Section 6.4-6.'s The Gram-Schmit Process, least-square problems, and applications to linear models

Gexin Yu
gyu@wm.edu

College of William and Mary

Example

Ex. Let $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$, and $x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right], y=\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4\end{array}\right]$, and
$W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$. Find the projection of y onto W.

$$
\operatorname{Proj} y=\frac{y \cdot x_{1}}{x_{1} \cdot x_{1}} x_{1}+\frac{y \cdot x_{2}}{x_{2} x_{2}} x_{2}+\frac{y \cdot x_{3}}{x_{3} \cdot x_{3}} x_{3}
$$

WRONG! not inthogmal sat

Orthogonal basis

- Given a basis for a subspace W of \mathbf{R}^{n}, how to find an orthogonal basis for W ?
- Let $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ be a basis for W.
- The idea is as follows: let $v_{1}=x_{1}$ and take $W_{1}=\operatorname{Span}\left\{v_{1}\right\}$, then project x_{2} to W_{1} and let v_{2} be the component of x_{2} orthogonal to W_{1}; then let $W_{2}=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$, and project x_{3} to W_{2} and let v_{3} be the component of x_{3} orthogonal to W_{2}. Then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis for W; and so on.
- This is so-called Gram-Schmidt Process.

The Gram-Schmidt Process

- Given a basis $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ for a nonzero subspace W of \mathbf{R}^{n}, define

$$
\begin{aligned}
& v_{1}=x_{1} \\
& v_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-X_{2}-P \cdot \hat{\jmath} x_{2} \\
& v_{3}=x_{3}-\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=x_{3}-P \cdot{ }_{j} w_{2} \\
& \cdots \\
& v_{p}=x_{p}-\frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}-\ldots-\frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}
\end{aligned}
$$

Then $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is an orthogonal basis for W.

Example

Ex. Let $W=\operatorname{span}\left\{x_{1}, x_{2}\right\}$, where $x_{1}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. Construct an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W.

Example

Ex. Let $W=\operatorname{span}\left\{x_{1}, x_{2}\right\}$, where $x_{1}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. Construct an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W.

- So let $v_{1}=x_{1}$.

Example

Ex. Let $W=\operatorname{span}\left\{x_{1}, x_{2}\right\}$, where $x_{1}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. Construct an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W.

- So let $v_{1}=x_{1}$.
- let

$$
v_{2}=x_{2}-p=x_{2}-\frac{x_{2} \cdot x_{1}}{x_{1} \cdot x_{1}} x_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]-\frac{15}{45}\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
$$

Example

Ex. Let $W=\operatorname{span}\left\{x_{1}, x_{2}\right\}$, where $x_{1}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. Construct an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W.

- So let $v_{1}=x_{1}$.
- let

$$
v_{2}=x_{2}-p=x_{2}-\frac{x_{2} \cdot x_{1}}{x_{1} \cdot x_{1}} x_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]-\frac{15}{45}\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
$$

- Then $\left\{v_{1}, v_{2}\right\}$ is an orthogonal basis for W.

Example

Ex. Let $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$, and $x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$.
Construct an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for W.

Example

Ex. Let $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$, and $x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$.
Construct an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for W.
$V_{1}=X_{1}$.

Example

Ex. Let $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$, and $x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$.
Construct an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for W.

- $v_{2}=x_{2}-\operatorname{proj}_{1} x_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]$.
- $v_{3}=x_{3}-\operatorname{proj}_{2} x_{3}=x_{3}-\left(\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}\right)=\left[\begin{array}{c}-3 / 8 \\ -13 / 24 \\ 11 / 24 \\ 11 / 24\end{array}\right]$.

Example

Ex. Let $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$, and $x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$.
Construct an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for W.

- $v_{2}=x_{2}-\operatorname{proj}_{1} x_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]$.
- $v_{3}=x_{3}-\operatorname{proj}_{2} x_{3}=x_{3}-\left(\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}\right)=\left[\begin{array}{c}-3 / 8 \\ -13 / 24 \\ 11 / 24 \\ 11 / 24\end{array}\right]$.
- $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis for W.

Least-square problems

Least-squares problems

- We know that some linear systems $A x=b$ may not be consistent.

Least-squares problems

- We know that some linear systems $A x=b$ may not be consistent.
- Note that no matter what x we select, the vector $A x$ will necessarily be in the column space of $A, \operatorname{Col} A$.

Least-squares problems

- We know that some linear systems $A x=b$ may not be consistent.
- Note that no matter what x we select, the vector $A x$ will necessarily be in the column space of $A, \operatorname{Col} A$.
- So we seek an x in $\operatorname{Col} A$ so that $A x$ is the closest point to b.

Least-squares problems

- We know that some linear systems $A x=b$ may not be consistent.
- Note that no matter what x we select, the vector $A x$ will necessarily be in the column space of $A, \operatorname{Col} A$.
- So we seek an x in $\operatorname{Col} A$ so that $A x$ is the closest point to b.
- Definition: If A is $m \times n$ and b in \mathbf{R}^{n}, a least-squares solution of $A x=b$ is an \hat{x} in \mathbf{R}^{n} such that $\|b-A \hat{x}\| \leq\|b-A x\|$ for all $x \in \mathbf{R}^{n}$.

