Section 6.1 Inner Product, Length, and Orthogonality

Gexin Yu gyu@wm.edu

College of William and Mary

Gexin Yu gyu@wm.edu Section 6.1 Inner Product, Length, and Orthogonality

- ∢ ⊒ ⊳

• If u and v are vectors in \mathbb{R}^n , then we regard u and v as $n \times 1$ matrices.

回 と く ヨ と く ヨ と

- If u and v are vectors in \mathbb{R}^n , then we regard u and v as $n \times 1$ matrices.
- The transpose u^T is a $1 \times n$ matrix, and the matrix product $u^T v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.

- If u and v are vectors in \mathbb{R}^n , then we regard u and v as $n \times 1$ matrices.
- The transpose u^T is a $1 \times n$ matrix, and the matrix product $u^T v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^T v$ is called the inner product of u and v, and it is written as $u \cdot v$.

- If u and v are vectors in \mathbb{R}^n , then we regard u and v as $n \times 1$ matrices.
- The transpose u^T is a $1 \times n$ matrix, and the matrix product $u^T v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^T v$ is called the inner product of u and v, and it is written as $u \cdot v$.
- The inner product is also referred to as a dot product.

- If u and v are vectors in \mathbb{R}^n , then we regard u and v as $n \times 1$ matrices.
- The transpose u^T is a $1 \times n$ matrix, and the matrix product $u^T v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^T v$ is called the inner product of u and v, and it is written as $u \cdot v$.
- The inner product is also referred to as a dot product.
- If $u = [u_1 \ u_2 \ \dots \ u_n]^T$ and $v = [v_1 \ v_2 \ \dots \ v_n]^T$, then the inner product of u and v is

$$u^{\mathsf{T}}v = u_1v_1 + u_2v_2 + \ldots + u_nv_n$$

イロト イポト イラト イラト 一日

- If u and v are vectors in \mathbf{R}^n , then we regard u and v as $n \times 1$ matrices.
- The transpose u^T is a $1 \times n$ matrix, and the matrix product $u^T v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^T v$ is called the inner product of u and v, and it is written as $u \cdot v$.
- The inner product is also referred to as a dot product.
- If $u = [u_1 \ u_2 \ \dots \ u_n]^T$ and $v = [v_1 \ v_2 \ \dots \ v_n]^T$, then the inner product of u and v is

$$u^T v = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$

Ex. Compute $u \cdot v$ and $v \cdot u$ for $u = \begin{bmatrix} 2 & -5 & -1 \end{bmatrix}^T$ and $v = \begin{bmatrix} 3 & 2 & -3 \end{bmatrix}^T$.

- If u and v are vectors in \mathbb{R}^n , then we regard u and v as $n \times 1$ matrices.
- The transpose u^T is a $1 \times n$ matrix, and the matrix product $u^T v$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $u^T v$ is called the inner product of u and v, and it is written as $u \cdot v$.
- The inner product is also referred to as a dot product.
- If $u = [u_1 \ u_2 \ \dots \ u_n]^T$ and $v = [v_1 \ v_2 \ \dots \ v_n]^T$, then the inner product of u and v is

$$u^{\mathsf{T}}v = u_1v_1 + u_2v_2 + \ldots + u_nv_n$$

Ex. Compute $u \cdot v$ and $v \cdot u$ for $u = \begin{bmatrix} 2 & -5 & -1 \end{bmatrix}^T$ and $v = \begin{bmatrix} 3 & 2 & -3 \end{bmatrix}^T$. Sol. $u \cdot v = v \cdot u = (2)(3) + (-5)(2) + (-1)(-3) = -1$. THM Let u, v and w be vectors in \mathbf{R}^n , and let c be a scalar. Then

(4回) (4回) (4回)

THM Let u, v and w be vectors in \mathbb{R}^n , and let c be a scalar. Then

$$\blacktriangleright u \cdot v = v \cdot u$$

(4回) (4回) (4回)

THM Let u, v and w be vectors in \mathbb{R}^n , and let c be a scalar. Then

$$\blacktriangleright u \cdot v = v \cdot u$$

$$(u+v) \cdot w = u \cdot w + v \cdot w$$

(4回) (4回) (4回)

THM Let u, v and w be vectors in \mathbb{R}^n , and let c be a scalar. Then

$$\blacktriangleright u \cdot v = v \cdot u$$

$$(u+v) \cdot w = u \cdot w + v \cdot w$$

•
$$(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$$

(4回) (4回) (4回)

