Section 6.2-6.3 Orthogonal sets and orthogonal projections

Gexin Yu
gyu@wm.edu

College of William and Mary

Orthogonal sets

- A set of vectors $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ in \mathbf{R}^{n} is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is $u_{i} \cdot u_{j}=0$ whenever $i \neq j$.

Orthogonal sets

- A set of vectors $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ in \mathbf{R}^{n} is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is $u_{i} \cdot u_{j}=0$ whenever $i \neq j$.
- Theorem 4: If $S=\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbf{R}^{n}, then S is linearly independent and hence isabasis for the subspace spanned by S.

Proof of Theorem 4

PF. Let $c_{1} u_{1}+\ldots+c_{p} u_{p}=0$ for some scalars c_{1}, \ldots, c_{p}.

Proof of Theorem 4

PF. Let $c_{1} u_{1}+\ldots+c_{p} u_{p}=0$ for some scalars c_{1}, \ldots, c_{p}.

- Then we have

$$
\begin{aligned}
0 & =0 \cdot u_{1}=\left(\underline{c_{1} u_{1}+\ldots+c_{p} u_{p}}\right) \cdot u_{1} \\
& =\left(c_{1} u_{1}\right) \cdot u_{1}+\ldots+\left(c_{p} u_{p}\right) \cdot u_{1} \\
& =c_{1}\left(u_{1} \cdot u_{1}\right)+\ldots+c_{p}\left(u_{p} \cdot u_{1}\right)=c_{1}\left(u_{1} \cdot u_{1}\right)
\end{aligned}
$$

because u_{1} is orthogonal to u_{2}, \ldots, u_{p}.

Proof of Theorem 4

PF. Let $c_{1} u_{1}+\ldots+c_{p} u_{p}=0$ for some scalars c_{1}, \ldots, c_{p}.

- Then we have

$$
\begin{aligned}
0 & =0 \cdot u_{1}=\left(c_{1} u_{1}+\ldots+c_{p} u_{p}\right) \cdot u_{1} \\
& =\left(c_{1} u_{1}\right) \cdot u_{1}+\ldots+\left(c_{p} u_{p}\right) \cdot u_{1} \\
& =c_{1}\left(u_{1} \cdot u_{1}\right)+\ldots+c_{p}\left(u_{p} \cdot u_{1}\right)=c_{1}\left(u_{1} \cdot u_{1}\right)
\end{aligned}
$$

because u_{1} is orthogonal to u_{2}, \ldots, u_{p}.

- Since u_{1} is nonzero, $u_{1} \cdot u_{1}$ is not zero and so $c_{1}=0$.

Proof of Theorem 4

PF. Let $c_{1} u_{1}+\ldots+c_{p} u_{p}=0$ for some scalars c_{1}, \ldots, c_{p}.

- Then we have

$$
\begin{aligned}
0 & =0 \cdot u_{1}=\left(c_{1} u_{1}+\ldots+c_{p} u_{p}\right) \cdot u_{1} \\
& =\left(c_{1} u_{1}\right) \cdot u_{1}+\ldots+\left(c_{p} u_{p}\right) \cdot u_{1} \\
& =c_{1}\left(u_{1} \cdot u_{1}\right)+\ldots+c_{p}\left(u_{p} \cdot u_{1}\right)=c_{1}\left(u_{1} \cdot u_{1}\right)
\end{aligned}
$$

because u_{1} is orthogonal to u_{2}, \ldots, u_{p}.

- Since u_{1} is nonzero, $u_{1} \cdot u_{1}$ is not zero and so $c_{1}=0$.
- Similarly, c_{2}, \ldots, c_{p} must be zero.

Proof of Theorem 4

PF. Let $c_{1} u_{1}+\ldots+c_{p} u_{p}=0$ for some scalars c_{1}, \ldots, c_{p}.

- Then we have

$$
\begin{aligned}
0 & =0 \cdot u_{1}=\left(c_{1} u_{1}+\ldots+c_{p} u_{p}\right) \cdot u_{1} \\
& =\left(c_{1} u_{1}\right) \cdot u_{1}+\ldots+\left(c_{p} u_{p}\right) \cdot u_{1} \\
& =c_{1}\left(u_{1} \cdot u_{1}\right)+\ldots+c_{p}\left(u_{p} \cdot u_{1}\right)=c_{1}\left(u_{1} \cdot u_{1}\right)
\end{aligned}
$$

because u_{1} is orthogonal to u_{2}, \ldots, u_{p}.

- Since u_{1} is nonzero, $u_{1} \cdot u_{1}$ is not zero and so $c_{1}=0$.
- Similarly, c_{2}, \ldots, c_{p} must be zero.
- Thus S is linearly independent.

Orthogonal basis

- An orthogonal basis for a subspace W of \mathbf{R}^{n} is a basis for W that is also an orthogonal set.

