Section 6.1 Inner Product, Length, and Orthogonality

Gexin Yu
gyu@wm.edu

College of William and Mary

Inner product

- If u and v are vectors in \mathbf{R}^{n}, then we regard u and v as $n \times 1$ matrices.

Inner product

- If u and v are vectors in \mathbf{R}^{n}, then we regard u and v as $n \times 1$ matrices.
- The transpose u^{T} is a $1 \times n$ matrix, and the matrix product $u^{T} v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.

Inner product

- If u and v are vectors in \mathbf{R}^{n}, then we regard u and v as $n \times 1$ matrices.
- The transpose u^{T} is a $1 \times n$ matrix, and the matrix product $u^{T} v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^{T} v$ is called the inner product of u and v, and it is written as $u \cdot v$.

Inner product

- If u and v are vectors in \mathbf{R}^{n}, then we regard u and v as $n \times 1$ matrices.
- The transpose u^{T} is a $1 \times n$ matrix, and the matrix product $u^{T} v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^{T} v$ is called the inner product of u and v, and it is written as $u \cdot v$.
- The inner product is also referred to as a dot product.

Inner product

- If u and v are vectors in \mathbf{R}^{n}, then we regard u and v as $n \times 1$ matrices.
- The transpose u^{T} is a $1 \times n$ matrix, and the matrix product $u^{T} v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^{T} v$ is called the inner product of u and v, and it is written as $u \cdot v$.
- The inner product is also referred to as dot product
- If $u=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]^{T}$ and $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{\top}$, then the inner product of u and v is

$$
u^{T} v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

Inner product

- If u and v are vectors in \mathbf{R}^{n}, then we regard u and v as $n \times 1$ matrices.
- The transpose u^{T} is a $1 \times n$ matrix, and the matrix product $u^{T} v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^{T} v$ is called the inner product of u and v, and it is written as $u \cdot v$.
- The inner product is also referred to as a dot product.
- If $u=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]^{T}$ and $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$, then the inner product of u and v is

$$
u^{T} v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

Ex. Compute $u \cdot v$ and $v \cdot u$ for $u=\left[\begin{array}{lll}2 & -5 & -1\end{array}\right]^{T}$ and $v=\left[\begin{array}{lll}3 & 2 & -3\end{array}\right]^{T}$.

Inner product

- If u and v are vectors in \mathbf{R}^{n}, then we regard u and v as $n \times 1$ matrices.
- The transpose u^{T} is a $1 \times n$ matrix, and the matrix product $u^{T} v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^{T} v$ is called the inner product of u and v, and it is written as $u \cdot v$.
- The inner product is also referred to as a dot product.
- If $u=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]^{T}$ and $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$, then the inner product of u and v is

$$
u^{T} v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

Ex. Compute $u \cdot v$ and $v \cdot u$ for $u=\left[\begin{array}{lll}2 & -5 & -1\end{array}\right]^{T}$ and $v=\left[\begin{array}{lll}3 & 2 & -3\end{array}\right]^{T}$.
Sol. $u \cdot v=v \cdot u=(2)(3)+(-5)(2)+(-1)(-3)=-1$.

Properties of Inner product

THM Let u, v and w be vectors in \mathbf{R}^{n}, and let c be a scalar. Then

Properties of Inner product

THM Let u, v and w be vectors in \mathbf{R}^{n}, and let c be a scalar. Then

- $u \cdot v=v \cdot u$

Properties of Inner product

THM Let u, v and w be vectors in \mathbf{R}^{n}, and let c be a scalar. Then

- $u \cdot v=v \cdot u$
- $(u+v) \cdot w=u \cdot w+v \cdot w$

Properties of Inner product

THM Let u, v and w be vectors in \mathbf{R}^{n}, and let c be a scalar. Then

- $u \cdot v=v \cdot u$
- $(u+v) \cdot w=u \cdot w+v \cdot w$
- $(c u) \cdot v=c(u \cdot v)=u \cdot(c v)$