Least-squares problems

- We know that some linear systems $A x=b$ may not be consistent.
- Note that no matter what x we select, the vector $A x$ will necessarily be in the column space of $A, \operatorname{Col} A$.
- So we seek an x in $\operatorname{Col} A$ so that $A x$ is the closest point to b.
- Definition: If A is $m \times n$ and b in \mathbf{R}^{n}, a least-squares solution of $A x=b$ is an \hat{x} in \mathbf{R}^{n} such that $\|b-A \hat{x}\| \leq\|b-A x\|$ for all $x \in \mathbf{R}^{n}$.

$$
\begin{array}{r}
u=\left[\begin{array}{l}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right] \\
\|u\|=\sqrt{u_{1}^{2}+\ldots r u_{n}^{2}}
\end{array}
$$

The vector \mathbf{b} is closer to $A \hat{\mathbf{x}}$ than to $A \mathbf{x}$ for other \mathbf{x}.

Solution to the general least-squares problem

- Given A and b, apply the Best Approximation Theorem to the subspace $\operatorname{Col} A$. Let $\hat{b}=\operatorname{proj}_{\mathrm{Col}} A b$.

Solution to the general least-squares problem

- Given A and b, apply the Best Approximation Theorem to the subspace $\operatorname{Col} A$. Let $\hat{b}=\operatorname{proj}_{\mathrm{Col}} A b$.
- Because \hat{b} is in the column space of A, the equation $A x=\hat{b}$ is consistent, and there is an \hat{x} in \mathbf{R}^{n} such that $A \hat{x}=\hat{b}$.

Solution to the general least-squares problem

- Given A and b, apply the Best Approximation Theorem to the subspace $\operatorname{Col} A$. Let $\hat{b}=\operatorname{proj}_{\mathrm{Col}} A b$.
- Because \hat{b} is in the column space of A, the equation $A x=\hat{b}$ is consistent, and there is an \hat{x} in \mathbf{R}^{n} such that $A \hat{x}=\hat{b}$.
- Since \hat{b} is the closest point in $\operatorname{Col} A$ to b, a vector \hat{x} is a least-squares solution of $A x=b$ if and only if \hat{x} satisfies $A \hat{x}=\hat{b}$.

$$
\begin{aligned}
& \text { lenst-sques solitn to } A x=b \\
& \text { find } \widehat{x} \text { sit } A \widehat{x}=\operatorname{Proj} b
\end{aligned}
$$

Solution to the general least-squares problem

- Given A and b, apply the Best Approximation Theorem to the subspace $\operatorname{Col} A$. Let $\hat{b}=\operatorname{proj}_{\mathrm{Col}} A b$.
- Because \hat{b} is in the column space of A, the equation $A x=\hat{b}$ is consistent, and there is an \hat{x} in \mathbf{R}^{n} such that $A \hat{x}=\hat{b}$.
- Since \hat{b} is the closest point in $\operatorname{Col} A$ to b, a vector \hat{x} is a least-squares solution of $A x=b$ if and only if \hat{x} satisfies $A \hat{x}=\hat{b}$.
- Such an \hat{x} in \mathbf{R}^{n} is a list of weights that will build \hat{b} out of the columns of A.

Solution to the general least-squares problem

- Given A and b, apply the Best Approximation Theorem to the subspace $\operatorname{Col} A$. Let $\hat{b}=\operatorname{proj}_{\mathrm{Col}} A b$.
- Because \hat{b} is in the column space of A, the equation $A x=\hat{b}$ is consistent, and there is an \hat{x} in \mathbf{R}^{n} such that $A \hat{x}=\hat{b}$.
- Since \hat{b} is the closest point in $\operatorname{Col} A$ to b, a vector \hat{x} is a least-squares solution of $A x=b$ if and only if \hat{x} satisfies $A \hat{x}=\hat{b}$.
- Such an \hat{x} in \mathbf{R}^{n} is a list of weights that will build \hat{b} out of the columns of A.
- Suppose \hat{x} satisfies $A \hat{x}=\hat{b}$.

