Section 5.3 Diagonization

Gexin Yu
gyu@wm.edu

College of William and Mary

Diagonalizable Matrices

- We know that two matrices A and B are similar if $A=P B P^{-1}$ for some invertible matrix P, and similar matrices have the same eigenvalues.

Diagonalizable Matrices

- We know that two matrices A and B are similar if $A=P B P^{-1}$ for some invertible matrix P, and similar matrices have the same eigenvalues.
- Apparently if the eigenvalues of A are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then A and the diagonal matrix $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \ldots & & & \\ 0 & \ldots & 0 & \lambda_{n}\end{array}\right]$ have the same eigenvalues.

Diagonalizable Matrices

- We know that two matrices A and B are similar if $A=P B P^{-1}$ for some invertible matrix P, and similar matrices have the same eigenvalues.
- Apparently if the eigenvalues of A are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then A and the diagonal matrix $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \ldots & & & \\ 0 & \ldots & 0 & \lambda_{n}\end{array}\right]$ have the same eigenvalues.
- Is A similar to D ?

Diagonalizable Matrices

- We know that two matrices A and B are similar if $A=P B P^{-1}$ for some invertible matrix P, and similar matrices have the same eigenvalues.
- Apparently if the eigenvalues of A are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then A and the diagonal matrix $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \ldots & & & \\ 0 & \ldots & 0 & \lambda_{n}\end{array}\right]$ have the same eigenvalues.
- Is A similar to D ?
- Sometimes!

Diagonalizable Matrices

- We know that two matrices A and B are similar if $A=P B P^{-1}$ for some invertible matrix P, and similar matrices have the same eigenvalues.
- Apparently if the eigenvalues of A are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then A and the diagonal matrix $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \ldots & & & \\ 0 & \ldots & 0 & \lambda_{n}\end{array}\right]$ have the same eigenvalues.
- Is A similar to D ?
- Sometimes!
- A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, if $A=P D P^{-1}$ for some invertible matrix P and fomediagonal matrix D.

Example

Ex. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$.

Example
Ex. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$.

- Show that $A=P D P^{-1}$, where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.

$$
\begin{aligned}
\operatorname{def}(p) & =1 \cdot(-2)-1 \cdot(-1)=-1 \neq 0 \\
p^{\prime} & =\frac{1}{-1}\left[\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right] \\
p P^{-1} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right]=\left[\begin{array}{cc}
5 & 3 \\
-5 & -6
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
7 & 2 \\
-4 & 1
\end{array}\right]=A
\end{aligned}
$$

Example
Ex. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$.

- Show that $A=P D P^{-1}$, where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
- Find a formula for A^{k}.

$$
\begin{aligned}
& =P \cdot D \cdot D \cdot D \cdot P^{-1}=P D^{k} P^{-1} \\
& D^{k}=\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]^{k}=\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right] \cdots\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
5^{k} & 0 \\
0 & 3^{k}
\end{array}\right]
\end{aligned}
$$

Example

Ex. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$.

- Show that $A=P D P^{-1}$, where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
- Find a formula for A^{k}.

Sol. It is easy to verify that $A=P D P^{-1}$.

Example

Ex. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$.

- Show that $A=P D P^{-1}$, where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
- Find a formula for A^{k}.

Sol. It is easy to verify that $A=P D P^{-1}$.

- We note that $A^{2}=\left(P D P^{-1}\right)^{2}=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}$

Example

Ex. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$.

- Show that $A=P D P^{-1}$, where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
- Find a formula for A^{k}.

Sol. It is easy to verify that $A=P D P^{-1}$.

- We note that $A^{2}=\left(P D P^{-1}\right)^{2}=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}$
- In general, we have $A^{k}=P D^{k} P^{-1}$.

Example

Ex. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$.

- Show that $A=P D P^{-1}$, where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
- Find a formula for A^{k}.

Sol. It is easy to verify that $A=P D P^{-1}$.

- We note that $A^{2}=\left(P D P^{-1}\right)^{2}=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}$
- In general, we have $A^{k}=P D^{k} P^{-1}$.
- But $D^{k}=\left[\begin{array}{cc}5^{k} & 0 \\ 0 & 3^{k}\end{array}\right]$.

Example

Ex. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$.

- Show that $A=P D P^{-1}$, where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
- Find a formula for A^{k}.

Sol. It is easy to verify that $A=P D P^{-1}$.