Properties of Inner product

THM Let u, v and w be vectors in \mathbf{R}^{n}, and let c be a scalar. Then

- $u \cdot v=v \cdot u$
- $(u+v) \cdot w=u \cdot w+v \cdot w$
- $(c u) \cdot v=c(u \cdot v)=u \cdot(c v)$
- $u \cdot u \geq 0$, and $u \cdot u=0$ if and only if $u=0$.

$$
u=\left[\begin{array}{c}
u_{1} \tag{0}\\
\vdots \\
u_{n}
\end{array}\right] \quad u \cdot u=u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}>
$$

Properties of Inner product

THM Let u, v and w be vectors in \mathbf{R}^{n}, and let c be a scalar. Then

- $u \cdot v=v \cdot u$
- $(u+v) \cdot w=u \cdot w+v \cdot w$
- $(c u) \cdot v=c(u \cdot v)=u \cdot(c v)$
- $u \cdot u \geq 0$, and $u \cdot u=0$ if and only if $u=0$.
- A more general property is true:

$$
\left(c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{p} u_{p}\right) \cdot w=c_{1}\left(u_{1} \cdot w\right)+c_{2}\left(u_{2} \cdot w\right)+\ldots+c_{p}\left(u_{p} \cdot w\right)
$$

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.

$$
u=\binom{x}{y}
$$

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$ is defined to be

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$ is defined to be

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- So $\|v\|^{2}=v \cdot v$.

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$ is defined to be

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- So $\|v\|^{2}=v \cdot v$.
- Let c be a scalar. Then $\|c v\|=|c|\|v\|$.

$$
\text { Pf: } \begin{aligned}
\|c v\| & =\sqrt{(c v) \cdot(c v)}=\sqrt{c^{2}(v \cdot v)}=|c| \cdot \sqrt{v \cdot v} \\
& =|c| \cdot\|v\|
\end{aligned}
$$

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$ is defined to be

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- So $\|v\|^{2}=v \cdot v$.
- Let c be a scalar. Then $\|c v\|=|c|\|v\|$.
- A vector whose length is 1 is called a unit vector.

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$ is defined to be

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- So $\|v\|^{2}=v \cdot v$.
- Let c be a scalar. Then $\|c v\|=|c|\|v\|$.
- A vector whose length is 1 is called a unit vector.
- One can create a unit vector from each given vector: $\frac{u}{\|u\|}$. This process is called normalizing u.

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$ is defined to be

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- So $\|v\|^{2}=v \cdot v$.
- Let c be a scalar. Then $\|c v\|=|c|\|v\|$.
- A vector whose length is 1 is called a unit vector.
- One can create a unit vector from each given vector: $\frac{u}{\|u\|}$. This process is called normalizing u.
Ex. Let $v=(1,-2,2,0)$. Find a unit vector u in the same direction as v.

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$ is defined to be

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- So $\|v\|^{2}=v \cdot v$.
- Let c be a scalar. Then $\|c v\|=|c|\|v\|$.
- A vector whose length is 1 is called a unit vector.
- One can create a unit vector from each given vector: $\frac{u}{\|u\|}$. This process is called normalizing u.
Ex. Let $v=(1,-2,2,0)$. Find a unit vector u in the same direction as v. Sol We first find the length of $v:\|v\|=\sqrt{v \cdot v}=3$.

Length of a vector

- Recall that for a point $P(x, y)$, the length of $O P$ is $\sqrt{x^{2}+y^{2}}$. And if we let u be the vector P corresponds to, then the length of $O P$ is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$ is defined to be

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- So $\|v\|^{2}=v \cdot v$.
- Let c be a scalar. Then $\|c v\|=|c|\|v\|$.
- A vector whose length is 1 is called a unit vector.
- One can create a unit vector from each given vector: $\frac{u}{\|u\|}$. This process is called normalizing u.
Ex. Let $v=(1,-2,2,0)$. Find a unit vector u in the same direction as v.
Sol We first find the length of $v:\|v\|=\sqrt{v \cdot v}=3$.
- Then normalize v and get a unit vector: $\frac{v}{\|v\|}=\left[\begin{array}{llll}1 / 3 & -2 / 3 & 2 / 3 & 0\end{array}\right]$.

