Section 5.1-2 Eigenvalues and eigenvectors

Gexin Yu
gyu@wm.edu

College of William and Mary

Eigenvectors and Eigenvalues

- Definition: An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $A x=\lambda x$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is nontrivial solution $x>f x=\lambda x$; such an x is called an eigenvector corresponding to λ.

Eigenvectors and Eigenvalues

- Definition: An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $A x=\lambda x$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of $A x=\lambda x$; such an x is called an eigenvector corresponding to λ.
- λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation
has a nontrivial solution.

$$
\frac{(A-\lambda I) x}{\substack{\uparrow \\ m a t v_{i} x}}=0
$$

Eigenvectors and Eigenvalues

- Definition: An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $A x=\lambda x$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of $A x=\lambda x$; such an x is called an eigenvector corresponding to λ.
- λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$
(A-\lambda I) x=0
$$

has a nontrivial solution.

- The set of all solutions of the above equation is just the null space of the matrix $A-\lambda I$.

Eigenvectors and Eigenvalues

- Definition: An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $A x=\lambda x$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of $A x=\lambda x$; such an x is called an eigenvector corresponding to λ.
- λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$
(A-\lambda I) x=0
$$

has a nontrivial solution.

- The set of all solutions of the above equation is just the null space of the matrix $A-\lambda I$.
- So this set is a subspace of \mathbf{R}^{n} and is called the eigenspace of A corresponding to λ.

Eigenvectors and Eigenvalues

- Definition: An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $A x=\lambda x$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of $A x=\lambda x$; such an x is called an eigenvector corresponding to λ.
- λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$
(A-\lambda I) x=0
$$

has a nontrivial solution.

- The set of all solutions of the above equation is just the null space of the matrix $A-\lambda /$.
- So this set is a subspace of \mathbf{R}^{n} and is called the eigenspace of A corresponding to λ.
- The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ.

Example

Ex. Show that 7 is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and find the corresponding eigenvectors.

Example

Ex. Show that 7 is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and find the corresponding eigenvectors.
Sol. The scalar 7 is an eigenvalue of A if and only if the equation $A x=7 x$ has a nontrivial solution.

Example

Ex. Show that 7 is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and find the corresponding eigenvectors.
Sol. The scalar 7 is an eigenvalue of A if and only if the equation $A x=7 x$ has a nontrivial solution.

- The equation is equivalent to $A x-7 x=0$, or $(A-7 I) x=0$.

Example

Ex. Show that 7 is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and find the corresponding eigenvectors.
Sol. The scalar 7 is an eigenvalue of A if and only if the equation $A x=7 x$ has a nontrivial solution.

- The equation is equivalent to $A x-7 x=0$, or $(A-7 I) x=0$.
- So we have

$$
A-7 I=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{cc}
-6 & 6 \\
5 & -5
\end{array}\right] \rightarrow\left[\begin{array}{cc}
(1) & -1 \\
0 & 0
\end{array}\right]
$$

Example

Ex. Show that 7 is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and find the corresponding eigenvectors.
Sol. The scalar 7 is an eigenvalue of A if and only if the equation $A x=7 x$ has a nontrivial solution.

- The equation is equivalent to $A x-7 x=0$, or $(A-7 I) x=0$.
- So we have

$$
A-7 I=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{cc}
-6 & 6 \\
5 & -5
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=x_{2} \\
& x_{2} \text { fher }
\end{aligned}
$$

- So it has nontrivial solutions, and the general solution has the form $x_{2}\left[\begin{array}{ll}1 & 1\end{array}\right]$.

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{2}
\end{array}\right]=v_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Example

Ex. Show that 7 is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and find the corresponding eigenvectors.
Sol. The scalar 7 is an eigenvalue of A if and only if the equation $A x=7 x$ has a nontrivial solution.

- The equation is equivalent to $A x-7 x=0$, or $(A-7 I) x=0$.
- So we have

$$
A-7 I=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{cc}
-6 & 6 \\
5 & -5
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]
$$

- So it has nontrivial solutions, and the general solution has the form $x_{2}\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$.

$$
e_{i g e n s p a c e}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

- So 7 is eigenvalue and the corresponding eigenvectors have the form $x_{2}\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ with $x_{2} \neq 0$.