- We note that $A^{2}=\left(P D P^{-1}\right)^{2}=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}$
- In general, we have $A^{k}=P D^{k} P^{-1}$.
- But $D^{k}=\left[\begin{array}{cc}5^{k} & 0 \\ 0 & 3^{k}\end{array}\right]$.
- So

$$
A^{k}=\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{cc}
5^{k} & 0 \\
0 & 3^{k}
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 \cdot 5^{k}-3^{k} & 5^{k}-3^{k} \\
2 \cdot 3^{k}-2 \cdot 5^{k} & 2 \cdot 3^{k}-5^{k}
\end{array}\right]
$$

The Diagonalization Theorem

- Theorem 5: An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvector?

$$
\begin{aligned}
& A=P D \rho^{-1} \\
& \Leftrightarrow A P=P D \\
& D=\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \lambda_{2} & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right] \\
& \Leftrightarrow A\left[\begin{array}{lll}
v_{1} & v_{2} \cdots v_{n} \\
\Leftrightarrow & =\left[\begin{array}{cc}
v_{1} \cdots v_{n}
\end{array}\right]\left[\begin{array}{ll}
\| & 0 \\
j_{j} & x_{n}
\end{array}\right]
\end{array}\right. \\
& p=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right] \\
& A v_{1}=\lambda_{1} v_{2}, \forall \Leftrightarrow \Leftrightarrow\left[A v_{1} A v_{2} \ldots A v_{n}\right]=\left[\begin{array}{llll}
\lambda v_{1} & \lambda_{v_{2}} & \cdots \lambda_{n} v_{n}
\end{array}\right]
\end{aligned}
$$

The Diagonalization Theorem

- Theorem 5: An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
- In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

The Diagonalization Theorem

- Theorem 5: An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
- In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.
- In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis of \mathbf{R}^{n}. We call such a basis an eigenvector basis of \mathbf{R}^{n}.

Proof of the Diagonalization Theorem

PF. First, if P is any $n \times n$ matrix with columns v_{1}, \ldots, v_{n}, and D is any diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then
and
and

Proof: if A is diagonalizable

- So if A is diagonalizable and $A=P D P^{-1}$. Then we have $A P=P D$.

Proof: if A is diagonalizable

- So if A is diagonalizable and $A=P D P^{-1}$. Then we have $A P=P D$.
- So we have

$$
A P=\left[\begin{array}{llll}
A v_{1} & A v_{2} & \ldots & A v_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \ldots & \lambda_{n} v_{n}
\end{array}\right]=P D
$$

Proof: if A is diagonalizable

- So if A is diagonalizable and $A=P D P^{-1}$. Then we have $A P=P D$.
- So we have

$$
A P=\left[\begin{array}{llll}
A v_{1} & A v_{2} & \ldots & A v_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \ldots & \lambda_{n} v_{n}
\end{array}\right]=P D
$$

- It follows that $A v_{i}=\lambda_{i} v_{i}$ for each i.

Proof: if A is diagonalizable

- So if A is diagonalizable and $A=P D P^{-1}$. Then we have $A P=P D$.
- So we have

$$
A P=\left[\begin{array}{llll}
A v_{1} A v_{2} & \ldots & A v_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \ldots & \lambda_{n} v_{n}
\end{array}\right]=P D
$$

- It follows that $A v_{i}=\lambda_{i} v_{i}$ for each i.
- Since P is invertible, the columns $v_{1}, v_{2}, \ldots, v_{n}$ of P must be linearly independent and non-zero.

Proof: if A is diagonalizable

- So if A is diagonalizable and $A=P D P^{-1}$. Then we have $A P=P D$.
- So we have

$$
A P=\left[\begin{array}{llll}
A v_{1} & A v_{2} & \ldots & A v_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \ldots & \lambda_{n} v_{n}
\end{array}\right]=P D
$$

- It follows that $A v_{i}=\lambda_{i} v_{i}$ for each i.
- Since P is invertible, the columns $v_{1}, v_{2}, \ldots, v_{n}$ of P must be linearly independent and non-zero.
- So λ_{i} are eigenvalues and v_{i} are the corresponding eigenvectors.

Proof: if A has n linearly independent eigenvectors

- Now assume that A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$.

Proof: if A has n linearly independent eigenvectors

- Now assume that A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$.
- Let $P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ and D be the diagonal matrix with entries λ_{i} 's.

