Section 6.2-6.3 Orthogonal sets and orthogonal projections

Gexin Yu gyu@wm.edu

College of William and Mary

Gexin Yu gyu@wm.edu Section 6.2-6.3 Orthogonal sets and orthogonal projections

A (B) > A (B) > A (B)

A set of vectors {u₁, u₂, ..., u_p} in Rⁿ is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is u_i · u_j = 0 whenever i ≠ j.

伺下 イヨト イヨト

A set of vectors {u₁, u₂, ..., u_p} in Rⁿ is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is u_i · u_j = 0 whenever i ≠ j.

Theorem 4: If S = {u₁,..., u_p} is an orthogonal set of nonzero vectors in Rⁿ, then S is linearly independent and hence is a basis for the subspace spanned by S.

(本間) (本語) (本語)

PF. Let $c_1u_1 + \ldots + c_pu_p = 0$ for some scalars c_1, \ldots, c_p .

・ロト ・回ト ・ヨト ・ヨト

3

PF. Let $c_1u_1 + \ldots + c_pu_p = 0$ for some scalars c_1, \ldots, c_p .

• Then we have

$$0 = 0 \cdot u_1 = (c_1 u_1 + \ldots + c_p u_p) \cdot u_1$$

= $(c_1 u_1) \cdot u_1 + \ldots + (c_p u_p) \cdot u_1$
= $c_1(u_1 \cdot u_1) + \ldots + c_p(u_p \cdot u_1) = c_1(u_1 \cdot u_1)$

because u_1 is orthogonal to u_2, \ldots, u_p .

・ 同 ト ・ ヨ ト ・ ヨ ト

PF. Let $c_1u_1 + \ldots + c_pu_p = 0$ for some scalars c_1, \ldots, c_p .

Then we have

$$0 = 0 \cdot u_1 = (c_1 u_1 + \ldots + c_p u_p) \cdot u_1$$

= $(c_1 u_1) \cdot u_1 + \ldots + (c_p u_p) \cdot u_1$
= $c_1(u_1 \cdot u_1) + \ldots + c_p(u_p \cdot u_1) = c_1(u_1 \cdot u_1)$

because u_1 is orthogonal to u_2, \ldots, u_p .

• Since u_1 is nonzero, $u_1 \cdot u_1$ is not zero and so $c_1 = 0$.

소리가 소문가 소문가 소문가

PF. Let $c_1u_1 + \ldots + c_pu_p = 0$ for some scalars c_1, \ldots, c_p .

• Then we have

$$0 = 0 \cdot u_1 = (c_1 u_1 + \ldots + c_p u_p) \cdot u_1$$

= $(c_1 u_1) \cdot u_1 + \ldots + (c_p u_p) \cdot u_1$
= $c_1(u_1 \cdot u_1) + \ldots + c_p(u_p \cdot u_1) = c_1(u_1 \cdot u_1)$

because u_1 is orthogonal to u_2, \ldots, u_p .

- Since u_1 is nonzero, $u_1 \cdot u_1$ is not zero and so $c_1 = 0$.
- Similarly, c_2, \ldots, c_p must be zero.

소리가 소문가 소문가 소문가

PF. Let $c_1u_1 + \ldots + c_pu_p = 0$ for some scalars c_1, \ldots, c_p .

• Then we have

$$0 = 0 \cdot u_1 = (c_1 u_1 + \ldots + c_p u_p) \cdot u_1$$

= $(c_1 u_1) \cdot u_1 + \ldots + (c_p u_p) \cdot u_1$
= $c_1(u_1 \cdot u_1) + \ldots + c_p(u_p \cdot u_1) = c_1(u_1 \cdot u_1)$

because u_1 is orthogonal to u_2, \ldots, u_p .

- Since u_1 is nonzero, $u_1 \cdot u_1$ is not zero and so $c_1 = 0$.
- Similarly, c_2, \ldots, c_p must be zero.
- Thus S is linearly independent.

A (10) A (10) A (10) A

• An orthogonal basis for a subspace W of **R**ⁿ is a basis for W that is also an orthogonal set.

$$\begin{pmatrix} l \\ 0 \\ l \\ 0 \\ 0 \\ l \\ 0$$

- 4 回 2 - 4 □ 2 - 4 □

• An orthogonal basis for a subspace W of **R**ⁿ is a basis for W that is also an orthogonal set.