Distance in \mathbf{R}^{n}

- For vectors $u, v \in \mathbf{R}^{n}$, the distance between u and v, written as $\operatorname{dist}(u, v)$, is the length of the vector $u-v$. That is, $\operatorname{dist}(u, v)=\|u-v\|$.

Distance in \mathbf{R}^{n}

- For vectors $u, v \in \mathbf{R}^{n}$, the distance between u and v, written as $\operatorname{dist}(u, v)$, is the length of the vector $u-v$. That is, $\operatorname{dist}(u, v)=\|u-v\|$.

Ex. Compute the distance between the vectors $u=(7,1)$ and $v=(3,2)$.

Distance in \mathbf{R}^{n}

- For vectors $u, v \in \mathbf{R}^{n}$, the distance between u and v, written as $\operatorname{dist}(u, v)$, is the length of the vector $u-v$. That is, $\operatorname{dist}(u, v)=\|u-v\|$.

Ex. Compute the distance between the vectors $u=(7,1)$ and $v=(3,2)$.

Sol. First we get $u-v=(7,1)-(3,2)=(4,-1)$.

Distance in $\mathbf{R}^{\boldsymbol{n}}$

- For vectors $u, v \in \mathbf{R}^{n}$, the distance between u and v, written as $\operatorname{dist}(u, v)$, is the length of the vector $u-v$. That is, $\operatorname{dist}(u, v)=\|u-v\|$.

Ex. Compute the distance between the vectors $u=(7,1)$ and $v=(3,2)$.

Sol. First we get $u-v=(7,1)-(3,2)=(4,-1)$.

- So the distance is $\operatorname{dist}(u, v)=\|u-v\|=\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}$.

Angles formed by vectors in \mathbf{R}^{n}

- Recall that if a triangle $A B O$, and let angle $A O B$ be θ, then $A B^{2}=A O^{2}+B O^{2}-2 A O \cdot B O \cos \theta$.

Angles formed by vectors in \mathbf{R}^{n}

- Recall that if a triangle $A B O$, and let angle $A O B$ be θ, then $A B^{2}=A O^{2}+B O^{2}-2 A O \cdot B O \cos \theta$.
- If we place the points in \mathbf{R}^{2} with O at origin, then we have the following picture

Angles formed by vectors in \mathbf{R}^{n}

- Recall that if a triangle $A B O$, and let angle $A O B$ be θ, then $A B^{2}=A O^{2}+B O^{2}-2 A O \cdot B O \cos \theta$.
- If we place the points in \mathbf{R}^{2} with O at origin, then we have the following picture

The angle between two vectors.

- In other words, assume vectors u, v correspond to points A, B, then we have $\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\| \cdot\|v\| \cos \theta$

Angles formed by vectors in \mathbf{R}^{n}

- Recall that if a triangle $A B O$, and let angle $A O B$ be θ, then $A B^{2}=A O^{2}+B O^{2}-2 A O \cdot B O \cos \theta$.
- If we place the points in \mathbf{R}^{2} with O at origin, then we have the following picture

The angle between two vectors.

- In other words, assume vectors u, v correspond to points A, B, then we have $\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\| \cdot\|v\| \cos \theta$
- Note that $\|u-v\|^{2}=(u-v) \cdot(u-v)=u^{2}+v^{2}-2 u \cdot v$.