Proof: if A has n linearly independent eigenvectors

- Now assume that A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$.
- Let $P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ and D be the diagonal matrix with entries λ_{i} 's.
- Then we have $A P=P D$.

Proof: if A has n linearly independent eigenvectors

- Now assume that A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$.
- Let $P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ and D be the diagonal matrix with entries λ_{i} 's.
- Then we have $A P=P D$.
- Furthermore, as the columns of P are linearly independent, P is invertible.

Proof: if A has n linearly independent eigenvectors

- Now assume that A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$.
- Let $P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ and D be the diagonal matrix with entries λ_{i} 's.
- Then we have $A P=P D$.
- Furthermore, as the columns of P are linearly independent, P is invertible.
- So $A P=P D$ implies that $A=P D P^{-1}$.

Example

Ex. Diagonalize the following matrix, if possible. (In other words, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$)

Example

Ex. Diagonalize the following matrix, if possible. (In other words, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$)

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Sol. We first find the eigenvalues of A :

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2}
$$

Example

Ex. Diagonalize the following matrix, if possible. (In other words, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$)

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Sol. We first find the eigenvalues of A :

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2}
$$

- So the eigenvalues are $\lambda=1$ and $\lambda=-2$.
- Now we find the three linearly independent eigenvectors of A :
- Now we find the three linearly independent eigenvectors of A :
- basis for $\lambda=1$: $v_{1}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$.

$$
\begin{aligned}
& \lambda=1:(A-1 \cdot I) x=0 \\
& {\left[\begin{array}{ccc}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{R I \leftrightarrow R B}\left[\begin{array}{ccc}
3 & 3 & 0 \\
-3 & -6 & -3 \\
0 & 3 & 2
\end{array}\right] \xrightarrow{R 2+R C}\left[\begin{array}{ccc}
3 & 3 & 0 \\
0 & -3 & -3 \\
0 & 3 & 3
\end{array}\right]} \\
& \xrightarrow{R 3+R 2}\left[\begin{array}{ccc}
-3 & 3 & 0 \\
0 & -3-3 \\
0 & 0 & 0 \\
0
\end{array}\right] \xrightarrow{R|+R|}\left(\begin{array}{ccc}
3 & 0 & -3 \\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1}=x_{3} \\
x_{2}=-x_{3}
\end{array} \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right.}
\end{aligned}
$$

- Now we find the three linearly independent eigenvectors of A :
- basis for $\lambda=1$: $v_{1}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$.
- basis for $\lambda=-2:$: $v_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$ and $v_{3}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{T}$.

$$
\begin{aligned}
& {[A-(-2) I] C=0} \\
& {\left[\begin{array}{ccc}
3 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right] \underset{R 3-R-1}{R 2+1}\left[\begin{array}{ccc}
3 & 3 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& x=\left[\begin{array}{c}
-x_{2}-x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left(\begin{array}{c}
-1 \\
0 \\
+1
\end{array}\right)
\end{aligned}
$$

- Now we find the three linearly independent eigenvectors of A :
- basis for $\lambda=1$: $v_{1}=\left[\begin{array}{lll}1 & -1\end{array}\right]^{T}$.
- basis for $\lambda=-2: v_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$ and $v_{3}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{T}$.
- Then we construct P from the vectors in the above step:

$$
P=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

- Now we find the three linearly independent eigenvectors of A :
- basis for $\lambda=1: v_{1}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$.
- basis for $\lambda=-2: v_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$ and $v_{3}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{T}$.
- Then we construct P from the vectors in the above step:

$$
P=\left[v_{1}\right)\left(v_{2}\right)(\sqrt{3}]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

- Finally we construct D from the orresponding eigenvalues:

$$
D=\left[\begin{array}{lcc}
1 & 0 & 0 \\
0 & \frac{0}{-2} & 0 \\
0 & 0 & \frac{1}{-2}
\end{array}\right]
$$

- Now we find the three linearly independent eigenvectors of A :
- basis for $\lambda=1: v_{1}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$.
- basis for $\lambda=-2: v_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$ and $v_{3}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{T}$.
- Then we construct P from the vectors in the above step:

$$
P=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Finally we construct D from the corresponding eigenvalues:
$Q=\left(v_{2} v_{1} v_{3}\right)$

$$
D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

$D=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right]$
Note that it is a good idea to check that $A P=P D$ (not required).