• Theorem 5: Let $\{u_1, \ldots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination $y = c_1 u_1 + \ldots + c_p u_p$ are given by $c_j = \frac{y \cdot u_j}{u_j \cdot u_j}$ for $j = 1, \ldots, p$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- An orthogonal basis for a subspace W of **R**ⁿ is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\{u_1, \ldots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination $y = c_1 u_1 + \ldots + c_p u_p$ are given by $c_j = \frac{y \cdot u_j}{u_i \cdot u_i}$ for $j = 1, \ldots, p$.
- PF. The orthogonality of $\{u_1, \ldots, u_p\}$ shows that

$$y \cdot u_1 = (c_1 u_1 + \ldots + c_p u_p) \cdot u_1 = c_1 (u_1 \cdot u_1)$$

(1) マン・ション・

- An orthogonal basis for a subspace W of **R**ⁿ is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\{u_1, \ldots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination $y = c_1 u_1 + \ldots + c_p u_p$ are given by $c_j = \frac{y \cdot u_j}{u_i \cdot u_i}$ for $j = 1, \ldots, p$.
- PF. The orthogonality of $\{u_1, \ldots, u_p\}$ shows that

$$y \cdot u_1 = (c_1 u_1 + \ldots + c_p u_p) \cdot u_1 = c_1 (u_1 \cdot u_1)$$

• Since $u_1 \cdot u_1$ is not zero, the equation above can be solved for c_1 .

- An orthogonal basis for a subspace W of **R**ⁿ is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\{u_1, \ldots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination $y = c_1 u_1 + \ldots + c_p u_p$ are given by $c_j = \frac{y \cdot u_j}{u_i \cdot u_j}$ for $j = 1, \ldots, p$.
- PF. The orthogonality of $\{u_1, \ldots, u_p\}$ shows that

$$y \cdot u_1 = (c_1 u_1 + \ldots + c_p u_p) \cdot u_1 = c_1 (u_1 \cdot u_1)$$

• Since $u_1 \cdot u_1$ is not zero, the equation above can be solved for c_1 .

• To find c_i , we can similarly compute $y \cdot u_i$ and solve for c_i .

소리가 소문가 소문가 소문가

 Given a nonzero vector u in Rⁿ, consider the problem of decomposing a vector y in Rⁿ into the sum of two vectors, one a multiplier of u and the other orthogonal to u.

- Given a nonzero vector u in Rⁿ, consider the problem of decomposing a vector y in Rⁿ into the sum of two vectors, one a multiplier of u and the other orthogonal to u.
- We wish to write $y = \hat{y} + z$, where $\hat{y} = \alpha u$ for some scalar α and z is some vector orthogonal to u.

- Given a nonzero vector u in Rⁿ, consider the problem of decomposing a vector y in Rⁿ into the sum of two vectors, one a multiplier of u and the other orthogonal to u.
- We wish to write y = ŷ + z, where ŷ = αu for some scalar α and z is some vector orthogonal to u.

Given any scalar α, let z = y − αu. Then y − ŷ is orthogonal to u if and only if 0 = (y − αu) ⋅ u = y ⋅ u − αu ⋅ u.

- 4 同 6 4 日 6 4 日 6

- Given a nonzero vector u in Rⁿ, consider the problem of decomposing a vector y in Rⁿ into the sum of two vectors, one a multiplier of u and the other orthogonal to u.
- We wish to write y = ŷ + z, where ŷ = αu for some scalar α and z is some vector orthogonal to u.

Given any scalar α, let z = y − αu. Then y − ŷ is orthogonal to u if and only if 0 = (y − αu) · u = y · u − αu · u.

• That is, $y = \hat{y} + z$ with z orthogonal to u if and only if $\alpha = \frac{y \cdot u}{u \cdot u}$ and $\hat{y} = \frac{y \cdot u}{u \cdot u} u$.

• The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.

向下 イヨト イヨト

- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- If c is any nonzero scalar and if u is replaced by cu in the definition of \hat{y} , then the orthogonal projection of y onto cu is exactly the same as the orthogonal projection of y onto u.

- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- If c is any nonzero scalar and if u is replaced by cu in the definition of \hat{y} , then the orthogonal projection of y onto cu is exactly the same as the orthogonal projection of y onto u.
- Hence this projection is determined by the subspace *L* spanned by *u* (the line through *u* and 0).

・ 同 ト ・ ヨ ト ・ ヨ ト

- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- If c is any nonzero scalar and if u is replaced by cu in the definition of \hat{y} , then the orthogonal projection of y onto cu is exactly the same as the orthogonal projection of y onto u.
- Hence this projection is determined by the subspace *L* spanned by *u* (the line through *u* and 0).
- Sometimes \hat{y} is denoted by $proj_L y$ and is called the orthogonal projection of y onto L.

(1) マン・ション・

- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- If c is any nonzero scalar and if u is replaced by cu in the definition of \hat{y} , then the orthogonal projection of y onto cu is exactly the same as the orthogonal projection of y onto u.
- Hence this projection is determined by the subspace *L* spanned by *u* (the line through *u* and 0).
- Sometimes \hat{y} is denoted by $proj_L y$ and is called the orthogonal projection of y onto L.

Ex. Let $y = [7 \ 6]^T$ and $u = [4 \ 2]^T$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $Span\{u\}$ and one orthogonal to u.

- Ex. Let $y = [7 \ 6]^T$ and $u = [4 \ 2]^T$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $Span\{u\}$ and one orthogonal to u.
- Sol. Compute $y \cdot u = 40$ and $u \cdot u = 20$.

- 4 同 6 4 日 6 4 日 6

- Ex. Let $y = [7 \ 6]^T$ and $u = [4 \ 2]^T$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $Span\{u\}$ and one orthogonal to u.
- Sol. Compute $y \cdot u = 40$ and $u \cdot u = 20$.
 - The orthogonal projection of y onto u is $\hat{y} = \frac{y \cdot u}{u \cdot u} u = 2u = [8 \ 4]^T$.

イロト イポト イヨト イヨト

- Ex. Let $y = [7 \ 6]^T$ and $u = [4 \ 2]^T$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $Span\{u\}$ and one orthogonal to u.
- Sol. Compute $y \cdot u = 40$ and $u \cdot u = 20$.
 - The orthogonal projection of y onto u is $\hat{y} = \frac{y \cdot u}{u \cdot u} u = 2u = [8 \ 4]^T$.
 - And the component of y orthogonal to u is $y \hat{y} = \begin{bmatrix} 7 & 6 \end{bmatrix}^T \begin{bmatrix} 8 & 4 \end{bmatrix}^T = \begin{bmatrix} -1 & 2 \end{bmatrix}^T$.

イロト イポト イラト イラト 一日

- Ex. Let $y = [7 \ 6]^T$ and $u = [4 \ 2]^T$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $Span\{u\}$ and one orthogonal to u.
- Sol. Compute $y \cdot u = 40$ and $u \cdot u = 20$.
 - The orthogonal projection of y onto u is $\hat{y} = \frac{y \cdot u}{u \cdot u} u = 2u = [8 \ 4]^T$.
 - And the component of y orthogonal to u is $y \hat{y} = \begin{bmatrix} 7 & 6 \end{bmatrix}^T \begin{bmatrix} 8 & 4 \end{bmatrix}^T = \begin{bmatrix} -1 & 2 \end{bmatrix}^T$.
 - That is, $[7 \ 6] = [8 \ 4] + [-1 \ 2]$.

イロト イポト イヨト イヨト 二日

Orthonormal sets

 A set {u₁,..., u_p} is an orthonormal set if it is an orthogonal set of unit vectors.

3

- A set { u_1, \ldots, u_p } is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then {u₁,..., u_p} is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- A set { u_1, \ldots, u_p } is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then {u₁,..., u_p} is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.
- The simplest example of an orthonormal set is the standard basis $\{e_1, \ldots, e_n\}$ for \mathbf{R}^n .

▲帰▶ ★ 注▶ ★ 注▶

- A set { u_1, \ldots, u_p } is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then {u₁,..., u_p} is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.
- The simplest example of an orthonormal set is the standard basis $\{e_1, \ldots, e_n\}$ for \mathbb{R}^n .
- Any nonempty subset of $\{e_1, \cdots, e_n\}$ is orthonormal, too

・ロット (四) (日) (日)

• Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^T U = I$.

