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Eigenvectors and Eigenvalues

Definition: An eigenvector of an n × n matrix A is a nonzero vector x
such that Ax = λx for some scalar λ. A scalar λ is called an
eigenvalue of A if there is a nontrivial solution x of Ax = λx ; such an
x is called an eigenvector corresponding to λ.

λ is an eigenvalue of an n × n matrix A if and only if the equation

(A− λI )x = 0

has a nontrivial solution.

The set of all solutions of the above equation is just the null space of
the matrix A− λI .
So this set is a subspace of Rn and is called the eigenspace of A
corresponding to λ.

The eigenspace consists of the zero vector and all the eigenvectors
corresponding to λ.
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Example

Ex. Show that 7 is an eigenvalue of the matrix A =

[
1 6
5 2

]
and find the

corresponding eigenvectors.

Sol. The scalar 7 is an eigenvalue of A if and only if the equation Ax = 7x
has a nontrivial solution.

The equation is equivalent to Ax − 7x = 0, or (A− 7I )x = 0.

So we have

A− 7I =

[
1 6
5 2

]
−
[

7 0
0 7

]
=

[
−6 6
5 −5

]
→
[

1 −1
0 0

]
So it has nontrivial solutions, and the general solution has the form
x2[1 1]T .

So 7 is eigenvalue and the corresponding eigenvectors have the form
x2[1 1]T with x2 6= 0.
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Example

Ex. Let A =

4 −1 6
2 1 6
2 −1 8

. An eigenvalue of A is 2. Find a basis for the

corresponding eigenspace.

Sol. Consider (A− 2I )x = 0, and thus the coefficient matrix

A− 2I =

4 −1 6
2 1 6
2 −1 8

−
2 0 0

0 2 0
0 0 2

 =

2 −1 6
2 −1 6
2 −1 6

→
2 −1 6

0 0 0
0 0 0


The general solution isx1x2

x3

 = x2

1/2
1
0

+ x3

−3
0
1


So a basis for the eigenspace for 2 is {[1/2 1 0]T , [−3 0 1]T}.
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Eigenvalues of special matrices

THM. The eigenvalues of a triangular matrix are the entries on its main
diagonal.

Pf. For simplicity, consider the 3× 3 case.

If A is upper triangular, then A− λI has the form

A−λI =

a11 a12 a13
0 a22 a23
0 0 a33

−
λ 0 0

0 λ 0
0 0 λ

 =

a11 − λ a12 a13
0 a22 − λ a23
0 0 a33 − λ


The scalar λ is an eigenvalue of A if and only if the equation
(A− λI )x = 0 has a nontrivial solution, that is, if and only if the
equation has a free variable.

It is clear that (A− λI )x = 0 has a free variable if and only if at least
one entry on the diagonal of A− λI is zero.

This happens if and only if λ equals one of the a11, a22, a33 in A.
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THM. If v1, v2, . . . , vr are eigenvectors that correspond to distinct
eigenvalues λ1, λ2, . . . , λr of an n × n matrix A, then the set
{v1, v2, . . . , vr} is linearly independent.

Pf: Suppose {v1, v2, . . . , vr} is linearly dependent.

Since v1 is nonzero, one of the vectors in the set is a linear
combination of the preceding vectors.

Let p be the least index such that vp+1 is a linear combination of the
preceding (linearly independent) vectors.
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Then there exist scalars c1, c2, . . . , cp so that

c1v1 + c2v2 + . . .+ cpvp = vp+1

Multiply both sides by A we have

c1Av1 + c2Av2 + . . .+ cpAvp = Avp+1

Since Avi = λvi , we have

c1λ1v1 + c2λ2v2 + . . .+ cpλpvp = λp+1vp+1

Thus

c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + . . .+ cp(λp − λp+1)vp = 0

As λi − λp+1 6= 0 and v1, v2, . . . , vp are linearly independent, we have

c1 = c2 = . . . = cp = 0

It follows that vp+1 = 0, a contradiction.
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The Characteristic Equation

We now show a way to find the eigenvalues of n × n matrix A.

Suppose that λ is an eigenvalue of A. Then Ax = λx .

Equivalently, (A− λI )x = 0 has a nontrivial solution.

It follows that A− λI is not invertible.

So det(A− λI ) = 0.

THM. A scalar λ is an eigenvalue of an n × n matrix A if and only if λ
satisfies the characteristic equation det(A− λI ) = 0.

To show the full statement, assume that det(A− λI ) = 0. Then
A− λI is not invertible. It follows that (A− λI )x = 0 has nontrivial
solutions. That is, Ax = λx has nontrivial solutions, and λ is an
eigenvalue of A.
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Example

Ex. Find the eigenvalues of A =

[
2 3
3 −6

]
.

Sol. Let λ be an eigenvalue of A. Then det(A− λI ) = 0.

So we have

det(A− λI ) = det

[
2− λ 3

3 −6− λ

]
= λ2 + 4λ− 21 = 0

Solve the quadratic equation, we have λ = 3 or −7.

So the eigenvalues of A are 3 and −7.
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Example

Ex. Find the characteristic equation of A =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1

.

Sol. The characteristic equation is det(A− λI ) = 0, which is

0 = det(A− λI ) = det


5− λ −2 6 −1

0 3− λ −8 0
0 0 5− λ 4
0 0 0 1− λ


= (5− λ)(3− λ)(5− λ)(1− λ)

The characteristic equation is (λ− 5)2(λ− 3)(λ− 1) = 0.

In terms of polynomial, it is

λ4 − 14λ3 + 68λ2 − 130λ+ 75 = 0
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Multiplicity of eigenvalues

We have observed that det(A− λI ) is a polynomial of λ. This is
called the characteristic polynomial of A.

In the above example, the eigenvalue 5 is said to have multiplicity 2
because (λ− 5) occurs two times as a factor of the characteristic
polynomial.

The (algebraic) multiplicity of an eigenvalue is its multiplicity as a
root of the characteristic equation.

Ex. The characteristic polynomial of a 6× 6 matrix is λ6 − 4λ5 − 12λ4.
Find the eigenvalues and their multiplicities.

Sol. Factor the polynomial

λ6 − 4λ5 − 12λ4 = λ4(λ2 − 4λ− 12) = λ4(λ− 6)(λ+ 2)

So the eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1) and −2
(multiplicity 1).
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Similarity

When we apply row operations on a matrix, the eigenvalues may
change. If two matrices are similar, then they have the same
eigenvalues.

If A and B are n × n matrices, then A is similar to B if there is an
invertible matrix P such that P−1AP = B.

If P−1AP = B, then (P−1)−1B(P−1) = A. So B is also similar to A.

Change A into P−1AP is called a similarity transformation.
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Similar matrices

THM. If n × n matrices A and B are similar, then they have the same
characteristic polynomial and hence the same eigenvalues (with the
same multiplicities).

PF. Since A and B are similar, B = P−1AP for some invertible matrix P.

Then B −λI = P−1AP −λP−1P = P−1(AP −λP) = P−1(A−λI )P.

So

det(B − λI ) = det(P−1(A− λI )P) = det(P−1) det(A− λI ) det(P)

= det(A− λI )

That is, B and A has the same characteristic equation, so same
eigenvalues with the same multiplicities.
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