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \text { ba< } 2 \text { fr }{ }^{7}
$$

Orthogonal basis

- An orthogonal basis for a subspace W of \mathbf{R}^{n} is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbf{R}^{n}. For each y in W, the weights in the linear combination $\underline{y=c_{1} u_{1}+\ldots+c_{p} u_{p}}$ are given by $\underbrace{}_{j=\frac{y \cdot u_{j}}{c_{j} \cdot u_{j}}}$ for $j=1, \ldots, p$.

Orthogonal basis

- An orthogonal basis for a subspace W of \mathbf{R}^{n} is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbf{R}^{n}. For each y in W, the weights in the linear combination $y=c_{1} u_{1}+\ldots+c_{p} u_{p}$ are given by $c_{j}=\frac{y \cdot u_{j}}{u_{j} \cdot u_{j}}$ for $j=1, \ldots, p$.

PF. The orthogonality of $\left\{u_{1}, \ldots, u_{p}\right\}$ shows that

$$
y \cdot u_{1}=\left(c_{1} u_{1}+\ldots+c_{p} u_{p}\right) \cdot u_{1}=c_{1}\left(u_{1} \cdot u_{1}\right)
$$

Orthogonal basis

- An orthogonal basis for a subspace W of \mathbf{R}^{n} is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbf{R}^{n}. For each y in W, the weights in the linear combination $y=c_{1} u_{1}+\ldots+c_{p} u_{p}$ are given by $c_{j}=\frac{y \cdot u_{j}}{u_{j} \cdot u_{j}}$ for $j=1, \ldots, p$.

PF. The orthogonality of $\left\{u_{1}, \ldots, u_{p}\right\}$ shows that

$$
y \cdot u_{1}=\left(c_{1} u_{1}+\ldots+c_{p} u_{p}\right) \cdot u_{1}=c_{1}\left(u_{1} \cdot u_{1}\right)
$$

- Since $u_{1} \cdot u_{1}$ is not zero, the equation above can be solved for c_{1}.

Orthogonal basis

- An orthogonal basis for a subspace W of \mathbf{R}^{n} is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbf{R}^{n}. For each y in W, the weights in the linear combination $y=c_{1} u_{1}+\ldots+c_{p} u_{p}$ are given by $c_{j}=\frac{y \cdot u_{j}}{u_{j} \cdot u_{j}}$ for $j=1, \ldots, p$.

PF. The orthogonality of $\left\{u_{1}, \ldots, u_{p}\right\}$ shows that

$$
y \cdot u_{1}=\left(c_{1} u_{1}+\ldots+c_{p} u_{p}\right) \cdot u_{1}=c_{1}\left(u_{1} \cdot u_{1}\right)
$$

- Since $u_{1} \cdot u_{1}$ is not zero, the equation above can be solved for c_{1}.
- To find c_{j}, we can similarly compute $y \cdot u_{j}$ and solve for c_{j}.

Orthogonal projection

- Given a nonzero vector u in \mathbf{R}^{n}, consider the problem of decomposing a vector y in \mathbf{R}^{n} into the sum of two vectors, one a multiplier of u and the other orthogonal to u.

Orthogonal projection

- Given a nonzero vector u in \mathbf{R}^{n}, consider the problem of decomposing a vector y in \mathbf{R}^{n} into the sum of two vectors, one a multiplier of u and the other orthogonal to u.
- We wish to write $y=\hat{y}+z$, where $\hat{y}=\alpha u$ for some scalar α and z is some vector orthogonal to u.

Finding α to make $\mathbf{y}-\hat{\mathbf{y}}$ orthogonal to \mathbf{u}.

$$
\frac{z \perp v}{y \cdot u-\alpha-u \cdot u=0 \quad \alpha u \cdot u=y \cdot u \Rightarrow \alpha=\frac{y \cdot u}{u \cdot u}} \quad \begin{aligned}
& \hat{y}) \cdot u=0 \quad y \cdot u-\hat{y} \cdot u=0 \\
& \text { orthogonal tout }
\end{aligned}
$$

Orthogonal projection

- Given a nonzero vector u in \mathbf{R}^{n}, consider the problem of decomposing a vector y in \mathbf{R}^{n} into the sum of two vectors, one a multiplier of u and the other orthogonal to u.
- We wish to write $y=\hat{y}+z$, where $\hat{y}=\alpha u$ for some scalar α and z is some vector orthogonal to u.

Finding α to make $\mathbf{y}-\hat{\mathbf{y}}$ orthogonal to \mathbf{u}.

- Given any scalar α, let $z=y-\alpha u$. Then $y-\hat{y}$ is orthogonal to u if and only if $0=(y-\alpha u) \cdot u=y \cdot u-\alpha u \cdot u$.