THM Let u, v and w be vectors in \mathbf{R}^n , and let c be a scalar. Then

$$\blacktriangleright u \cdot v = v \cdot u$$

$$(u+v) \cdot w = u \cdot w + v \cdot w$$

•
$$(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$$

•
$$u \cdot u \ge 0$$
, and $u \cdot u = 0$ if and only if $u = 0$.

$$U \stackrel{\sim}{=} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \qquad u \cdot u = u_1^2 + u_2^2 + \cdots + u_n^2 \stackrel{>}{\geq} O$$

(4回) (4回) (4回)

THM Let u, v and w be vectors in \mathbf{R}^n , and let c be a scalar. Then

$$\blacktriangleright u \cdot v = v \cdot u$$

$$(u+v) \cdot w = u \cdot w + v \cdot w$$

•
$$(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$$

•
$$u \cdot u \ge 0$$
, and $u \cdot u = 0$ if and only if $u = 0$.

• A more general property is true:

$$(c_1u_1 + c_2u_2 + \ldots + c_pu_p) \cdot w = c_1(u_1 \cdot w) + c_2(u_2 \cdot w) + \ldots + c_p(u_p \cdot w)$$

向下 イヨト イヨト

• Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.

- Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v = [v_1 \ v_2 \ \dots \ v_n]^T$ is defined to be

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

伺 ト イヨト イヨト

- Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v = [v_1 \ v_2 \ \dots \ v_n]^T$ is defined to be

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

• So
$$||v||^2 = v \cdot v$$
.

- Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v = [v_1 \ v_2 \ \dots \ v_n]^T$ is defined to be

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

• So
$$||v||^2 = v \cdot v$$
.
• Let c be a scalar. Then $||cv|| = |c| ||v||$.

$$\int \int ||cv|| = \int (cv) \cdot (cv) = \int (c^2(v \cdot v) = |c| \cdot \sqrt{v \cdot v}$$

$$= |c| \cdot ||v||$$

- Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v = [v_1 \ v_2 \ \dots \ v_n]^T$ is defined to be

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

• So
$$||v||^2 = v \cdot v$$
.

- Let c be a scalar. Then ||cv|| = |c| ||v||.
- A vector whose length is 1 is called a unit vector.

- Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v = [v_1 \ v_2 \ \dots \ v_n]^T$ is defined to be

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

• So
$$||v||^2 = v \cdot v$$
.

- Let c be a scalar. Then ||cv|| = |c| ||v||.
- A vector whose length is 1 is called a unit vector.
- One can create a unit vector from each given vector: $\frac{u}{||u||}$. This process is called normalizing u.

- Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v = [v_1 \ v_2 \ \dots \ v_n]^T$ is defined to be

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

• So
$$||v||^2 = v \cdot v$$
.

- Let c be a scalar. Then ||cv|| = |c| ||v||.
- A vector whose length is 1 is called a unit vector.
- One can create a unit vector from each given vector: $\frac{u}{||u||}$. This process is called normalizing u.

Ex. Let v = (1, -2, 2, 0). Find a unit vector u in the same direction as v.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

- Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v = [v_1 \ v_2 \ \dots \ v_n]^T$ is defined to be

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

• So
$$||v||^2 = v \cdot v$$
.

- Let c be a scalar. Then ||cv|| = |c| ||v||.
- A vector whose length is 1 is called a unit vector.
- One can create a unit vector from each given vector: $\frac{u}{||u||}$. This process is called normalizing u.

Ex. Let v = (1, -2, 2, 0). Find a unit vector u in the same direction as v.

Sol We first find the length of v: $||v|| = \sqrt{v \cdot v} = 3$.

- Recall that for a point P(x, y), the length of OP is $\sqrt{x^2 + y^2}$. And if we let u be the vector P corresponds to, then the length of OP is $\sqrt{u \cdot u}$.
- The length (or the norm) or vector $v = [v_1 \ v_2 \ \dots \ v_n]^T$ is defined to be

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

• So
$$||v||^2 = v \cdot v$$
.

- Let c be a scalar. Then ||cv|| = |c| ||v||.
- A vector whose length is 1 is called a unit vector.
- One can create a unit vector from each given vector: $\frac{u}{||u||}$. This process is called normalizing u.

Ex. Let v = (1, -2, 2, 0). Find a unit vector u in the same direction as v.