Example
Ex. Let $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. An eigenvalue of A is 2 . Find a basis for the $\frac{(A-2 I) x=0}{\operatorname{corresponding~eigenspace.~}(A-2 I)}$

Example

Ex. Let $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. An eigenvalue of A is 2 . Find a basis for the corresponding eigenspace.
Sol. Consider $(A-2 I) x=0$, and thus the coefficient matrix

$$
A-2 I=\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & -1 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example

Ex. Let $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. An eigenvalue of A is 2 . Find a basis for the corresponding eigenspace.
Sol. Consider $(A-2 I) x=0$, and thus the coefficient matrix

$$
\begin{aligned}
& \quad A-2 I=\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & -1 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& -x_{1} \approx \frac{1}{2} x_{2}-3 x_{3}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

Example

Ex. Let $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. An eigenvalue of A is 2 . Find a basis for the corresponding eigenspace.
Sol. Consider $(A-2 I) x=0$, and thus the coefficient matrix

$$
A-2 I=\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & -1 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- The general solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

- So a basis for the eigenspace for 2 is $\left.\left\{\begin{array}{lll}1 / 2 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{lll}-3 & 0 & 1\end{array}\right]^{T}\right\}$.

Eigenvalues of special matrices

THM. The eigenvalues of a triangular matrix are the entries on its main diagonal.

$$
\left[\begin{array}{lll}
* & & x \\
& x & \\
0 & x & \\
& & *
\end{array}\right] w\left[\begin{array}{lll}
x & & 0 \\
& * & 0 \\
* & & x \\
& &
\end{array}\right]
$$

Eigenvalues of special matrices

THM. The eigenvalues of a triangular matrix are the entries on its main diagonal.

Pf. For simplicity, consider the 3×3 case.

Eigenvalues of special matrices

THM. The eigenvalues of a triangular matrix are the entries on its main diagonal.
Pf. For simplicity, consider the 3×3 case.

- If A is upper triangular, then $A-\lambda I$ has the form

$$
A-\lambda I=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
0 & a_{22}-\lambda & a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right]
$$

Eigenvalues of special matrices

THM. The eigenvalues of a triangular matrix are the entries on its main diagonal.

Pf. For simplicity, consider the 3×3 case.

- If A is upper triangular, then $A-\lambda I$ has the form

$$
A-\lambda I=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
0 & a_{22}-\lambda & a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right]
$$

- The scalar λ is an eigenvalue of A if and only if the equation $(A-\lambda I) x=0$ has a nontrivial solution, that is, if and only if the equation has a free variable.

Eigenvalues of special matrices

THM. The eigenvalues of a triangular matrix are the entries on its main diagonal.
Pf. For simplicity, consider the 3×3 case.

- If A is upper triangular, then $A-\lambda I$ has the form

$$
A-\lambda I=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
0 & a_{22}-\lambda & a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right]
$$

- The scalar λ is an eigenvalue of A if and only if the equation $(A-\lambda I) x=0$ has a nontrivial solution, that is, if and only if the equation has a free variable.
- It is clear that $(A-\lambda I) x=0$ has a free variable if and only if at least one entry on the diagonal of $A-\lambda I$ is zero.

Eigenvalues of special matrices

THM. The eigenvalues of a triangular matrix are the entries on its main diagonal.
Pf. For simplicity, consider the 3×3 case.

- If A is upper triangular, then $A-\lambda I$ has the form

$$
A-\lambda I=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
0 & a_{22}-\lambda & a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right]
$$

- The scalar λ is an eigenvalue of A if and only if the equation $(A-\lambda I) x=0$ has a nontrivial solution, that is, if and only if the equation has a free variable.
- It is clear that $(A-\lambda I) x=0$ has a free variable if and only if at least one entry on the diagonal of $A-\lambda I$ is zero.
- This happens if and only if λ equals one of the a_{11}, a_{22}, a_{33} in A.

THM. If $v_{1}, v_{2}, \ldots, v_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly independent.

THM. If $v_{1}, v_{2}, \ldots, v_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly independent.

Pf: Suppose $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly dependent.

THM. If $v_{1}, v_{2}, \ldots, v_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly independent.

Pf: Suppose $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly dependent.

- Since v_{1} is nonzero, one of the vectors in the set is a linear combination of the preceding vectors.

THM. If $v_{1}, v_{2}, \ldots, v_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly independent.

Pf: Suppose $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly dependent.