Orthogonal projection

- Given a nonzero vector u in \mathbf{R}^{n}, consider the problem of decomposing a vector y in \mathbf{R}^{n} into the sum of two vectors, one a multiplier of u and the other orthogonal to u.
- We wish to write $y=\hat{y}+z$, where $\hat{y}=\alpha u$ for some scalar α and z is some vector orthogonal to u.

Finding α to make $\mathbf{y}-\hat{\mathbf{y}}$ orthogonal to \mathbf{u}.

- Given any scalar α, let $z=y-\alpha u$. Then $y-\hat{y}$ is orthogonal to u if and only if $0=(y-\alpha u) \cdot u=y \cdot u-\alpha u \cdot u$.
- That is, $y=\hat{y}+z$ with z orthogonal to u if and only if $\alpha=\frac{y \cdot u}{u \cdot u}$ and $\hat{y}=\frac{y \cdot u}{u \cdot u} u$.
- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- If c is any nonzero scalar and if u is replaced by $c u$ in the definition of \hat{y}, then the orthogonal projection of y onto $c u$ is exactly the same as the orthogonal projection of y onto u.
- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- If c is any nonzero scalar and if u is replaced by $c u$ in the definition of \hat{y}, then the orthogonal projection of y onto $c u$ is exactly the same as the orthogonal projection of y onto u.
- Hence this projection is determined by the subspace L spanned by u (the line through u and 0).
- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- If c is any nonzero scalar and if u is replaced by $c u$ in the definition of \hat{y}, then the orthogonal projection of y onto $c u$ is exactly the same as the orthogonal projection of y onto u.
- Hence this projection is determined by the subspace L spanned by u (the line through u and 0).
- Sometimes \hat{y} is denoted by projzy and is called the orthogonal projection of y onto L.
- The vector \hat{y} is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.
- If c is any nonzero scalar and if u is replaced by $c u$ in the definition of \hat{y}, then the orthogonal projection of y onto $c u$ is exactly the same as the orthogonal projection of y onto u.
- Hence this projection is determined by the subspace L spanned by u (the line through u and 0).
- Sometimes \hat{y} is denoted by projzy and is called the orthogonal projection of y onto L.
- That is,

Example

Ex. Let $y=\left[\begin{array}{ll}7 & 6\end{array}\right]^{T}$ and $u=\left[\begin{array}{ll}4 & 2\end{array}\right]^{T}$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $\operatorname{Span}\{u\}$ and one orthogonal to u.

$$
\begin{aligned}
\operatorname{Prg}_{L} y & =\frac{y \cdot u}{h \cdot 11} u=\frac{4 \cdot 7+6 \cdot 2}{4 \cdot 4+2 \cdot 2}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=2\left[\begin{array}{l}
4 \\
v
\end{array}\right] \\
& =\left[\begin{array}{c}
8 \\
4
\end{array}\right] \\
z & =y-\operatorname{Rn}_{6}^{1} y=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Example

Ex. Let $y=\left[\begin{array}{ll}7 & 6\end{array}\right]^{T}$ and $u=\left[\begin{array}{ll}4 & 2\end{array}\right]^{T}$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $\operatorname{Span}\{u\}$ and one orthogonal to u.

Sol. Compute $y \cdot u=40$ and $u \cdot u=20$.

Example

Ex. Let $y=\left[\begin{array}{ll}7 & 6\end{array}\right]^{T}$ and $u=\left[\begin{array}{ll}4 & 2\end{array}\right]^{T}$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $\operatorname{Span}\{u\}$ and one orthogonal to u.

Sol. Compute $y \cdot u=40$ and $u \cdot u=20$.

- The orthogonal projection of y onto u is $\hat{y}=\frac{y \cdot u}{u \cdot u} u=2 u=\left[\begin{array}{ll}8 & 4\end{array}\right]^{T}$.

Example

Ex. Let $y=\left[\begin{array}{ll}7 & 6\end{array}\right]^{T}$ and $u=\left[\begin{array}{ll}4 & 2\end{array}\right]^{T}$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $\operatorname{Span}\{u\}$ and one orthogonal to u.

Sol. Compute $y \cdot u=40$ and $u \cdot u=20$.

- The orthogonal projection of y onto u is $\hat{y}=\frac{y \cdot u}{u \cdot u} u=2 u=\left[\begin{array}{ll}8 & 4\end{array}\right]^{T}$.
- And the component of y orthogonal to u is

$$
y-\hat{y}=\left[\begin{array}{ll}
7 & 6
\end{array}\right]^{T}-\left[\begin{array}{ll}
8 & 4
\end{array}\right]^{T}=\left[\begin{array}{ll}
-1 & 2
\end{array}\right]^{T} .
$$

Example

Ex. Let $y=\left[\begin{array}{ll}7 & 6\end{array}\right]^{T}$ and $u=\left[\begin{array}{ll}4 & 2\end{array}\right]^{T}$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in $\operatorname{Span}\{u\}$ and one orthogonal to u.