Example

Ex. Diagonalize the following matrix, if possible:

$$
\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Example

Ex. Diagonalize the following matrix, if possible:

$$
\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Sol. THe characteristic equation of A is

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2}
$$

Example

Ex. Diagonalize the following matrix, if possible:

$$
\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Sol. THe characteristic equation of A is

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2}
$$

- So the eigenvalues are $\lambda=1$ and $\lambda=-2$.

Example

Ex. Diagonalize the following matrix, if possible:

$$
\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Sol. THe characteristic equation of A is

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2}
$$

- So the eigenvalues are $\lambda=1$ and $\lambda=-2$.
- The eigenvectors correspond to 1 and -2 are: basis for $\lambda=1$: $v_{1}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$ basis for $\lambda=-2$: $v_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$.

Example

Ex. Diagonalize the following matrix, if possible:

$$
\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Sol. THe characteristic equation of A is

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2}
$$

- So the eigenvalues are $\lambda=1$ and $\lambda=-2$.
- The eigenvectors correspond to 1 and -2 are: basis for $\lambda=1$: $v_{1}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$ basis for $\lambda=-2$: $v_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$.
- As there are only two eigenvectors for the eigenvalues, there is no way to use the eigenvectors to construct a basis for \mathbf{R}^{3}.

Example

Ex. Diagonalize the following matrix, if possible:

Sol. THe characteristic equation of A is

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2}
$$

- So the eigenvalues are $\lambda=1$ and $\lambda=-2$.
- The eigenvectors correspond to 1 and -2 are: basis for $\lambda=1$: $v_{1}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$ basis for $\lambda=-2$: $v_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$.
- As there are only two eigenvectors for the eigenvalues, there is no way to use the eigenvectors to construct a basis for \mathbf{R}^{3}.
- So A is not diagonalizable.

Matrices with n distinct eigenvalues

THM. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Matrices with n distinct eigenvalues

THM. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

PF. Let $v_{1}, v_{2}, \ldots, v_{n}$ be eigenvectors corresponding to the n distinct eigenvalues of a matrix A.

Matrices with n distinct eigenvalues

THM. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

PF. Let $v_{1}, v_{2}, \ldots, v_{n}$ be eigenvectors corresponding to the n distinct eigenvalues of a matrix A.

Then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent, thus form a basis for \mathbf{R}^{n}.

Matrices with n distinct eigenvalues

THM. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

PF. Let $v_{1}, v_{2}, \ldots, v_{n}$ be eigenvectors corresponding to the n distinct eigenvalues of a matrix A.

Then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent, thus form a basis for \mathbf{R}^{n}.
So A is diagonalizable.

Matrices with n distinct eigenvalues

THM. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

PF. Let $v_{1}, v_{2}, \ldots, v_{n}$ be eigenvectors corresponding to the n distinct eigenvalues of a matrix A.

Then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent, thus form a basis for \mathbf{R}^{n}.
So A is diagonalizable.

- The above theorem provides a sufficient condition for a matrix to be diagonalizable.

Matrices with n distinct eigenvalues

THM. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

PF. Let $v_{1}, v_{2}, \ldots, v_{n}$ be eigenvectors corresponding to the n distinct eigenvalues of a matrix A.

Then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent, thus form a basis for \mathbf{R}^{n}.
So A is diagonalizable.

- The above theorem provides a sufficient condition for a matrix to be diagonalizable.
- However, it is not necessary for an $n \times n$ matrix to have n distinct eigenvalues in order to be diagonalizable.

Example

Ex. Determine if the following matrix is diagonalizable:

Example

Ex. Determine if the following matrix is diagonalizable:

$$
A=\left[\begin{array}{ccc}
5 & -8 & 1 \\
0 & 0 & 7 \\
0 & 0 & -2
\end{array}\right]
$$

Sol. As A is a triangular matrix, its eigenvalues are 5,0 and -2 .

Example

Ex. Determine if the following matrix is diagonalizable:

$$
A=\left[\begin{array}{ccc}
5 & -8 & 1 \\
0 & 0 & 7 \\
0 & 0 & -2
\end{array}\right]
$$

Sol. As A is a triangular matrix, its eigenvalues are 5,0 and -2 .

- Since A has three distinct eigenvalues, it has at least three linearly independent eigenvectors, and it forms a basis for \mathbf{R}^{3}.