Angles formed by vectors in \mathbf{R}^{n}

- Recall that if a triangle $A B O$, and let angle $A O B$ be θ, then $A B^{2}=A O^{2}+B O^{2}-2 A O \cdot B O \cos \theta$.
- If we place the points in \mathbf{R}^{2} with O at origin, then we have the following picture

The angle between two vectors.

- In other words, assume vectors u, v correspond to points A, B, then we have $\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\| \cdot\|v\| \cos \theta$
- Note that $\|u-v\|^{2}=(u-v)(u-v)=u^{2}+v^{2}-2 u \cdot v$.
- It follows that

$$
\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}
$$

Angles formed by vectors in \mathbf{R}^{n}

- Recall that if a triangle $A B O$, and let angle $A O B$ be θ, then $A B^{2}=A O^{2}+B O^{2}-2 A O \cdot B O \cos \theta$.
- If we place the points in \mathbf{R}^{2} with O at origin, then we have the following picture

The angle between two vectors.

- In other words, assume vectors u, v correspond to points A, B, then we have $\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\| \cdot\|v\| \cos \theta$
- Note that $\|u-v\|^{2}=(u-v) \cdot(u-v)=u^{2}+v^{2}-2 u \cdot v$.
- It follows that

$$
\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}
$$

- We define the angle between two vectors using the above formula.

Orthogonal vectors

- Let's consider then case when the angle between two vectors is 90 degree.

Orthogonal vectors

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta=0$. It follows that $u \cdot v=0$.

Orthogonal vectors

- Let's consider then case when the angle between two vectors is 90 degree.

$$
\begin{aligned}
& O=\cos 90^{\circ}=\cos \theta=\frac{u \cdot v}{\|w\| \cdot|w| \mid} \\
& \text { follows that } u \cdot v=0 .
\end{aligned}
$$

- Two vectors u and v are orthogonal (to each other) if $u \cdot v=0$.

Orthogonal vectors

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta=0$. It follows that $u \cdot v=0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v=0$.
- Clearly the zero vector is orthogonal to every vector in \mathbf{R}^{n}.

Orthogonal vectors

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta=0$. It follows that $u \cdot v=0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v=0$.
- Clearly the zero vector is orthogonal to every vector in \mathbf{R}^{n}.

THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.

Orthogonal vectors

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta=0$. It follows that $u \cdot v=0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v=0$.
- Clearly the zero vector is orthogonal to every vector in \mathbf{R}^{n}.

THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
Pf. We observe that u and v are orthogonal if and only if the distance between u and v is the same as the distance between u and $-v$. That is, $\operatorname{dist}(u, v)=\operatorname{dist}(u,-v)$.

Orthogonal vectors

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta=0$. It follows that $u \cdot v=0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v=0$.
- Clearly the zero vector is orthogonal to every vector in \mathbf{R}^{n}.

THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
Pf. We observe that u and v are orthogonal if and only if the distance between u and v is the same as the distance between u and $-v$. That is, $\operatorname{dist}(u, v)=\operatorname{dist}(u,-v)$.

- Note that $\operatorname{dist}(u, v)^{2}=(u-v) \cdot(u-v)=u^{2}+v^{2}-2 u \cdot v$ and $\operatorname{dist}(u,-v)=(u+v) \cdot(u+v)=u^{2}+v^{2}+2 u \cdot v$.

Orthogonal vectors

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta=0$. It follows that $u \cdot v=0$
- Two vectors u and v are orthogonal (to each other) if $u \cdot v=0$.
- Clearly the zero vector is orthogonal to every vector in \mathbf{R}^{2}.

THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
Pf. We observe that u and v are orthogonal if and only if the distance between u and v is the same as the distance between u and $-v$. That is, $\operatorname{dist}(u, v)=\operatorname{dist}(u,-v)$.

- Note that $\operatorname{dist}(u, v)^{2}=(u-v) \cdot(u-v)=u^{2}+v^{2}-2 u \cdot v$ and $\operatorname{dist}(u,-v)=(u+v) \cdot(u+v)=u^{2}+v^{2}+2 u \cdot v$.
- So $\operatorname{dist}(u, v)=\operatorname{dist}(u, v)$ if and only if $u v=0$.

