dependent.
- Theorem 10: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.
$B_{1}-n$ vectors
$B_{2}-m$ vectors

$$
\left.\begin{array}{l}
m \leq n \\
n \leq m
\end{array}\right\} \Rightarrow m=n
$$

- Theorem 10: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Pf: Let B_{1} be a basis of n vectors and B_{2} be any other basis (of V).

- Theorem 10: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Pf: Let B_{1} be a basis of n vectors and B_{2} be any other basis (of V).

- Since B_{1} is a basis and B_{2} is linearly independent, B_{2} has no more than n vectors, by Theorem 9 .
- Theorem 10: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Pf: Let B_{1} be a basis of n vectors and B_{2} be any other basis (of V).

- Since B_{1} is a basis and B_{2} is linearly independent, B_{2} has no more than n vectors, by Theorem 9 .
- Also, since B_{2} is a basis and B_{1} is linearly independent, B_{2} has at least n vectors.
- Theorem 10: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Pf: Let B_{1} be a basis of n vectors and B_{2} be any other basis (of V).

- Since B_{1} is a basis and B_{2} is linearly independent, B_{2} has no more than n vectors, by Theorem 9 .
- Also, since B_{2} is a basis and B_{1} is linearly independent, B_{2} has at least n vectors.
- Thus B_{2} consists of exactly n vectors.

Dimension

Defn: If V is spanned by finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

- The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

- The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Ex. $\operatorname{dim} \mathbf{R}^{n}=n$, as the standard basis consists of n vectors.

Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

- The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Ex. $\operatorname{dim} \mathbf{R}^{n}=n$, as the standard basis consists of n vectors.
Ex. $\operatorname{dim} P_{3}=4$, as $\left\{1, t, t^{2}, t^{3}\right\}$ is a standard basis.

Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

- The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Ex. $\operatorname{dim} \mathbf{R}^{n}=n$, as the standard basis consists of n vectors.
Ex. $\operatorname{dim} P_{3}=4$, as $\left\{1, t, t^{2}, t^{3}\right\}$ is a standard basis.
Ex. the subspaces of \mathbf{R}^{3} can be classified by its dimensions:

Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

- The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Ex. $\operatorname{dim} \mathbf{R}^{n}=n$, as the standard basis consists of n vectors.
Ex. $\operatorname{dim} P_{3}=4$, as $\left\{1, t, t^{2}, t^{3}\right\}$ is a standard basis.
Ex. the subspaces of \mathbf{R}^{3} can be classified by its dimensions:

- 0-dimension: zero subspace

Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

- The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Ex. $\operatorname{dim} \mathbf{R}^{n}=n$, as the standard basis consists of n vectors.
Ex. $\operatorname{dim} P_{3}=4$, as $\left\{1, t, t^{2}, t^{3}\right\}$ is a standard basis.
Ex. the subspaces of \mathbf{R}^{3} can be classified by its dimensions:

- 0-dimension: zero subspace
- 1-dimension: line passing through the origin

Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

- The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Ex. $\operatorname{dim} \mathbf{R}^{n}=n$, as the standard basis consists of n vectors.
Ex. $\operatorname{dim} P_{3}=4$, as $\left\{1, t, t^{2}, t^{3}\right\}$ is a standard basis.
Ex. the subspaces of \mathbf{R}^{3} can be classified by its dimensions:

- 0-dimension: zero subspace
- 1-dimension: line passing through the origin
- 2-dimension: any plane passing the origin

Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

- The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Ex. $\operatorname{dim} \mathbf{R}^{n}=n$, as the standard basis consists of n vectors.
Ex. $\operatorname{dim} P_{3}=4$, as $\left\{1, t, t^{2}, t^{3}\right\}$ is a standard basis.
Ex. the subspaces of \mathbf{R}^{3} can be classified by its dimensions:

- 0-dimension: zero subspace
- 1-dimension: line passing through the origin
- 2-dimension: any plane passing the origin
- 3-dimension: the \mathbf{R}^{3}.