Sol. Compute $y \cdot u=40$ and $u \cdot u=20$.

- The orthogonal projection of y onto u is $\hat{y}=\frac{y \cdot u}{u \cdot u} u=2 u=\left[\begin{array}{ll}8 & 4\end{array}\right]^{T}$.
- And the component of y orthogonal to u is

$$
y-\hat{y}=\left[\begin{array}{ll}
7 & 6
\end{array}\right]^{T}-\left[\begin{array}{ll}
8 & 4
\end{array}\right]^{T}=\left[\begin{array}{ll}
-1 & 2
\end{array}\right]^{T} .
$$

- That is, $\left[\begin{array}{ll}7 & 6\end{array}\right]=\left[\begin{array}{ll}8 & 4\end{array}\right]+\left[\begin{array}{ll}-1 & 2\end{array}\right]$.

Orthonormal sets

- A set $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors.

Orthonormal sets

- A set $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.

Orthonormal sets

- A set $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.
- The simplest example of an orthonormal set is the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for \mathbf{R}^{n}.

Orthonormal sets

- A set $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.
- The simplest example of an orthonormal set is the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for \mathbf{R}^{n}.
- Any nonempty subset of $\left\{e_{1}, \cdots, e_{n}\right\}$ is orthonormal, too

Orthonormal columns of a matrix

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^{T} U=l$.

Orthonormal columns of a matrix

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only f $U^{T} U=1$.

PF. To simplify notation, we suppose U has only three columns, $U=\left[\begin{array}{lll}u_{1} & u_{2} & u_{2}\end{array}\right]$.

Orthonormal columns of a matrix

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^{T} U=I$.

PF. To simplify notation, we suppose U has only three columns, $U=\left[\begin{array}{lll}u_{1} & u_{2} & u_{2}\end{array}\right]$.

- Then

$$
U^{T} U=\left[\begin{array}{l}
u_{1}^{T} \\
u_{2}^{T} \\
u_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{lll}
u_{1}^{T} u_{1} & u_{1}^{T} u_{2} & u_{1}^{T} u_{3} \\
u_{2}^{T} u_{1} & u_{2}^{T} u_{2} & u_{2}^{T} u_{3} \\
u_{3}^{T} u_{1} & u_{3}^{T} u_{2} & u_{3}^{T} u_{3}
\end{array}\right]
$$

Orthonormal columns of a matrix

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^{T} U=I$.

PF. To simplify notation, we suppose U has only three columns, $U=\left[\begin{array}{lll}u_{1} & u_{2} & u_{2}\end{array}\right]$.

- Then

$$
U^{T} U=\left[\begin{array}{l}
u_{1}^{T} \\
u_{2}^{T} \\
u_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{lll}
u_{1}^{T} u_{1} & u_{1}^{T} u_{2} & u_{1}^{T} u_{3} \\
u_{2}^{T} u_{1} & u_{2}^{T} u_{2} & u_{2}^{T} u_{3} \\
u_{3}^{T} u_{1} & u_{3}^{T} u_{2} & u_{3}^{T} u_{3}
\end{array}\right]
$$

- The columns of U are orthogonal if and only if $u_{i}^{T} u_{j}=0$ for $i \neq j$.

Orthonormal columns of a matrix

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^{T} U=I$.

PF. To simplify notation, we suppose U has only three columns, $U=\left[\begin{array}{lll}u_{1} & u_{2} & u_{2}\end{array}\right]$.

- Then

$$
U^{T} U=\left[\begin{array}{l}
u_{1}^{T} \\
u_{2}^{T} \\
u_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{lll}
u_{1}^{T} u_{1} & u_{1}^{T} u_{2} & u_{1}^{T} u_{3} \\
u_{2}^{T} u_{1} & u_{2}^{T} u_{2} & u_{2}^{T} u_{3} \\
u_{3}^{T} u_{1} & u_{3}^{T} u_{2} & u_{3}^{T} u_{3}
\end{array}\right]
$$

- The columns of U are orthogonal if and only if $u_{i}^{T} u_{j}=0$ for $i \neq j$.
- The columns of U all have unit length if and only if $u_{i}^{T} u_{i}=1$ for $i=1,2,3$.

Orthonormal columns of a matrix

- Theorem 6: an $n \times m$ matrix U has orthonormal columns if and only if $U^{T} U=I$.

PF. To simplify notation, we suppose U has only three columns, $U=\left[\begin{array}{lll}u_{1} & u_{2} & u_{2}\end{array}\right]$.