- Sol We first find the length of v: $||v|| = \sqrt{v \cdot v} = 3$.
 - Then normalize v and get a unit vector: $\frac{v}{||v||} = [1/3 2/3 2/3 0].$

Distance in \mathbf{R}^n

• For vectors $u, v \in \mathbf{R}^n$, the distance between u and v, written as dist(u, v), is the length of the vector u - v. That is, dist(u, v) = ||u - v||.

- For vectors u, v ∈ Rⁿ, the distance between u and v, written as dist(u, v), is the length of the vector u − v. That is, dist(u, v) = ||u − v||.
- Ex. Compute the distance between the vectors u = (7, 1) and v = (3, 2).

- For vectors u, v ∈ Rⁿ, the distance between u and v, written as dist(u, v), is the length of the vector u − v. That is, dist(u, v) = ||u − v||.
- Ex. Compute the distance between the vectors u = (7, 1) and v = (3, 2).

Sol. First we get
$$u - v = (7, 1) - (3, 2) = (4, -1)$$
.

伺 とう ヨン うちょう

- For vectors u, v ∈ Rⁿ, the distance between u and v, written as dist(u, v), is the length of the vector u − v. That is, dist(u, v) = ||u − v||.
- Ex. Compute the distance between the vectors u = (7, 1) and v = (3, 2).

Sol. First we get
$$u - v = (7, 1) - (3, 2) = (4, -1)$$
.

• So the distance is $dist(u, v) = ||u - v|| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$.

▲□→ ▲ 国→ ▲ 国→

• Recall that if a triangle ABO, and let angle AOB be θ , then $AB^2 = AO^2 + BO^2 - 2AO \cdot BO \cos \theta$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Recall that if a triangle ABO, and let angle AOB be θ , then $AB^2 = AO^2 + BO^2 - 2AO \cdot BO \cos \theta$.
- If we place the points in **R**² with *O* at origin, then we have the following picture

- Recall that if a triangle ABO, and let angle AOB be θ , then $AB^2 = AO^2 + BO^2 - 2AO \cdot BO \cos \theta$.
- If we place the points in **R**² with *O* at origin, then we have the following picture

The angle between two vectors.

• In other words, assume vectors u, v correspond to points A, B, then we have $||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|| \cdot ||v|| \cos \theta$

- Recall that if a triangle ABO, and let angle AOB be θ , then $AB^2 = AO^2 + BO^2 - 2AO \cdot BO \cos \theta$.
- If we place the points in **R**² with *O* at origin, then we have the following picture

The angle between two vectors.

- In other words, assume vectors u, v correspond to points A, B, then we have $||u v||^2 = ||u||^2 + ||v||^2 2||u|| \cdot ||v|| \cos \theta$
- Note that $||u v||^2 = (u v) \cdot (u v) = u^2 + v^2 2u \cdot v$.

- Recall that if a triangle ABO, and let angle AOB be θ , then $AB^2 = AO^2 + BO^2 - 2AO \cdot BO \cos \theta$.
- If we place the points in \mathbf{R}^2 with O at origin, then we have the following picture

The angle between two vectors.

• In other words, assume vectors u, v correspond to points A, B, then we have $||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|| \cdot ||v|| \cos \theta$

 $\cos\theta = \frac{u \cdot v}{||u|| \, ||v||}$

- Note that $||u v||^2 = (u v) (u v) = u^2 + v^2 2u \cdot v$.
- It follows that

伺 ト イヨト イヨト

- Recall that if a triangle ABO, and let angle AOB be θ , then $AB^2 = AO^2 + BO^2 - 2AO \cdot BO \cos \theta$.
- If we place the points in \mathbb{R}^2 with O at origin, then we have the following picture

The angle between two vectors.

- In other words, assume vectors u, v correspond to points A, B, then we have $||u v||^2 = ||u||^2 + ||v||^2 2||u|| \cdot ||v|| \cos \theta$
- Note that $||u v||^2 = (u v) \cdot (u v) = u^2 + v^2 2u \cdot v$.
- It follows that

$$\cos\theta = \frac{u \cdot v}{||u|| \, ||v||}$$

• We define the angle between two vectors using the above formula.

• Let's consider then case when the angle between two vectors is 90 degree.

回 と く ヨ と く ヨ と

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta = 0$. It follows that $u \cdot v = 0$.

向下 イヨト イヨト

- Let's consider then case when the angle between two vectors is 90 degree. • In this case, we have $\cos \theta = 0$. It follows that $u \cdot v = 0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v = 0$.