Example

Ex. Find the dimension of the subspace

$$
H=\left\{\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d+1
\end{array}\right]: a, b, c, d \in \mathbf{R}\right\} .
$$

Example

Ex. Find the dimension of the subspace

$$
H=\left\{\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]: a, b, c, d \in \mathbf{R}\right\}
$$

Sol: Each vector in H can be written as a linear combination

$$
\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]=a\left[\begin{array}{l}
1 \\
5 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
6 \\
0 \\
-2 \\
0
\end{array}\right]+d\left[\begin{array}{c}
0 \\
4 \\
-1 \\
5
\end{array}\right]=a v_{1}+b v_{2}+c v_{3}+
$$

Example

Ex. Find the dimension of the subspace

$$
H=\left\{\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]: a, b, c, d \in \mathbf{R}\right\}
$$

Sol: Each vector in H can be written as a linear combination

$$
\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]=a\left[\begin{array}{l}
1 \\
5 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
6 \\
0 \\
-2 \\
0
\end{array}\right]+d\left[\begin{array}{c}
0 \\
4 \\
-1 \\
5
\end{array}\right]=a v_{1}+b v_{2}+c v_{3}+
$$

Example

Ex. Find the dimension of the subspace

$$
H=\left\{\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]: a, b, c, d \in \mathbf{R}\right\}
$$

Sol: Each vector in H can be written as a linear combination

$$
\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]=a\left[\begin{array}{l}
1 \\
5 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
6 \\
0 \\
-2 \\
0
\end{array}\right]+d\left[\begin{array}{c}
0 \\
4 \\
-1 \\
5
\end{array}\right]=a v_{1}+b v_{2}+c v_{3}+
$$

So $H=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
By observation or by looking at the reduced echelon of the matrix $\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right]$, we see that v_{1}, v_{2}, v_{4} form a basis for H.

Example

Ex. Find the dimension of the subspace

$$
H=\left\{\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]: a, b, c, d \in \mathbf{R}\right\}
$$

Sol: Each vector in H can be written as a linear combination

$$
\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]=a\left[\begin{array}{l}
1 \\
5 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
6 \\
0 \\
-2 \\
0
\end{array}\right]+d\left[\begin{array}{c}
0 \\
4 \\
-1 \\
5
\end{array}\right]=a v_{1}+b v_{2}+c v_{3}+
$$

So $H=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
By observation or by looking at the reduced echelon of the matrix $\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right]$, we see that v_{1}, v_{2}, v_{4} form a basis for H.
So $\operatorname{dim} H=3$.

Subspaces of a finite-dimensional space

hm11. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded (if necessary) to a basis of H. Also H is finite-dimensional and $\operatorname{dimH} \leq \operatorname{dim} V$.

Subspaces of a finite-dimensional space

hm11. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded (if necessary) to a basis of H. Also H is finite-dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.
Pf. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent set in H.

Subspaces of a finite-dimensional space

hm11. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded (if necessary) to a basis of H. Also H is finite-dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.
Pf. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent set in H.

- If S spans H, then S is a basis for H.

Subspaces of a finite-dimensional space

hm11. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded (if necessary) to a basis of H. Also H is finite-dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.
Pf. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent set in H.

- If S spans H, then S is a basis for H.
- Otherwise, there is some v_{k+1} in H that is not in Span S. But then $\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}$ is linearly independent, because no vector in the set can be a linear combination of vectors that precede it.

Subspaces of a finite-dimensional space

hm11. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded (if necessary) to a basis of H. Also H is finite-dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.
Pf. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent set in H.

- If S spans H, then S is a basis for H.
- Otherwise, there is some v_{k+1} in H that is not in Span S. But then $\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}$ is linearly independent, because no vector in the set can be a linear combination of vectors that precede it.
- We can continue the process of expanding S to a larger linearly independent set in H.

Subspaces of a finite-dimensional space

hm11. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded (if necessary) to a basis of H. Also H is finite-dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.
Pf. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent set in H.

- If S spans H, then S is a basis for H.
- Otherwise, there is some v_{k+1} in H that is not in Span S. But then $\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}$ is linearly independent, because no vector in the set can be a linear combination of vectors that precede it.
- We can continue the process of expanding S to a larger linearly independent set in H.
- As the number of elements in S cannot the dimension of V, the process will stop, that is, at some stage, S will span H, and we obtain a basis.