- Then

$$
U^{T} U=\left[\begin{array}{l}
u_{1}^{T} \\
u_{2}^{T} \\
u_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{lll}
u_{1}^{T} u_{1} & u_{1}^{T} u_{2} & u_{1}^{T} u_{3} \\
u_{2}^{T} u_{1} & u_{2}^{T} u_{2} & u_{2}^{T} u_{3} \\
u_{3}^{T} u_{1} & u_{3}^{T} u_{2} & u_{3}^{T} u_{3}
\end{array}\right]
$$

- The columns of U are orthogonal if and only if $u_{i}^{T} u_{j}=0$ for $i \neq j$.
- The columns of U all have unit length if and only if $u_{i}^{T} u_{i}=1$ for $i=1,2,3$.
- From above conditions, the theorem follows immediately.

Orthonormal sets

- Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbf{R}^{n}. Then

Orthonormal sets

- Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbf{R}^{n}. Then
- $\|U x\|=\|x\|$

Orthonormal sets

- Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbf{R}^{n}. Then
- $\|U x\|=\|x\|$
- $(U x) \cdot(U y)=x \cdot y$

Orthonormal sets

- Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbf{R}^{n}. Then
- $\|U x\|=\|x\|$
- $\left(U_{x}\right) \cdot\left(U_{y}\right)=x \cdot y$
- $(U x) \cdot\left(U_{y}\right)=0$ if and only if $x \cdot y=0$.

Orthonormal sets

- Theorem 7: Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbf{R}^{n}. Then
- $\|U x\|=\|x\|$
- $\left(U_{x}\right) \cdot\left(U_{y}\right)=x \cdot y$
- $(U x) \cdot\left(U_{y}\right)=0$ if and only if $x \cdot y=0$.
- The above properties say that the linear mapping $x \rightarrow U x$ preserves lengths and orthogonality.
- The orthogonal projection of a point in \mathbf{R}^{2} onto a line through the origin has an important analogue in \mathbf{R}^{n}.
- The orthogonal projection of a point in \mathbf{R}^{2} onto a line through the origin has an important analogue in \mathbf{R}^{n}.
- Given a vector y and a subspace W in \mathbf{R}^{n}, there is a vector \hat{y} in W such that (1) \hat{y} is the unique vector in W for which $y-\hat{y}$ is orthogonal to W, and (2) \hat{y} is the unique vector in W closest to y.

- The orthogonal projection of a point in \mathbf{R}^{2} onto a line through the origin has an important analogue in \mathbf{R}^{n}.
- Given a vector y and a subspace W in \mathbf{R}^{n}, there is a vector \hat{y} in W such that (1) \hat{y} is the unique vector in W for which $y-\hat{y}$ is orthogonal to W, and (2) \hat{y} is the unique vector in W closest to y.

- These two properties of \hat{y} provide the key to finding the least-squares solutions of linear systems.
- Theorem 8: Let W be a subspace of \mathbf{R}^{n}. Then each y in \mathbf{R}^{n} can be written uniquely in the form $y=\hat{y}+z$, where \hat{y} is in W and z is in W^{\perp}.
- Theorem 8: Let W be a subspace of \mathbf{R}^{n}. Then each y in \mathbf{R}^{n} can be written uniquely in the form $y=\hat{y}+z$, where \hat{y} is in W and z is in W^{\perp}.
- In fact, if $\left\{u_{1} \ldots \ldots u_{p}\right\}$ is any orthogonal basis of W, then

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p} \text { and } z=y-\hat{y}
$$

- Theorem 8: Let W be a subspace of \mathbf{R}^{n}. Then each y in \mathbf{R}^{n} can be written uniquely in the form $y=\hat{y}+z$, where \hat{y} is in W and z is in W^{\perp}.
- In fact, if $\left\{u_{1} \ldots, u_{p}\right\}$ is any orthogonal basis of W, then

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p} \text { and } z=y-\hat{y}
$$

PF. Similar to the proof of Theorem 5, we get \hat{y}.

- Theorem 8: Let W be a subspace of \mathbf{R}^{n}. Then each y in \mathbf{R}^{n} can be written uniquely in the form $y=\hat{y}+z$, where \hat{y} is in W and z is in W^{\perp}.
- In fact, if $\left\{u_{1} \ldots, \mu_{R}\right\}$ is any orthogonal basis of W, then

$$
\hat{y}=\left(\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}}\right) \psi_{1}+\ldots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p} \text { and } z=y-\hat{y}
$$

PF. Similar to the proof of Theorem 5, we get \hat{y}.