To chark
$$u_1, u_2, \dots, u_m$$
 to be orthonormal
 $U = [u_1, u_1 - \dots, u_m]$
clark $V^T U = I$

(ロ) (同) (E) (E) (E)

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^T U = I$.
- PF. To simplify notation, we suppose U has only three columns, $U = [u_1 \ u_2 \ u_2].$

- Theorem 6: an n × m matrix U has orthonormal columns if and only if U^TU = I.
- PF. To simplify notation, we suppose U has only three columns, $U = [u_1 \ u_2 \ u_2].$
 - Then

$$U^{T}U = \begin{bmatrix} u_{1}^{T} \\ u_{2}^{T} \\ u_{3}^{T} \end{bmatrix} \begin{bmatrix} u_{1} \ u_{2} \ u_{3} \end{bmatrix} = \begin{bmatrix} u_{1}^{T}u_{1} & u_{1}^{T}u_{2} & u_{1}^{T}u_{3} \\ u_{2}^{T}u_{1} & u_{2}^{T}u_{2} & u_{2}^{T}u_{3} \\ u_{3}^{T}u_{1} & u_{3}^{T}u_{2} & u_{3}^{T}u_{3} \end{bmatrix}$$

(4 回) (4 回) (4 回)

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^T U = I$.
- PF. To simplify notation, we suppose U has only three columns, $U = [u_1 \ u_2 \ u_2].$
 - Then

$$U^{\mathsf{T}}U = \begin{bmatrix} u_1^{\mathsf{T}} \\ u_2^{\mathsf{T}} \\ u_3^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} u_1 \ u_2 \ u_3 \end{bmatrix} = \begin{bmatrix} u_1^{\mathsf{T}}u_1 & u_1^{\mathsf{T}}u_2 & u_1^{\mathsf{T}}u_3 \\ u_2^{\mathsf{T}}u_1 & u_2^{\mathsf{T}}u_2 & u_2^{\mathsf{T}}u_3 \\ u_3^{\mathsf{T}}u_1 & u_3^{\mathsf{T}}u_2 & u_3^{\mathsf{T}}u_3 \end{bmatrix}$$

• The columns of U are orthogonal if and only if $u_i^T u_j = 0$ for $i \neq j$.

- 4 同 6 4 日 6 4 日 6

- Theorem 6: an n × m matrix U has orthonormal columns if and only if U^TU = I.
- PF. To simplify notation, we suppose U has only three columns, $U = [u_1 \ u_2 \ u_2].$

Then

$$U^{\mathsf{T}}U = \begin{bmatrix} u_1^{\mathsf{T}} \\ u_2^{\mathsf{T}} \\ u_3^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} u_1 \ u_2 \ u_3 \end{bmatrix} = \begin{bmatrix} u_1^{\mathsf{T}}u_1 & u_1^{\mathsf{T}}u_2 & u_1^{\mathsf{T}}u_3 \\ u_2^{\mathsf{T}}u_1 & u_2^{\mathsf{T}}u_2 & u_2^{\mathsf{T}}u_3 \\ u_3^{\mathsf{T}}u_1 & u_3^{\mathsf{T}}u_2 & u_3^{\mathsf{T}}u_3 \end{bmatrix}$$

- The columns of U are orthogonal if and only if $u_i^T u_j = 0$ for $i \neq j$.
- The columns of U all have unit length if and only if $u_i^T u_i = 1$ for i = 1, 2, 3.

- 4 同 6 4 日 6 4 日 6

Orthonormal columns of a matrix

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^T U = I$.
- PF. To simplify notation, we suppose U has only three columns, $U = [u_1 \ u_2 \ u_2].$
 - Then

$$U^{T}U = \begin{bmatrix} u_{1}^{T} \\ u_{2}^{T} \\ u_{3}^{T} \end{bmatrix} \begin{bmatrix} u_{1} \ u_{2} \ u_{3} \end{bmatrix} = \begin{bmatrix} u_{1}^{T}u_{1} & u_{1}^{T}u_{2} & u_{1}^{T}u_{3} \\ u_{2}^{T}u_{1} & u_{2}^{T}u_{2} & u_{2}^{T}u_{3} \\ u_{3}^{T}u_{1} & u_{3}^{T}u_{2} & u_{3}^{T}u_{3} \end{bmatrix}$$