Subspaces of a finite-dimensional space

hm11. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded (if necessary) to a basis of H. Also H is finite-dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.
Pf. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent set in H.

- If S spans H, then S is a basis for H.
- Otherwise, there is some v_{k+1} in H that is not in Span S. But then $\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}$ is linearly independent, because no vector in the set can be a linear combination of vectors that precede it.
- We can continue the process of expanding S to a larger linearly independent set in H.
- As the number of elements in S cannot never exceed the dimension of V, the process will stop, that is, at some stage, S will span H, and we obtain a basis.
- $\operatorname{dim} H \leq \operatorname{dim} V$ follows as a corollary.

The Basis Theorem

Thm. Let V be a p-dimensional vector space, $p \geq 1$.

The Basis Theorem

Thm. Let V be a p-dimensional vector space, $p \geq 1$.
(1) Any linearly independent set of exactly p elements in V is automatically a basis for V.

The Basis Theorem

Thm. Let V be a p-dimensional vector space, $p \geq 1$.
(1) Any linearly independent set of exactly p elements in V is automatically a basis for V.
(2) Any set of exactly p elements that span V is automatically a basis for V.

The Basis Theorem

Thm. Let V be a p-dimensional vector space, $p \geq 1$.
(1) Any linearly independent set of exactly p elements in V is automatically a basis for V.
(2) Any set of exactly p elements that span V is automatically a basis for V.

Pf. Let S be a set of linearly independent set of p elements. Then by Theorem 11, S can be extended to a basis, which contains p elements. So S itself must be a basis.

The Basis Theorem

Thm. Let V be a p-dimensional vector space, $p \geq 1$.
(1) Any linearly independent set of exactly p elements in V is automatically a basis for V.
(2) Any set of exactly p elements that span V is automatically a basis for V.

Pf. Let S be a set of linearly independent set of p elements. Then by Theorem 11, S can be extended to a basis, which contains p elements. So S itself must be a basis.

- Now suppose S has p elements and span V. Then by the Spanning Set Theorem, S contains a basis. But a basis contains p elements, so S must be a basis.

Dimension of Nul A and $\operatorname{Col} A$

Thm The dimension of $\mathrm{Nul} A$ is the number of free variables in the equation $A x=0$, and the dimension of $\operatorname{Col} A$ is the number of pivot columns in A.

Dimension of Nul A and Col A

Thm The dimension of $N u l A$ is the number of free variables in the equation $A x=0$, and the dimension of $\operatorname{Col} A$ is the number of pivot columns in A.

Pf. Since the pivot columns of A form a basis, the dimension of $\operatorname{Col} A$ is the number of the pivot columns in A.

Dimension of Nul A and $\operatorname{Col} A$

Thm The dimension of $\mathrm{Nul} A$ is the number of free variables in the equation $A x=0$, and the dimension of $\operatorname{Col} A$ is the number of pivot columns in A.

Pf. Since the pivot columns of A form a basis, the dimension of $\operatorname{Col} A$ is the number of the pivot columns in A.

To see the dimension of $\mathrm{Nul} A$, we suppose that $A x=0$ has k free variables. Then each solution to $A x=0$ can be expression a linear combination of k independent vectors, one for each free variable. So the k vectors form a basis for $N u l$.

Example

Ex. Find the dimension of the null space and column space of

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Example

Ex. Find the dimension of the null space and column space of

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Sol. Row reduce the augmented matrix $[A 0]$ to echelon form:

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{col}(A))=2 \\
& \operatorname{dim}(\operatorname{Nul}(t))=3
\end{aligned}
$$

Example

Ex. Find the dimension of the null space and column space of

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Sol. Row reduce the augmented matrix $\left[\begin{array}{ll}A & 0\end{array}\right]$ to echelon form:

$$
\left[\begin{array}{cccccc}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then there are three free variables, so $\operatorname{dim} \operatorname{Nul} A=3$.

Example

Ex. Find the dimension of the null space and column space of

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Sol. Row reduce the augmented matrix $\left[\begin{array}{ll}A & 0\end{array}\right]$ to echelon form:

$$
\left[\begin{array}{cccccc}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then there are three free variables, so $\operatorname{dim} \operatorname{Nul} A=3$.

There are two pivot columns, so $\operatorname{dim} \operatorname{Col} A=2$.