Example

Ex. Determine if the following matrix is diagonalizable:

$$
A=\left[\begin{array}{ccc}
5 & -8 & 1 \\
0 & 0 & 7 \\
0 & 0 & -2
\end{array}\right]
$$

Sol. As A is a triangular matrix, its eigenvalues are 5,0 and -2 .

- Since A has three distinct eigenvalues, it has at least three linearly independent eigenvectors, and it forms a basis for \mathbf{R}^{3}.
- So A is diagonalizable.

Example

Ex. Diagonalize $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$.

Example

Ex. Diagonalize $A=\left[\begin{array}{cccc}(5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$.

- As A is a triangular matrix, the eigenvalues are 5 (with multiplicity 2) and -3 (with multiplicity 2).

Example

Ex. Diagonalize $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$.

- As A is a triangular matrix, the eigenvalues are 5 (with multiplicity 2) and -3 (with multiplicity 2).
- The basis for the eigenvalues are basis for $\lambda=5: \quad v_{1}=\left[\begin{array}{llll}-8 & 4 & 1 & 0\end{array}\right]^{T}$ and $v_{2}=\left[\begin{array}{llll}-16 & 4 & 0 & 1\end{array}\right]^{T}$ basis for $\lambda=-3: v_{3}=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]^{T}$ and $v_{4}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}$.

$$
k=\left[\begin{array}{c}
0 \\
0 \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)+x_{x}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Example

Ex. Diagonalize $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$.

- As A is a triangular matrix, the eigenvalues are 5 (with multiplicity 2) and -3 (with multiplicity 2).
- The basis for the eigenvalues are basis for $\lambda=5: v_{1}=\left[\begin{array}{llll}-8 & 4 & 1 & 0\end{array}\right]^{T}$ and $v_{2}=\left[\begin{array}{llll}-16 & 4 & 0 & 1\end{array}\right]^{T}$ basis for $\lambda=-3: v_{3}=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]^{T}$ and $v_{4}=\left[\begin{array}{lll}0 & 0 & 0\end{array} 1\right]^{T}$.
- We can check that the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly, \ddagger dependent.

Example

Ex. Diagonalize $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$.

- As A is a triangular matrix, the eigenvalues are 5 (with multiplicity 2) and -3 (with multiplicity 2).

$$
5,5
$$

- The basis for the eigenvalues are
basis for $\lambda=5: v_{1}=\left[\begin{array}{llll}-8 & 4 & 1\end{array}\right]^{T}$ and $v_{2}=\left[\begin{array}{llll}-16 & 4 & 0 & 1\end{array}\right]^{T}$ basis for $\lambda=-3: v_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$ and $v_{4}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}$.
- We can check that the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly independent.
- So the matrix $P=\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right]$ is invertible and $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{cccc}
-8 & -16 & 0 & 0 \\
4 & 4 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right], D=\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 5 & 2 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

Matrices whose eigenvalues are not distinct

THM. Let A be an $n \times n$ matrix whose eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$.

Matrices whose eigenvalues are not distinct

THM. Let A be an $n \times n$ matrix whose eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$.

- For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is at most the the multiplicity of the eigenvalue λ_{k}.

$$
\text { Hevectos in }{ }^{9} \text { bas. }
$$

Matrices whose eigenvalues are not distinct

THM. Let A be an $n \times n$ matrix whose eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$.

- For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is at most the the multiplicity of the eigenvalue λ_{k}.
- The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n.

\# vectors in the bases.

Matrices whose eigenvalues are not distinct

THM. Let A be an $n \times n$ matrix whose eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$.

- For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is at most the the multiplicity of the eigenvalue λ_{k}.
- The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n.
- the sum of the dimensions of the eigenspaces equals n if and only if (i) the characteristic polynomial factors completely into linear factors and (ii) the dimension of the eigenspace for each λ_{k} equals the multiplicity of λ_{k}.

Matrices whose eigenvalues are not distinct

THM. Let A be an $n \times n$ matrix whose eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$.

- For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is at most the the multiplicity of the eigenvalue λ_{k}.
- The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n.
- the sum of the dimensions of the eigenspaces equals n if and only if (i) the characteristic polynomial factors completely into linear factors and (ii) the dimension of the eigenspace for each λ_{k} equals the multiplicity of λ_{k}.
- If A is diagonalizable and B_{k} is a basis for the eigenspace corresponding to λ_{k} for each k, then the total collection of vectors in the sets $B_{1}, B_{2}, \ldots, B_{p}$ forms an eigenvector basis for \mathbf{R}^{n}.