- The columns of U are orthogonal if and only if $u_i^T u_j = 0$ for $i \neq j$.
- The columns of U all have unit length if and only if $u_i^T u_i = 1$ for i = 1, 2, 3.
- From above conditions, the theorem follows immediately.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n . Then

イロン イヨン イヨン イヨン

- Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n . Then
 - $\bullet ||Ux|| = ||x||$

・ロン ・回と ・ヨン ・ヨン

• Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n . Then

$$\bullet ||Ux|| = ||x||$$

$$(Ux) \cdot (Uy) = x \cdot y$$

イロン イヨン イヨン イヨン

- Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n . Then
 - ||Ux|| = ||x||

$$(Ux) \cdot (Uy) = x \cdot y$$

• $(Ux) \cdot (Uy) = 0$ if and only if $x \cdot y = 0$.

・ロン ・回と ・ヨン ・ヨン

- Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n . Then
 - ► ||Ux|| = ||x||

$$(Ux) \cdot (Uy) = x \cdot y$$

• $(Ux) \cdot (Uy) = 0$ if and only if $x \cdot y = 0$.

 The above properties say that the linear mapping x → Ux preserves lengths and orthogonality.

- 4 回 5 - 4 回 5 - 4 回 5

• The orthogonal projection of a point in \mathbb{R}^2 onto a line through the origin has an important analogue in \mathbb{R}^n .

向下 イヨト イヨト

- The orthogonal projection of a point in \mathbb{R}^2 onto a line through the origin has an important analogue in \mathbb{R}^n .
- Given a vector y and a subspace W in Rⁿ, there is a vector ŷ in W such that (1) ŷ is the unique vector in W for which y − ŷ is orthogonal to W, and (2) ŷ is the unique vector in W closest to y.

- The orthogonal projection of a point in \mathbb{R}^2 onto a line through the origin has an important analogue in \mathbb{R}^n .
- Given a vector y and a subspace W in Rⁿ, there is a vector ŷ in W such that (1) ŷ is the unique vector in W for which y − ŷ is orthogonal to W, and (2) ŷ is the unique vector in W closest to y.

 These two properties of ŷ provide the key to finding the least-squares solutions of linear systems. • Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .

(4月) イヨト イヨト

- Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .
- In fact, if $\{u_1, \dots, u_p\}$ is any orthogonal basis of W, then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p \text{ and } z = y - \hat{y}$$

(1) マン・ション・

- Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .
- In fact, if $\{u_1, \ldots, u_p\}$ is any orthogonal basis of W, then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$
 and $z = y - \hat{y}$

- Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .
- In fact, if $\{u_1, \dots, u_p\}$ is any orthogonal basis of W, then $\hat{y} = \begin{pmatrix} y \cdot u_1 \\ u_1 \cdot u_1 \end{pmatrix} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p \text{ and } z = y - \hat{y}$

• To see that $z = y - \hat{y}$ is in W^{\perp} , we observe that z is orthogonal to each u_j in the basis for W, thus to every vector in W.

$$\begin{array}{c} \left(\begin{array}{c} z \perp U_{i} \\ y = C_{i}U_{i} + C_{i}U_{i} + \cdots + C_{i}U_{i} \end{array} \right) \cdot U_{i} = 0 \\ \hline \end{array} \\ \begin{array}{c} y = C_{i}U_{i} + C_{i}U_{i} + \cdots + C_{i}U_{i} \end{array} \\ \hline \end{array} \\ \begin{array}{c} y \cdot U_{i} = - \left(\begin{array}{c} U_{i} \cdot U_{i} \\ \end{array} \right) \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} y \cdot U_{i} = - \left(\begin{array}{c} U_{i} \cdot U_{i} \\ \end{array} \right) \\ \hline \end{array} \\ \begin{array}{c} y \cdot U_{i} = - \left(\begin{array}{c} U_{i} \cdot U_{i} \\ \end{array} \right) \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} y \cdot U_{i} = - \left(\begin{array}{c} U_{i} \cdot U_{i} \\ \end{array} \right) \\ \hline \end{array} \\ \end{array}$$

- Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .
- In fact, if $\{u_1, \ldots, u_p\}$ is any orthogonal basis of W, then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p \text{ and } z = y - \hat{y}$$

- To see that z = y − ŷ is in W[⊥], we observe that z is orthogonal to each u_j in the basis for W, thus to every vector in W.
- To show the the decomposition is unique, suppose y can also be written as $y = \hat{y_1} + z_1$, with $\hat{y_1}$ in W and z_1 in W^{\perp} .

- Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .
- In fact, if $\{u_1, \ldots, u_p\}$ is any orthogonal basis of W, then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p \text{ and } z = y - \hat{y}$$

- To see that $z = y \hat{y}$ is in W^{\perp} , we observe that z is orthogonal to each u_j in the basis for W, thus to every vector in W.
- To show the the decomposition is unique, suppose y can also be written as $y = \hat{y_1} + z_1$, with $\hat{y_1}$ in W and z_1 in W^{\perp} .

• Then
$$y = \hat{y} + z = \hat{y_1} + z_1$$
, and so $\hat{y} - \hat{y_1} = z_1 - z$.

- Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .
- In fact, if $\{u_1, \ldots, u_p\}$ is any orthogonal basis of W, then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$
 and $z = y - \hat{y}$

- To see that $z = y \hat{y}$ is in W^{\perp} , we observe that z is orthogonal to each u_j in the basis for W, thus to every vector in W.
- To show the the decomposition is unique, suppose y can also be written as $y = \hat{y_1} + z_1$, with $\hat{y_1}$ in W and z_1 in W^{\perp} .

• Then
$$y = \hat{y} + z = \hat{y_1} + z_1$$
, and so $\hat{y} - \hat{y_1} = z_1 - z$.

• So vector $v = \hat{y} - \hat{y_1}$ is in W, but also in W^{\perp} , as $z - z_1$ is in W^{\perp} .

・ロト ・四ト ・ヨト ・ヨト - ヨ

- Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .
- In fact, if $\{u_1, \dots, u_p\}$ is any orthogonal basis of W, then $\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$ and $z = y - \hat{y}$
- PF. Similar to the proof of Theorem 5, we get \hat{y} .
 - To see that $z = y \hat{y}$ is in W^{\perp} , we observe that z is orthogonal to each u_j in the basis for W, thus to every vector in W.
 - To show the the decomposition is unique, suppose y can also be written as $y = \hat{y_1} + z_1$, with $\hat{y_1}$ in W and z_1 in W^{\perp} .
 - Then $y = \hat{y} + z = \hat{y_1} + z_1$, and so $\hat{y} \hat{y_1} = z_1 z$.
 - So vector $v = \hat{y} \hat{y_1}$ is in W, but also in W^{\perp} , as $z z_1$ is in W^{\perp} .
 - Hence $v \cdot v = 0$, and implies that v = 0. So $\hat{y} = \hat{y_1}$ and $z = z_1$.

K K B K K B K B K

Ex. Let $u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{u_1, u_2\}$ is an orthogonal basis for $W = Span\{u_1, u_2\}$. Write y as the sum of a vector in W and a vector orthogonal to W.

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{q}{30} \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix} + \frac{3}{6} \begin{bmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$

Ex. Let
$$u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{u_1, u_2\}$ is an orthogonal basis for $W = Span\{u_1, u_2\}$. Write y as the sum of a vector in W and a vector orthogonal to W.

Sol. Let the vector in W be \hat{y} and the vector orthogonal to W be $z = y - \hat{y}$.

イロン 不同と 不同と 不同と

æ

Ex. Let
$$u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{u_1, u_2\}$ is an orthogonal basis for $W = Span\{u_1, u_2\}$. Write y as the sum of a vector in W and a vector orthogonal to W.

- Sol. Let the vector in W be \hat{y} and the vector orthogonal to W be $z = y \hat{y}$.
 - Then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}$$

イロン 不同と 不同と 不同と

æ

Ex. Let
$$u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{u_1, u_2\}$ is an orthogonal basis for $W = Span\{u_1, u_2\}$. Write y as the sum of a vector in W and a vector orthogonal to W.