Rank and Rank Theorem

- The rank of a matrix A is the dimension of the column space of A.

Rank and Rank Theorem

- The rank of a matrix A is the dimension of the column space of A.
- Theorem: Let A be an $m \times n$ matrix. Then $\operatorname{rank} A+\operatorname{dim} N u l A=n$.

Rank and Rank Theorem

- The rank of a matrix A is the dimension of the column space of A.
- Theorem: Let A be an $m \times n$ matrix. Then rank $A+\operatorname{dim} N u l A=n$.
- It seems from the statement that rank of A is more than just the dimension of column space of $A \ldots$

Rank and Rank Theorem

- The rank of a matrix A is the dimension of the column space of A.
- Theorem: Let A be an $m \times n$ matrix. Then rank $A+\operatorname{dim} N u l A=n$.
- It seems from the statement that rank of A is more than just the dimension of column space of $A \ldots$
- It is indeed true....

Row Space

- Let A be an $m \times n$ matrix. The set of linear combinations of the row vectors is called the row space of A and is denoted by Row A.

Row Space

- Let A be an $m \times n$ matrix. The set of linear combinations of the row vectors is called the row space of A and is denoted by Row A.
- Each row has n entries, so Row A is a subspace of \mathbf{R}^{n}.

Row Space

- Let A be an $m \times n$ matrix. The set of linear combinations of the row vectors is called the row space of A and is denoted by Row A.
- Each row has n entries, so Row A is a subspace of \mathbf{R}^{n}.
- Since the rows of A are the columns of A^{T}, we could also write $\operatorname{Col} A^{T}$ in place of Row A.

Row Space

- Let A be an $m \times n$ matrix. The set of linear combinations of the row vectors is called the row space of A and is denoted by Row A.
- Each row has n entries, so Row A is a subspace of \mathbf{R}^{n}.
- Since the rows of A are the columns of A^{T}, we could also write $\operatorname{Col} A^{T}$ in place of Row A.
- One way to study Row A is to study $\mathrm{Col} A^{T}$. But there are more directed ways to do it!
- Theorem: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.
- Theorem: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Pf. If B is obtained from A by row operations, the rows of B are linear combinations of the rows of A.

- Theorem: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Pf. If B is obtained from A by row operations, the rows of B are linear combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically linear combinations of rows of A.

- Theorem: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Pf. If B is obtained from A by row operations, the rows of B are linear combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically linear combinations of rows of A.

Thus the row space of B is contained in the row space of A.

- Theorem: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Pf. If B is obtained from A by row operations, the rows of B are linear combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically linear combinations of rows of A.

Thus the row space of B is contained in the row space of A.
On the other hand, the row operations are reversible, so the same argument shows that the row space of A is contained in the row space of B. So the two row spaces are the same.

- Theorem: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Pf. If B is obtained from A by row operations, the rows of B are linear combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically linear combinations of rows of A.
Thus the row space of B is contained in the row space of A.
On the other hand, the row operations are reversible, so the same argument shows that the row space of A is contained in the row space of B. So the two row spaces are the same.

- If B is in echelon form, then the nonzero rows are linearly independent, because no nonzero row is a linearly combinations of the nonzero row below it.
- Theorem: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Pf. If B is obtained from A by row operations, the rows of B are linear combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically linear combinations of rows of A.

Thus the row space of B is contained in the row space of A.
On the other hand, the row operations are reversible, so the same argument shows that the row space of A is contained in the row space of B. So the two row spaces are the same.

- If B is in echelon form, then the nonzero rows are linearly independent, because no nonzero row is a linearly combinations of the nonzero row below it.

Thus the nonzero rows of B form a basis of the row space of B and A.