- To see that $z=y-\hat{y}$ is in W^{\perp}, we observe that z is orthogonal to each u_{j} in the basis for W, thus to every vector in W.

$$
\begin{aligned}
& \left.z \perp u_{i}\right)(y-\hat{y}) \cdot u \\
& y=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{p} u_{p}
\end{aligned}
$$

$$
u_{i} v
$$

$$
\begin{aligned}
& y \cdot u_{i}=\hat{y} \cdot u_{i}=0 \\
& y \cdot u_{i}=\left(\overline{C_{i}}\right) \underline{u_{i}} \cdot u_{i}
\end{aligned}
$$

- Theorem 8: Let W be a subspace of \mathbf{R}^{n}. Then each y in \mathbf{R}^{n} can be written uniquely in the form $y=\hat{y}+z$, where \hat{y} is in W and z is in W^{\perp}.
- In fact, if $\left\{u_{1} \ldots, u_{p}\right\}$ is any orthogonal basis of W, then

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p} \text { and } z=y-\hat{y}
$$

PF. Similar to the proof of Theorem 5, we get \hat{y}.

- To see that $z=y-\hat{y}$ is in W^{\perp}, we observe that z is orthogonal to each u_{j} in the basis for W, thus to every vector in W.
- To show the the decomposition is unique, suppose y can also be written as $y=\hat{y_{1}}+z_{1}$, with $\hat{y_{1}}$ in W and z_{1} in W^{\perp}.
- Theorem 8: Let W be a subspace of \mathbf{R}^{n}. Then each y in \mathbf{R}^{n} can be written uniquely in the form $y=\hat{y}+z$, where \hat{y} is in W and z is in W^{\perp}.
- In fact, if $\left\{u_{1} \ldots, u_{p}\right\}$ is any orthogonal basis of W, then

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p} \text { and } z=y-\hat{y}
$$

PF. Similar to the proof of Theorem 5, we get \hat{y}.

- To see that $z=y-\hat{y}$ is in W^{\perp}, we observe that z is orthogonal to each u_{j} in the basis for W, thus to every vector in W.
- To show the the decomposition is unique, suppose y can also be written as $y=\hat{y_{1}}+z_{1}$, with $\hat{y_{1}}$ in W and z_{1} in W^{\perp}.
- Then $y=\underline{T_{W}+z=} \underline{\hat{y}_{1}+z_{1}}$, and so $\hat{y}-\hat{y}_{1}=z^{z_{1}-z}$.
- Theorem 8: Let W be a subspace of \mathbf{R}^{n}. Then each y in \mathbf{R}^{n} can be written uniquely in the form $y=\hat{y}+z$, where \hat{y} is in W and z is in W^{\perp}.
- In fact, if $\left\{u_{1} \ldots, u_{p}\right\}$ is any orthogonal basis of W, then

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p} \text { and } z=y-\hat{y}
$$

PF. Similar to the proof of Theorem 5, we get \hat{y}.

- To see that $z=y-\hat{y}$ is in W^{\perp}, we observe that z is orthogonal to each u_{j} in the basis for W, thus to every vector in W.
- To show the the decomposition is unique, suppose y can also be written as $y=\hat{y_{1}}+z_{1}$, with $\hat{y_{1}}$ in W and z_{1} in W^{\perp}.
- Then $y=\hat{y}+z=\hat{y_{1}}+z_{1}$, and so $\hat{y}-\hat{y_{1}}=z_{1}-z$.
- So vector $v=\hat{y}-\hat{y_{1}}$ is in W, but also in W^{\perp}, as $z-z_{1}$ is in W^{\perp}.
- Theorem 8: Let W be a subspace of \mathbf{R}^{n}. Then each y in \mathbf{R}^{n} can be written uniquely in the form $y=\hat{y}+z$, where \hat{y} is in W and z is in W^{\perp}.
- In fact, if $\left\{u_{1}, u_{p}\right\}$ is any orthogoral basis of W, then

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p} \text { and } z=y-\hat{y}
$$

PF. Similar to the proof of Theorem 5, we get \hat{y}.

- To see that $z=y-\hat{y}$ is in W^{\perp}, we observe that z is orthogonal to each u_{j} in the basis for W, thus to every vector in W.
- To show the the decomposition is unique, suppose y can also be written as $y=\hat{y_{1}}+z_{1}$, with $\hat{y_{1}}$ in W and z_{1} in W^{\perp}.
- Then $y=\hat{y}+z=\hat{y_{1}}+z_{1}$, and so $\hat{y}-\hat{y_{1}}=z_{1}-z$.
- So vector $v=\hat{y}-\hat{y_{1}}$ is in W, but also in W^{\perp}, as $z-z_{1}$ is in W^{\perp}.
- Hence $v \cdot v=0$, and implies that $v=0$. So $\hat{y}=\hat{y_{1}}$ and $z=z_{1}$.

Example
Ex. Let $u_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Observe that $\left\{u_{1}, u_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$. Write y as the sum of a vector in W and a vector orthogonal to W.

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{9}{30}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{3}{6}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

Example

Ex. Let $u_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Observe that $\left\{u_{1}, u_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$. Write y as the sum of a vector in W and a vector orthogonal to W.
Sol. Let the vector in W be \hat{y} and the vector orthogonal to W be $z=y-\hat{y}$.