- Sol. Let the vector in W be \hat{y} and the vector orthogonal to W be $z = y \hat{y}$.
 - Then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}$$
• And $z = y - \hat{y} = \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}$

If {u₁,..., u_p} is an orthogonal basis for W and if y happens to be in W, then the formula for proj_Wy is exactly the same as the representation of y given in Theorem 5.

・ 同 ト ・ ヨ ト ・ ヨ ト

If {u₁,..., u_p} is an orthogonal basis for W and if y happens to be in W, then the formula for proj_Wy is exactly the same as the representation of y given in Theorem 5.

 In this case, proj_Wy = y. In particular, if y is in W = Span{u₁,..., u_p}, then proj_Wy = y.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Theorem 9. Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that $||y - \hat{y}|| < ||y - v||$ for all v in W distinct from \hat{y} .

- Theorem 9. Let W be a subspace of Rⁿ, let y be any vector in Rⁿ, and let ŷ be the orthogonal projection of y onto W. Then ŷ is the closest point in W to y, in the sense that ||y − ŷ|| < ||y − v|| for all v in W distinct from ŷ.
- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Theorem 9. Let W be a subspace of Rⁿ, let y be any vector in Rⁿ, and let ŷ be the orthogonal projection of y onto W. Then ŷ is the closest point in W to y, in the sense that ||y − ŷ|| < ||y − v|| for all v in W distinct from ŷ.
- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.
- The distance from y to v, given by ||y − v||, can be regarded as the "error' of using v in place of y. Theorem 9 says that this error is minimized when v = ŷ.

- Theorem 9. Let W be a subspace of Rⁿ, let y be any vector in Rⁿ, and let ŷ be the orthogonal projection of y onto W. Then ŷ is the closest point in W to y, in the sense that ||y − ŷ|| < ||y − v|| for all v in W distinct from ŷ.
- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.
- The distance from y to v, given by ||y − v||, can be regarded as the "error' of using v in place of y. Theorem 9 says that this error is minimized when v = ŷ.
- Inequality $||y \hat{y}|| < ||y v||$ leads to a new proof that \hat{y} does not depend on the particular orthogonal basis used to compute it.

- Theorem 9. Let W be a subspace of Rⁿ, let y be any vector in Rⁿ, and let ŷ be the orthogonal projection of y onto W. Then ŷ is the closest point in W to y, in the sense that ||y − ŷ|| < ||y − v|| for all v in W distinct from ŷ.
- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.
- The distance from y to v, given by ||y − v||, can be regarded as the "error' of using v in place of y. Theorem 9 says that this error is minimized when v = ŷ.
- Inequality $||y \hat{y}|| < ||y v||$ leads to a new proof that \hat{y} does not depend on the particular orthogonal basis used to compute it.
- If a different orthogonal basis for W were used to construct an orthogonal projection of y, then this projection would also be the closest point in W to y, namely, \hat{y} .

(日) (同) (E) (E) (E)

PF. Take v in W distinct from \hat{y} . Then $\hat{y} - v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

イロト イヨト イヨト イヨト

PF. Take v in W distinct from \hat{y} . Then $\hat{y} - v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

• By the orthogonal decomposition theorem, $y - \hat{y}$ is orthogonal to W.

- 4 回 ト 4 ヨ ト 4 ヨ ト

PF. Take v in W distinct from \hat{y} . Then $\hat{y} - v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

- By the orthogonal decomposition theorem, $y \hat{y}$ is orthogonal to W.
- In particular, $y \hat{y}$ is orthogonal to $\hat{y} v$ (which is in W).

PF. Take v in W distinct from \hat{y} . Then $\hat{y} - v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

- By the orthogonal decomposition theorem, $y \hat{y}$ is orthogonal to W.
- In particular, $y \hat{y}$ is orthogonal to $\hat{y} v$ (which is in W).
- Since $y v = (y \hat{y}) + (\hat{y} v)$, the Pythagorean Theorem gives $||y v||^2 = ||y \hat{y}||^2 + ||\hat{y} v||^2$.

PF. Take v in W distinct from \hat{y} . Then $\hat{y} - v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

- By the orthogonal decomposition theorem, $y \hat{y}$ is orthogonal to W.
- In particular, $y \hat{y}$ is orthogonal to $\hat{y} v$ (which is in W).
- Since $y v = (y \hat{y}) + (\hat{y} v)$, the Pythagorean Theorem gives $||y v||^2 = ||y \hat{y}||^2 + ||\hat{y} v||^2$.
- Now $||\hat{y} v||^2 > 0$ because $\hat{y} v \neq 0$, and so inequality follows immediately.