- Since v_{1} is nonzero, one of the vectors in the set is a linear combination of the preceding vectors.
- Let p be the least index such that v_{p+1} is a linear combination of the preceding (linearly independent) vectors.
- Then there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$ so that

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=v_{p+1}
$$

- Then there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$ so that

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=v_{p+1}
$$

- Multiply both sides by A we have

$$
c_{1} A v_{1}+c_{2} A v_{2}+\ldots+c_{p} A v_{p}=A v_{p+1}
$$

- Then there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$ so that

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=v_{p+1}
$$

- Multiply both sides by A we have

$$
c_{1} A v_{1}+c_{2} A v_{2}+\ldots+c_{p} A v_{p}=A v_{p+1}
$$

- Since $A v_{i}=\lambda v_{i}$, we have

$$
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+\ldots+c_{p} \lambda_{p} v_{p}=\lambda_{p+1} v_{p+1}
$$

- Then there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$ so that

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=v_{p+1}
$$

- Multiply both sides by A we have

$$
c_{1} A v_{1}+c_{2} A v_{2}+\ldots+c_{p} A v_{p}=A v_{p+1}
$$

- Since $A v_{i}=\lambda v_{i}$, we have

$$
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+\ldots+c_{p} \lambda_{p} v_{p}=\lambda_{p+1} v_{p+1}
$$

- Thus

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) v_{1}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) v_{2}+\ldots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) v_{p}=0
$$

- Then there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$ so that

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=v_{p+1}
$$

- Multiply both sides by A we have

$$
c_{1} A v_{1}+c_{2} A v_{2}+\ldots+c_{p} A v_{p}=A v_{p+1}
$$

- Since $A v_{i}=\lambda v_{i}$, we have

$$
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+\ldots+c_{p} \lambda_{p} v_{p}=\lambda_{p+1} v_{p+1}
$$

- Thus

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) v_{1}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) v_{2}+\ldots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) v_{p}=0
$$

- As $\lambda_{i}-\lambda_{p+1} \neq 0$ and $v_{1}, v_{2}, \ldots, v_{p}$ are linearly independent, we have

$$
c_{1}=c_{2}=\ldots=c_{p}=0
$$

- Then there exist scalars $c_{1}, c_{2}, \ldots, c_{p}$ so that

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}=v_{p+1}
$$

- Multiply both sides by A we have

$$
c_{1} A v_{1}+c_{2} A v_{2}+\ldots+c_{p} A v_{p}=A v_{p+1}
$$

- Since $A v_{i}=\lambda v_{i}$, we have

$$
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+\ldots+c_{p} \lambda_{p} v_{p}=\lambda_{p+1} v_{p+1}
$$

- Thus

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) v_{1}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) v_{2}+\ldots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) v_{p}=0
$$

- As $\lambda_{i}-\lambda_{p+1} \neq 0$ and $v_{1}, v_{2}, \ldots, v_{p}$ are linearly independent, we have

$$
c_{1}=c_{2}=\ldots=c_{p}=0
$$

- It follows that $v_{p+1}=0$, a contradiction.

The Characteristic Equation

- We now show a way to find the eigenvalues of $n \times n$ matrix A.

The Characteristic Equation

- We now show a way to find the eigenvalues of $n \times n$ matrix A.
- Suppose that λ is an eigenvalue of A. Then $A x=\lambda x$.

The Characteristic Equation

- We now show a way to find the eigenvalues of $n \times n$ matrix A.
- Suppose that λ is an eigenvalue of A. Then $A x=\lambda x$.
- Equivalently, $(A-\lambda I) x=0$ has a nontrivial solution.

The Characteristic Equation

- We now show a way to find the eigenvalues of $n \times n$ matrix A.
- Suppose that λ is an eigenvalue of A. Then $A x=\lambda x$.
- Equivalently, $(A-\lambda I) x=0$ has a nontrivial solution.
- It follows that $A-\lambda /$ is not invertible.

The Characteristic Equation

- We now show a way to find the eigenvalues of $n \times n$ matrix A.
- Suppose that λ is an eigenvalue of A. Then $A x=\lambda x$.
- Equivalently, $(A-\lambda I) x=0$ has a nontrivial solution.
- It follows that $A-\lambda /$ is not invertible.
- So $\operatorname{det}(A-\lambda I)=0$.