Example

Ex. Let $u_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Observe that $\left\{u_{1}, u_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$. Write y as the sum of a vector in W and a vector orthogonal to W.
Sol. Let the vector in W be \hat{y} and the vector orthogonal to W be $z=y-\hat{y}$.

- Then

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{9}{30}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{3}{6}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]
$$

Example

Ex. Let $u_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Observe that $\underbrace{\left\{u_{1}, u_{2}\right\} \text { is }}$ an orthogonal basis for $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$. Write y as the sum of a vector in W and a vector orthogonal to W.
Sol. Let the vector in W be \hat{y} and the vector orthogonal to W be $z=y-\hat{y}$.

- Then

$$
\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{9}{30}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{3}{6}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]
$$

- And $z=y-\hat{y}=\left[\begin{array}{c}7 / 5 \\ 0 \\ 14 / 5\end{array}\right]$

Properties of orthogonal projections

- If $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthogonal basis for W and if y happens to be in W, then the formula for projwy is exactly the same as the representation of y given in Theorem 5.

Properties of orthogonal projections

- If $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthogonal basis for W and if y happens to be in W, then the formula for projwy is exactly the same as the representation of y given in Theorem 5 .
- In this case, $\operatorname{proj}^{2} y=y$. In particular, if y is in $W=\operatorname{Span}\left\{u_{1}, \ldots, u_{p}\right\}$, then $\operatorname{proj}_{w} y=y$.

The best approximation theorem

- Theorem 9. Let W be a subspace of \mathbf{R}^{n}, let y be any vector in \mathbf{R}^{n}, and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point $n W$ to y, in the sense that $\|y-\hat{y}\|<\|y-v\|$ for all v in W distinct from \hat{y}.

The best approximation theorem

- Theorem 9. Let W be a subspace of \mathbf{R}^{n}, let y be any vector in \mathbf{R}^{n}, and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that $\|y-\hat{y}\|<\|y-v\|$ for all v in W distinct from \hat{y}.
- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.

The best approximation theorem

- Theorem 9. Let W be a subspace of \mathbf{R}^{n}, let y be any vector in \mathbf{R}^{n}, and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that $\|y-\hat{y}\|<\|y-v\|$ for all v in W distinct from \hat{y}.
- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.
- The distance from y to v, given by $\|y-v\|$, can be regarded as the 'error' f using v in place of y. Theorem 9 says that this error is minımized when $v=\hat{y}$.

The best approximation theorem

- Theorem 9. Let W be a subspace of \mathbf{R}^{n}, let y be any vector in \mathbf{R}^{n}, and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that $\|y-\hat{y}\|<\|y-v\|$ for all v in W distinct from \hat{y}.
- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.
- The distance from y to v, given by $\|y-v\|$, can be regarded as the "error' of using v in place of y. Theorem 9 says that this error is minimized when $v=\hat{y}$.
- Inequality $\|y-\hat{y}\|<\|y-v\|$ leads to a new proof that \hat{y} does not depend on the particular orthogonal basis used to compute it.

The best approximation theorem

- Theorem 9. Let W be a subspace of \mathbf{R}^{n}, let y be any vector in \mathbf{R}^{n}, and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that $\|y-\hat{y}\|<\|y-v\|$ for all v in W distinct from \hat{y}.
- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.
- The distance from y to v, given by $\|y-v\|$, can be regarded as the "error' of using v in place of y. Theorem 9 says that this error is minimized when $v=\hat{y}$.
- Inequality $\|y-\hat{y}\|<\|y-v\|$ leads to a new proof that \hat{y} does not depend on the particular orthogonal basis used to compute it.
- If a different orthogonal basis for W were used to construct an orthogonal projection of y, then this projection would also be the closest point in W to y, namely, \hat{y}.

Proof of Theorem 9

PF. Take v in W distinct from \hat{y}. Then $\hat{y}-v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y}.

Proof of Theorem 9

PF. Take v in W distinct from \hat{y}. Then $\hat{y}-v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y}.

- By the orthogonal decomposition theorem, $y-\hat{y}$ is orthogonal to W.

Proof of Theorem 9

PF. Take v in W distinct from \hat{y}. Then $\hat{y}-v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y}.

- By the orthogonal decomposition theorem, $y-\hat{y}$ is orthogonal to W.
- In particular, $y-\hat{y}$ is orthogonal to $\hat{y}-v$ (which is in W).

Proof of Theorem 9

PF. Take v in W distinct from \hat{y}. Then $\hat{y}-v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y}.

- By the orthogonal decomposition theorem, $y-\hat{y}$ is orthogonal to W.
- In particular, $y-\hat{y}$ is orthogonal to $\hat{y}-v$ (which is in W).
- Since $y-v=(y-\hat{y})+(\hat{y}-v)$, the Pythagorean Theorem gives $\|y-v\|^{2}=\|y-\hat{y}\|^{2}+\|\hat{y}-v\|^{2}$.