• The distance from a point y in **R**ⁿ to a subspace W is defined as the distance from y to the nearest point in W.

(4月) (4日) (4日)

- The distance from a point y in **R**ⁿ to a subspace W is defined as the distance from y to the nearest point in W.
- Ex. Find the distance from y to $W = Span\{u_1, u_2\}$, where

$$y = \begin{bmatrix} -1\\ -5\\ 10 \end{bmatrix}, u_1 = \begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$

$$(y_1, y_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, y_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, y_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

- The distance from a point y in **R**ⁿ to a subspace W is defined as the distance from y to the nearest point in W.
- Ex. Find the distance from y to $W = Span\{u_1, u_2\}$, where

$$y = \begin{bmatrix} -1\\ -5\\ 10 \end{bmatrix}, u_1 = \begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$

Sol. By the Best Approximation Theorem, the distance from y to W is $||y - \hat{y}||$, where $\hat{y} = proj_W y$.

- 4 同 6 4 日 6 4 日 6

- The distance from a point y in **R**ⁿ to a subspace W is defined as the distance from y to the nearest point in W.
- Ex. Find the distance from y to $W = Span\{u_1, u_2\}$, where

$$y = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, u_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Sol. By the Best Approximation Theorem, the distance from y to W is $||y - \hat{y}||$, where $\hat{y} = proj_W y$.

• So
$$\hat{y} = \frac{15}{30}u_1 + \frac{-21}{6}u_2 = \begin{bmatrix} -1\\ -8\\ 4 \end{bmatrix}$$

 $\hat{y} = \frac{\hat{y} \cdot \hat{u}}{\hat{u}_1 \hat{u}_1} \hat{u}_1 + \frac{\hat{y} \cdot \hat{u}_2}{\hat{u}_2 \hat{u}_2} \hat{u}_2$

- 4 同 6 4 日 6 4 日 6

- The distance from a point y in **R**ⁿ to a subspace W is defined as the distance from y to the nearest point in W.
- Ex. Find the distance from y to $W = Span\{u_1, u_2\}$, where

$$y = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, u_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Sol. By the Best Approximation Theorem, the distance from y to W is $||y - \hat{y}||$, where $\hat{y} = proj_W y$.

• So
$$\hat{y} = \frac{15}{30}u_1 + \frac{-21}{6}u_2 = \begin{bmatrix} -1\\ -8\\ 4 \end{bmatrix}$$

• It follows that $y - \hat{y} = \begin{bmatrix} 0 & 3 & 6 \end{bmatrix}^T$

(4月) イヨト イヨト

- The distance from a point y in **R**ⁿ to a subspace W is defined as the distance from y to the nearest point in W.
- Ex. Find the distance from y to $W = Span\{u_1, u_2\}$, where

$$y = \begin{bmatrix} -1\\ -5\\ 10 \end{bmatrix}, u_1 = \begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$

Sol. By the Best Approximation Theorem, the distance from y to W is $||y - \hat{y}||$, where $\hat{y} = proj_W y$.

• So
$$\hat{y} = \frac{15}{30}u_1 + \frac{-21}{6}u_2 = \begin{bmatrix} -1\\ -8\\ 4 \end{bmatrix}$$

• It follows that $y - \hat{y} = \begin{bmatrix} 0 & 3 & 6 \end{bmatrix}^T$

• So the distance is $||y - \hat{y}|| = \sqrt{(y - \hat{y}) \cdot (y - \hat{y})} = \sqrt{45}$.

• Theorem 10. If $\{u_1, \ldots, u_p\}$ is an orthogonormal basis for a subspace W of \mathbb{R}^n , then

$$proj_W y = (y \cdot u_1)u_1 + (y \cdot u_2)u_2 + \ldots + (y \cdot u_p)u_p$$

If
$$U = [u_1 \ u_2 \ \dots \ u_p]$$
, then $proj_W y = UU^T y$ for all $y \in \mathbf{R}^n$.

(日) (同) (E) (E) (E)