Orthogonal complements

- If a vector z is orthogonal to every vector in a subspace W of \mathbf{R}^{n}, then z is said to be orthogonal to W.

$$
\underbrace{z \perp W}
$$

Orthogonal complements

- If a vector z is orthogonal to every vector in a subspace W of \mathbf{R}^{n}, then z is said to be orthogonal to W.
- The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (read as " W perp").

$$
W^{\perp}=\left\{z: z \perp W^{\perp}\right\}
$$

Orthogonal complements

$$
x \cdot Z=x \cdot\left(c_{1} u_{1}+\cdots+c_{k} u_{p}\right)=c_{1} \cdot u_{1}+c_{2} x \cdot u_{2}
$$

- If a vector z is orthogonal to every vector in a subspace \vec{W} of $\mathbf{R}^{n},{ }_{n^{+}}^{+d_{k}} \cdot V_{k}$ then z is said to be orthogonal to W.

$$
=0 \Rightarrow x+z
$$

- The set of all vectors z that are orthogonal th W is called the orthogonal complement of W and is denoted by W^{\perp} (read as " W pert"). $\&: W=\operatorname{span}\left\{u_{1}, u_{2},-u_{k}\right\} x \perp w_{i}$

$$
\forall z \in W_{1} \quad z=c_{1} u_{1}+\cdots-1 c_{k} u_{k}
$$

THM A vector x is in W^{\perp} if and only if x is orthogonal to every vector in a set that spans W.
$\cdots \quad x \in W \Rightarrow \quad \therefore \perp z$ fro any $z \in W$. inpasiculer, vectors in spin set.

Orthogonal complements

$$
w^{\prime}=\{x: x \perp w\} \quad\left(w^{\perp}\right)^{\perp}=w
$$

тнм W^{+}is a subspace of $R^{n} . \quad U \in W^{\prime}, x \in W \quad U \cdot x=0$
P(1) $0 \in W^{\perp}: 0 \cdot u=0, \forall u \in w$
(2) $u, v \in W^{\perp} \Rightarrow u+v \in W^{\perp}$:

$$
\begin{array}{ll}
\forall x \in W, & u \cdot x=0 \\
\quad v \cdot x=0 & (u+v) \cdot x=u \cdot x+v \cdot x=0+0=0
\end{array}
$$

(3) $u \in W^{+} \Rightarrow a u \in w^{+}$. $u+v \perp x$ $a \in \mathbb{R}$

$$
\begin{aligned}
& u \in w: w, u \cdot x=0(a u) \cdot x=a(u \cdot x)=0.0=0 \\
& \forall x w,
\end{aligned}
$$

Orthogonal complements

THM Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^{T} :
$(\underbrace{\text { Row } A)^{\perp}=N u l} A$

$$
\begin{aligned}
& \frac{(\operatorname{Col} A)^{\perp}=N u l A^{\top}}{} \\
& \left(\operatorname{Col}\left(A^{*}\right)^{\top}\right)^{\perp}=N u l\left(A^{\top}\right) \\
& \left(\operatorname{Col} B^{\top}\right)^{\perp}=\operatorname{Nul} B
\end{aligned}
$$

Orthogonal complements

THM Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^{T} :

$$
(\text { Row } A)^{\perp}=\operatorname{Nul} A \quad(\operatorname{Col} A)^{\perp}=N u l A^{T}
$$

Pf. Note that $x \in N u l A$ if and only if $A x=0$. That is, x is orthogonal to every row vector of A. So we have the conclusions.

$$
\left.\begin{array}{l}
R_{i} \cdot x=0 \\
R_{i} \cdot x=0 \\
R_{i} \cdot x=0
\end{array}\right\} x \perp R_{i}
$$