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta = 0$. It follows that $u \cdot v = 0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v = 0$.
- Clearly the zero vector is orthogonal to every vector in \mathbf{R}^n .

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta = 0$. It follows that $u \cdot v = 0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v = 0$.
- Clearly the zero vector is orthogonal to every vector in **R**ⁿ.
- THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and only if $||u + v||^2 = ||u||^2 + ||v||^2$.

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta = 0$. It follows that $u \cdot v = 0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v = 0$.
- Clearly the zero vector is orthogonal to every vector in **R**ⁿ.
- THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and only if $||u + v||^2 = ||u||^2 + ||v||^2$.
 - Pf. We observe that u and v are orthogonal if and only if the distance between u and v is the same as the distance between u and -v. That is, dist(u, v) = dist(u, -v).

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta = 0$. It follows that $u \cdot v = 0$.
- Two vectors u and v are orthogonal (to each other) if $u \cdot v = 0$.
- Clearly the zero vector is orthogonal to every vector in **R**ⁿ.
- THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and only if $||u + v||^2 = ||u||^2 + ||v||^2$.
 - Pf. We observe that u and v are orthogonal if and only if the distance between u and v is the same as the distance between u and -v. That is, dist(u, v) = dist(u, -v).
 - Note that $dist(u, v)^2 = (u v) \cdot (u v) = u^2 + v^2 2u \cdot v$ and $dist(u, -v) = (u + v) \cdot (u + v) = u^2 + v^2 + 2u \cdot v$.

- Let's consider then case when the angle between two vectors is 90 degree.
- In this case, we have $\cos \theta = 0$. It follows that $u \cdot v = 0$
- Two vectors u and v are orthogonal (to each other) if $u \cdot v = 0$.
- Clearly the zero vector is orthogonal to every vector in \mathbf{R}^n .
- THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and only if $||u + v||^2 = ||u||^2 + ||v||^2$.
 - Pf. We observe that u and v are orthogonal if and only if the distance between u and v is the same as the distance between u and -v. That is, dist(u, v) = dist(u, -v).
 - Note that $dist(u, v)^2 = (u v) \cdot (u v) = u^2 + v^2 2u \cdot v$ and $dist(u, -v) = (u + v) \cdot (u + v) = u^2 + v^2 + 2u \cdot v$.
 - So dist(u, v) = dist(u, v) if and only if uv = 0.

・ロン ・回と ・ヨン・

• If a vector z is orthogonal to every vector in a subspace W of **R**ⁿ, then z is said to be orthogonal to W.

- If a vector z is orthogonal to every vector in a subspace W of **R**ⁿ, then z is said to be orthogonal to W.
- The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W[⊥] (read as "W perp").

$$W^{\perp} = \{ z : z \perp W \}$$

Orthogonal complements

• If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n , $\mathcal{A}_z^{*,r}$ then z is said to be orthogonal to W.

• The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (read as "W perp"). $U = SPGN \left\{ \begin{array}{c} U_{1}, U_{2} & - U_{1} \end{array} \right\} \times \left\{ \begin{array}{c} V = U_{1} \\ V = V \\ U_{1} \end{array} \right\}$ THM A vector x is in W^{\perp} if and only if x is orthogonal to every vector in a set that spans W. ⇒: ×EV ⊇ ×12 for ang 2 EW. inperticular, ventag in Spin bet.

Orthogonal complements

Т

$\mathcal{A}^{\perp} = \left\{ x : x \perp \mathcal{A} \right\}$	$(w^{L})^{L} = W$
THM W^{\perp} is a subspace of R ^{<i>n</i>} .	UEN, XEN U.X=D
$\mathbb{F}_{:}^{(0)} O \in \mathbb{V}^{\perp} : O$	
OUVENT > NOVEN	;
AXEN U.X=D	(U+V)·X=U·X+V·X=0+D=0
3 LEW ANEW. U.X.	VIC X
a EIR Yrew, U-X=	$= \delta (Q, W) \cdot X = \alpha (W \cdot x) = 0 \cdot 0 = 0$

THM Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^{T} :

(1) マン・ション・

Route trez s -spansk -. Rm km

THM Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^{T} :

$$(Row A)^{\perp} = Nul A$$
 $(Col A)^{\perp} = Nul A^{T}$

Pf. Note that $x \in Nul A$ if and only if Ax = 0. That is, x is orthogonal to every row vector of A. So we have the conclusions.

 $R_{c} \times = 0^{0} \times \perp R_{c}$