Proof of Theorem 9

PF. Take v in W distinct from \hat{y}. Then $\hat{y}-v$ is in W.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y}.

- By the orthogonal decomposition theorem, $y-\hat{y}$ is orthogonal to W.
- In particular, $y-\hat{y}$ is orthogonal to $\hat{y}-v$ (which is in W).
- Since $y-v=(y-\hat{y})+(\hat{y}-v)$, the Pythagorean Theorem gives $\|y-v\|^{2}=\|y-\hat{y}\|^{2}+\|\hat{y}-v\|^{2}$.
- Now $\|\hat{y}-v\|^{2}>0$ because $\hat{y}-v \neq 0$, and so inequality follows immediately.

Example

- The distance from a point y in \mathbf{R}^{n} to a subspace W is defined as the distance from y to the nearest point in W.

Example

- The distance from a point y in \mathbf{R}^{n} to a subspace W is defined as the distance from y to the nearest point in W.
Ex. Find the distance from y to $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$, where

$$
y=\left[\begin{array}{c}
-1 \\
-5 \\
10
\end{array}\right], u_{1}=\underbrace{1}_{u_{1} \cdot u_{2}=0 \Rightarrow c_{5}^{-2} 1}], u_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \quad u_{1} \perp u_{2}
$$

Example

- The distance from a point y in \mathbf{R}^{n} to a subspace W is defined as the distance from y to the nearest point in W.
Ex. Find the distance from y to $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$, where

$$
y=\left[\begin{array}{l}
-1 \\
-5 \\
10
\end{array}\right], u_{1}=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Sol. By the Best Approximation Theorem, the distance from y to W is $\|y-\hat{y}\|$, where $\hat{y}=\operatorname{proj} w y$.

Example

- The distance from a point y in \mathbf{R}^{n} to a subspace W is defined as the distance from y to the nearest point in W.
Ex. Find the distance from y to $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$, where

$$
y=\left[\begin{array}{l}
-1 \\
-5 \\
10
\end{array}\right], u_{1}=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Sol. By the Best Approximation Theorem, the distance from y to W is $\|y-\hat{y}\|$, where $\hat{y}=\operatorname{proj} w y$.

- So $\hat{y}=\frac{15}{30} u_{1}+\frac{-21}{6} u_{2}=\left[\begin{array}{c}-1 \\ -8 \\ 4\end{array}\right]$

$$
\hat{y}=\frac{y_{\cdot} \cdot u_{1}}{u_{i} u_{1}} u_{1}+\frac{y_{1} u_{2}}{u_{i} u_{2}} u_{2}
$$

Example

- The distance from a point y in \mathbf{R}^{n} to a subspace W is defined as the distance from y to the nearest point in W.
Ex. Find the distance from y to $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$, where

$$
y=\left[\begin{array}{l}
-1 \\
-5 \\
10
\end{array}\right], u_{1}=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Sol. By the Best Approximation Theorem, the distance from y to W is $\|y-\hat{y}\|$, where $\hat{y}=\operatorname{proj} w y$.

- So $\hat{y}=\frac{15}{30} u_{1}+\frac{-21}{6} u_{2}=\left[\begin{array}{c}-1 \\ -8 \\ 4\end{array}\right]$
- It follows that $y-\hat{y}=\left[\begin{array}{lll}0 & 3 & 6\end{array}\right]^{T}$

Example

- The distance from a point y in \mathbf{R}^{n} to a subspace W is defined as the distance from y to the nearest point in W.
Ex. Find the distance from y to $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$, where

$$
y=\left[\begin{array}{l}
-1 \\
-5 \\
10
\end{array}\right], u_{1}=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Sol. By the Best Approximation Theorem, the distance from y to W is $\|y-\hat{y}\|$, where $\hat{y}=\operatorname{proj} w y$.

- So $\hat{y}=\frac{15}{30} u_{1}+\frac{-21}{6} u_{2}=\left[\begin{array}{c}-1 \\ -8 \\ 4\end{array}\right]$
- It follows that $y-\hat{y}=\left[\begin{array}{lll}0 & 3 & 6\end{array}\right]^{T}$
- So the distance is $\|y-\hat{y}\|=\sqrt{(y-\hat{y}) \cdot(y-\hat{y})}=\sqrt{45}$.

Properties of Orthogonormal projections

- Theorem 10. If $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthogonormal basis for a subspace W of \mathbf{R}^{n}, then

$$
\operatorname{proj} w y=\left(y \cdot u_{1}\right) u_{1}+\left(y \cdot u_{2}\right) u_{2}+\ldots+\left(y \cdot u_{p}\right) u_{p}
$$

If $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$, then $\operatorname{proj}_{W} y=U U^{T} y$ for all $y \in \mathbf{R}^{n}$.