The Characteristic Equation

- We now show a way to find the eigenvalues of $n \times n$ matrix A.
- Suppose that λ is an eigenvalue of A. Then $A x=\lambda x$.
- Equivalently, $(A-\lambda I) x=0$ has a nontrivial solution.
- It follows that $A-\lambda /$ is not invertible.
- So $\operatorname{det}(A-\lambda I)=0$.

THM. A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation $\operatorname{det}(A-\lambda I)=0$.

The Characteristic Equation

- We now show a way to find the eigenvalues of $n \times n$ matrix A.
- Suppose that λ is an eigenvalue of A. Then $A x=\lambda x$.
- Equivalently, $(A-\lambda I) x=0$ has a nontrivial solution.
- It follows that $A-\lambda /$ is not invertible.
- So $\operatorname{det}(A-\lambda I)=0$.

THM. A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation $\operatorname{det}(A-\lambda I)=0$.

- To show the full statement, assume that $\operatorname{det}(A-\lambda I)=0$. Then $A-\lambda I$ is not invertible. It follows that $(A-\lambda I) x=0$ has nontrivial solutions. That is, $A x=\lambda x$ has nontrivial solutions, and λ is an eigenvalue of A.

Example

Ex. Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$.

Example

Ex. Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$.

Sol. Let λ be an eigenvalue of A. Then $\operatorname{det}(A-\lambda I)=0$.

Example

Ex. Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$.

Sol. Let λ be an eigenvalue of A. Then $\operatorname{det}(A-\lambda I)=0$.

- So we have

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]=\lambda^{2}+4 \lambda-21=0
$$

Example

Ex. Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$.
Sol. Let λ be an eigenvalue of A. Then $\operatorname{det}(A-\lambda I)=0$.

- So we have

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]=\begin{array}{c}
\lambda^{2}+4 \lambda-21 \\
(\lambda+3)(\lambda+7)
\end{array}=0
\end{aligned}
$$

- Solve the quadratic equation, we have $\lambda=3$ or -7 .

Example

Ex. Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$.
Sol. Let λ be an eigenvalue of A. Then $\operatorname{det}(A-\lambda I)=0$.

- So we have

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]=\lambda^{2}+4 \lambda-21=0
$$

- Solve the quadratic equation, we have $\lambda=3$ or -7 .
- So the eigenvalues of A are 3 and -7 .

Example

Ex. Find the characteristic equation of $A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$.

Example

Ex. Find the characteristic equation of $A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$.
Sol. The characteristic equation is $\operatorname{det}(A-\lambda I)=0$, which is

$$
\begin{aligned}
0=\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -8 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right] \\
& =(5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda)
\end{aligned}
$$

Example

Ex. Find the characteristic equation of $A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$.
Sol. The characteristic equation is $\operatorname{det}(A-\lambda I)=0$, which is

$$
\begin{aligned}
0=\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -8 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right] \\
& =(5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda)
\end{aligned}
$$

- The characteristic equation is $(\lambda-5)^{2}(\lambda-3)(\lambda-1)=0$.

Example

Ex. Find the characteristic equation of $A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$.
Sol. The characteristic equation is $\operatorname{det}(A-\lambda I)=0$, which is

$$
\begin{aligned}
0=\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -8 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right] \\
& =(5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda)
\end{aligned}
$$

- The characteristic equation is $(\lambda-5)^{2}(\lambda-3)(\lambda-1)=0$.
- In terms of polynomial, it is

$$
\lambda^{4}-14 \lambda^{3}+68 \lambda^{2}-130 \lambda+75=0
$$

Multiplicity of eigenvalues

- We have observed that $\operatorname{det}(A-\lambda I)$ is a polynomial of λ. This is called the characteristic polynomial of A.

Multiplicity of eigenvalues

- We have observed that $\operatorname{det}(A-\lambda I)$ is a polynomial of λ. This is called the characteristic polynomial of A.
- In the above example, the eigenvalue 5 is said to have multiplicity 2 because $(\lambda-5)$ occurs two times as a factor of the characteristic polynomial.

Multiplicity of eigenvalues

- We have observed that $\operatorname{det}(A-\lambda I)$ is a polynomial of λ. This is called the characteristic polynomial of A.
- In the above example, the eigenvalue 5 is said to have multiplicity 2 because $(\lambda-5)$ occurs two times as a factor of the characteristic polynomial.
- The (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.