Example

Ex. Find bases for the row space, column space, and the null space of the matrix

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right]
$$

Example

Ex. Find bases for the row space, column space, and the null space of the matrix

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right]
$$

Sol. We first row reduce A to B (echelon form):

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 3 & -5 & 1 & 5 \\
0 & (1) & -2 & 2 & -7 \\
0 & 0 & 0 & (-4 & 20 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \stackrel{\uparrow}{\leftarrow}
$$

Example

Ex. Find bases for the row space, column space, and the null space of the matrix

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right]
$$

Sol. We first row reduce A to B (echelon form):

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 3 & -5 & 1 & 5 \\
0 & 1 & -2 & 2 & -7 \\
0 & 0 & 0 & -4 & 20 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=B
$$

- By the theorem, the basis for row space of A is the first three rows of $B:\{(1,3,-5,1,5),(0,1,-2,2,-7),(0,0,0,-4,20)\}$.
- The pivot columns of B (thus A) are the the first, second and fourth columns. So a basis for column space of A is the first, second, and fourth columns of A :

$$
\left\{(-2,-5,8,0,-17)^{T},(1,3,-5,1,5)^{T},(1,7,-13,5,-3)^{T}\right\}
$$

- The pivot columns of B (thus A) are the the first, second and fourth columns. So a basis for column space of A is the first, second, and fourth columns of A :

$$
\left\{(-2,-5,8,0,-17)^{T},(1,3,-5,1,5)^{T},(1,7,-13,5,-3)^{T}\right\}
$$

- To find a basis for null space of A, we write the solution set of $A x=0$ in terms of free variables (x_{3} and x_{5}):

$$
x_{1}=-x_{3}-x_{5}, x_{2}=2 x_{3}-3 x_{5}, x_{4}=5 x_{3} .
$$

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-x_{3}-x_{5} \\
2 x_{3}-3 x_{5} \\
x_{3} \\
5 x_{3} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-x_{3} \\
2 x_{3} \\
x_{3} \\
5 x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
-x_{5} \\
-3 x_{5} \\
0 \\
0 \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
5 \\
0
\end{array}\right]+x_{1}\left(\begin{array}{c}
-1 \\
-3 \\
0 \\
0 \\
1
\end{array}\right]
$$

- The pivot columns of B (thus A) are the the first, second and fourth columns. So a basis for column space of A is the first, second, and fourth columns of A :

$$
\left\{(-2,-5,8,0,-17)^{T},(1,3,-5,1,5)^{T},(1,7,-13,5,-3)^{T}\right\}
$$

- To find a basis for null space of A, we write the solution set of $A x=0$ in terms of free variables (x_{3} and x_{5}): $x_{1}=-x_{3}-x_{5}, x_{2}=2 x_{3}-3 x_{5}, x_{4}=5 x_{3}$.
- So in terms of vectors, we have

$$
x=x_{3}(-1,2,1,0,0)^{T}+x_{5}(-1,-3,0,5,1)^{T} .
$$

- The pivot columns of B (thus A) are the the first, second and fourth columns. So a basis for column space of A is the first, second, and fourth columns of A :

$$
\left\{(-2,-5,8,0,-17)^{T},(1,3,-5,1,5)^{T},(1,7,-13,5,-3)^{T}\right\}
$$

- To find a basis for null space of A, we write the solution set of $A x=0$ in terms of free variables (x_{3} and x_{5}): $x_{1}=-x_{3}-x_{5}, x_{2}=2 x_{3}-3 x_{5}, x_{4}=5 x_{3}$.
- So in terms of vectors, we have

$$
x=x_{3}(-1,2,1,0,0)^{T}+x_{5}(-1,-3,0,5,1)^{T} .
$$

- Therefore a basis for Nu A is $\left\{(-1,2,1,0,0)^{T},(-1,-3,0,5,1)^{T}\right\}$.

The Rank Theorem

- The Rank Theorem: The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. Furthermore, rank $A+\operatorname{dim} N u l A=n$.

The Rank Theorem

- The Rank Theorem: The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. Furthermore, rank $A+\operatorname{dim} N u l A=n$.

Pf. We have showed the dimension of $\operatorname{Col} A$ (thus the rank of A) is the number of pivot columns in A.

The Rank Theorem

- The Rank Theorem: The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. Furthermore, rank $A+\operatorname{dim} N u l A=n$.

Pf. We have showed the dimension of $\operatorname{Col} A$ (thus the rank of A) is the number of pivot columns in A.

- So the rank of the A is also the number of pivot positions in A, and also the number of pivot positions in an echelon form B of A.

The Rank Theorem

- The Rank Theorem: The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. Furthermore, rank $A+\operatorname{dim} N u l A=n$.

Pf. We have showed the dimension of $\operatorname{Col} A$ (thus the rank of A) is the number of pivot columns in A.

- So the rank of the A is also the number of pivot positions in A, and also the number of pivot positions in an echelon form B of A.
- Furthermore, B has a nonzero row for each pivot. And these nonzero rows form a basis for row space of B (thus A).

The Rank Theorem

- The Rank Theorem: The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. Furthermore, rank $A+\operatorname{dim} N u l A=n$.

Pf. We have showed the dimension of $\operatorname{Col} A$ (thus the rank of A) is the number of pivot columns in A.

- So the rank of the A is also the number of pivot positions in A, and also the number of pivot positions in an echelon form B of A.
- Furthermore, B has a nonzero row for each pivot. And these nonzero rows form a basis for row space of B (thus A).
- Thus the dimension of row space of A also equals the number of pivots in A, which equals the rank of A.

The Rank Theorem

- The Rank Theorem: The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. Furthermore, rank $A+\operatorname{dim} N u l A=n$.

Pf. We have showed the dimension of $\operatorname{Col} A$ (thus the rank of A) is the number of pivot columns in A.

- So the rank of the A is also the number of pivot positions in A, and also the number of pivot positions in an echelon form B of A.
- Furthermore, B has a nonzero row for each pivot. And these nonzero rows form a basis for row space of B (thus A).
- Thus the dimension of row space of A also equals the number of pivots in A, which equals the rank of A.
- The second part follows from rank $A=\operatorname{dim} \operatorname{Row} A=\operatorname{dim} \operatorname{Col} A$ and rank $A+\operatorname{dim} N u l A=n$.

Example

Ex. (a) If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A ?
(b) Could a 6×9 matrix have a two-dimensional null space?

Example

Ex. (a) If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A ?
(b) Could a 6×9 matrix have a two-dimensional null space?

Sol. (a) the rank of A is $9-2=7$.

Example

Ex. (a) If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A ?
(b) Could a 6×9 matrix have a two-dimensional null space?

Sol. (a) the rank of A is $9-2=7$.
(b) A 6×9 matrix cannot have a two-dimensional null space, for otherwise, the rank of A is $9-2=7$, which equals the dimension of column space, but the column space is a subspace of \mathbf{R}^{6}.

Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an $n \times n$ matrix. Then the following statements are each equivalent tot he statement that A is an invertible matrix.

Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an $n \times n$ matrix. Then the following statements are each equivalent tot he statement that A is an invertible matrix.
(1) the columns of A form a basis of \mathbf{R}^{n}.

Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an $n \times n$ matrix. Then the following statements are each equivalent tot he statement that A is an invertible matrix.
(1) the columns of A form a basis of \mathbf{R}^{n}.
(2) Col $A=\mathbf{R}^{n}$

Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an $n \times n$ matrix. Then the following statements are each equivalent tot he statement that A is an invertible matrix.
(1) the columns of A form a basis of \mathbf{R}^{n}.
(2) Col $A=\mathbf{R}^{n}$
(3) $\operatorname{dim} \operatorname{Col} A=n$.

Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an $n \times n$ matrix. Then the following statements are each equivalent tot he statement that A is an invertible matrix.
(1) the columns of A form a basis of \mathbf{R}^{n}.
(2) Col $A=\mathbf{R}^{n}$
(3) $\operatorname{dim} \operatorname{Col} A=n$.
(9) rank $A=n$

Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an $n \times n$ matrix. Then the following statements are each equivalent tot he statement that A is an invertible matrix.
(1) the columns of A form a basis of \mathbf{R}^{n}.
(2) Col $A=\mathbf{R}^{n}$
(3) $\operatorname{dim} \operatorname{Col} A=n$.
(9) $\operatorname{rank} A=n$
(3) $N u l A=\{0\}$.

Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an $n \times n$ matrix. Then the following statements are each equivalent tot he statement that A is an invertible matrix.
(1) the columns of A form a basis of \mathbf{R}^{n}.
(2) Col $A=\mathbf{R}^{n}$
(3) $\operatorname{dim} \operatorname{Col} A=n$.
(9) $\operatorname{rank} A=n$
(5) Nul $A=\{0\}$.
(0) $\operatorname{dim} N u l A=0$.