Multiplicity of eigenvalues

- We have observed that $\operatorname{det}(A-\lambda I)$ is a polynomial of λ. This is called the characteristic polynomial of A.
- In the above example, the eigenvalue 5 is said to have multiplicity 2 because $(\lambda-5)$ occurs two times as a factor of the characteristic polynomial.
- The (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.
Ex. The characteristic polynomial of a 6×6 matrix is $\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}$. Find the eigenvalues and their multiplicities.

Multiplicity of eigenvalues

- We have observed that $\operatorname{det}(A-\lambda I)$ is a polynomial of λ. This is called the characteristic polynomial of A.
- In the above example, the eigenvalue 5 is said to have multiplicity 2 because $(\lambda-5)$ occurs two times as a factor of the characteristic polynomial.
- The (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.
Ex. The characteristic polynomial of a 6×6 matrix is $\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}$. Find the eigenvalues and their multiplicities.
Sol. Factor the polynomial

$$
\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}=\lambda^{4}\left(\lambda^{2}-4 \lambda-12\right)=\lambda^{4}(\lambda-6)(\lambda+2)
$$

Multiplicity of eigenvalues

- We have observed that $\operatorname{det}(A-\lambda I)$ is a polynomial of λ. This is called the characteristic polynomial of A.
- In the above example, the eigenvalue 5 is said to have multiplicity 2 because $(\lambda-5)$ occurs two times as a factor of the characteristic polynomial.
- The (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.
Ex. The characteristic polynomial of a 6×6 matrix is $\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}$. Find the eigenvalues and their multiplicities.
Sol. Factor the polynomial

$$
\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}=\lambda^{4}\left(\lambda^{2}-4 \lambda-12\right)=\lambda^{4}(\lambda-6)(\lambda+2)
$$

- So the eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1) and -2 (multiplicity 1).

Similarity

- When we apply row operations on a matrix, the eigenvalues may change. If two matrices are similar, then they have the same eigenvalues.

Similarity

- When we apply row operations on a matrix, the eigenvalues may change. If two matrices are similar, then they have the same eigenvalues.
- If A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that $P^{-1} A P=B$.

Similarity

- When we apply row operations on a matrix, the eigenvalues may change. If two matrices are similar, then they have the same eigenvalues.
- If A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that $P^{-1} A P=B$.
- If $P^{-1} A P=B$, then $\left(P^{-1}\right)^{-1} B\left(P^{-1}\right)=A$. So B is also similar to A.

Similarity

- When we apply row operations on a matrix, the eigenvalues may change. If two matrices are similar, then they have the same eigenvalues.
- If A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that $P^{-1} A P=B$.
- If $P^{-1} A P=B$, then $\left(P^{-1}\right)^{-1} B\left(P^{-1}\right)=A$. So B is also similar to A.
- Change A into $P^{-1} A P$ is called a similarity transformation.

Similar matrices

THM. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(P^{-1} B P-\lambda I\right) \\
& =\operatorname{det}\left(\underline{\left.P^{-1} B P-P^{-1} \lambda P\right)}\right. \\
& =\operatorname{det}\left(P^{-1}(B-\lambda I) P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \cdot \operatorname{det}(B-\lambda I) \cdot \operatorname{det}(P) \\
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-4} P\right) \cdot \operatorname{det}(B-\lambda I)
\end{aligned}
$$

Similar matrices

THM. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

PF. Since A and B are similar, $B=P^{-1} A P$ for some invertible matrix P.

Similar matrices

THM. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

PF. Since A and B are similar, $B=P^{-1} A P$ for some invertible matrix P.

- Then $B-\lambda I=P^{-1} A P-\lambda P^{-1} P=P^{-1}(A P-\lambda P)=P^{-1}(A-\lambda I) P$.

Similar matrices

THM. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

PF. Since A and B are similar, $B=P^{-1} A P$ for some invertible matrix P.

- Then $B-\lambda I=P^{-1} A P-\lambda P^{-1} P=P^{-1}(A P-\lambda P)=P^{-1}(A-\lambda I) P$.
- So

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

Similar matrices

THM. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

PF. Since A and B are similar, $B=P^{-1} A P$ for some invertible matrix P.

- Then $B-\lambda I=P^{-1} A P-\lambda P^{-1} P=P^{-1}(A P-\lambda P)=P^{-1}(A-\lambda I) P$.
- So

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

- That is, B and A has the same characteristic equation, so same eigenvalues with the same multiplicities.