Solution to the general least-squares problem

- Given A and b, apply the Best Approximation Theorem to the subspace $\operatorname{Col} A$. Let $\hat{b}=\operatorname{proj}_{\mathrm{Col}} A b$.
- Because \hat{b} is in the column space of A, the equation $A x=\hat{b}$ is consistent, and there is an \hat{x} in \mathbf{R}^{n} such that $A \hat{x}=\hat{b}$.
- Since \hat{b} is the closest point in $\operatorname{Col} A$ to b, a vector \hat{x} is a least-squares solution of $A x=b$ if and only if \hat{x} satisfies $A \hat{x}=\hat{b}$.
- Such an \hat{x} in \mathbf{R}^{n} is a list of weights that will build \hat{b} out of the columns of A.
- Suppose \hat{x} satisfies $A \hat{x}=\hat{b}$.
- By the Orthogonal Decomposition Theorem, the projection \hat{b} has the property that $b-\hat{b}$ is orthogonal to $\operatorname{Col} A$, so $b-A \hat{x}$ is orthogonal to each column of A.
- If a_{j} is any column of A, then $a_{j} \cdot(b-A \hat{x})=0$, and $a_{j}^{T}(b-A \hat{x})=0$.
- If a_{j} is any column of A, then $a_{j} \cdot(b-A \hat{x})=0$, and $a_{j}^{T}(b-A \hat{x})=0$.
- Since each a_{j}^{T} is a row of A^{T}, we have $A^{T}(b-A \hat{x})=0$.
- If a_{j} is any column of A, then $a_{j} \cdot(b-A \hat{x})=0$, and $a_{j}^{T}(b-A \hat{x})=0$.
- Since each a_{j}^{T} is a row of A^{T}, we have $A^{T}(b-A \hat{x})=0$.
- Thus $A^{T} b-A^{T} A \hat{x}=0$, and $A^{T} A \hat{x}=A^{T} b$.
- If a_{j} is any column of A, then $a_{j} \cdot(b-A \hat{x})=0$, and $a_{j}^{T}(b-A \hat{x})=0$.
- Since each a_{j}^{T} is a row of A^{T}, we have $A^{T}(b-A \hat{x})=0$.
- Thus $A^{T} b-A^{T} A \hat{x}=0$, and $A^{T} A \hat{x}=A^{T} b$.
- These calculations show that each least-squares solution of $A x=b$ satisfies the equation $A^{T} A x=A^{T} b$.
- If a_{j} is any column of A, then $a_{j} \cdot(b-A \hat{x})=0$, and $a_{j}^{T}(b-A \hat{x})=0$.
- Since each a_{j}^{T} is a row of A^{T}, we have $A^{T}(b-A \hat{x})=0$.
- Thus $A^{T} b-A^{T} A \hat{x}=0$, and $A^{T} A \hat{x}=A^{T} b$.
- These calculations show that each least-squares solution of $A x=b$ satisfies the equation $A^{T} A x=A^{T} b$.
- The matrix equation $A^{T} A x=A^{T} b$ represents a system of equations called the normal equations for $A x=b$.
- If a_{j} is any column of A, then $a_{j} \cdot(b-A \hat{x})=0$, and $a_{j}^{T}(b-A \hat{x})=0$.
- Since each a_{j}^{T} is a row of A^{T}, we have $A^{T}(b-A \hat{x})=0$.
- Thus $A^{T} b-A^{T} A \hat{x}=0$, and $A^{T} A \hat{x}=A^{T} b$.
- These calculations show that each least-squares solution of $A x=b$ satisfies the equation $A^{T} A x=A^{T} b$.
- The matrix equation $A^{T} A x=A^{T} b$ represents a system of equations called the normal equations for $A x=b$.
- A solution to $A^{T} A x=A^{T} b$ is often denoted by \hat{x}.

THM The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equation $A^{T} A x=A^{T} b$.

THM The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equation $A^{T} A x=A^{T} b$.
PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations. $\quad C_{1} \leqslant C_{2}$

$$
C_{2} \subseteq C_{1}
$$

THM The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equation $A^{T} A x=A^{T} b$.

PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.

- Conversely, suppose \hat{x} satisfies $A^{T} A \hat{x}=A^{T} b$.

THM The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equation $A^{T} A x=A^{T} b$.

PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.

- Conversely, suppose \hat{x} satisfies $A^{T} A \hat{x}=A^{T} b$.
- Then \hat{x} satisfies $A^{T}(b-A \hat{x})=0$, which shows that $b-A \hat{x}$ is orthogonal to the rows of A^{T}, and hence is orthogonal to the columns of A.

THM The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equation $A^{T} A x=A^{T} b$.

PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.

- Conversely, suppose \hat{x} satisfies $A^{T} A \hat{x}=A^{T} b$.
- Then \hat{x} satisfies $A^{T}(b-A \hat{x})=0$, which shows that $b-A \hat{x}$ is orthogonal to the rows of A^{T}, and hence is orthogonal to the columns of A.
- Since the columns of A span $\operatorname{Col} A$, the vector $b-A \hat{x}$ is orthogonal to all of $\mathrm{Col} A$.

THM The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equation $A^{T} A x=A^{T} b$.

PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.

- Conversely, suppose \hat{x} satisfies $A^{T} A \hat{x}=A^{T} b$.
- Then \hat{x} satisfies $A^{T}(b-A \hat{x})=0$, which shows that $b-A \hat{x}$ is orthogonal to the rows of A^{T}, and hence is orthogonal to the columns of A.
- Since the columns of A span $\operatorname{Col} A$, the vector $b-A \hat{x}$ is orthogonal to all of $\mathrm{Col} A$.
- Hence the equation $b=A \hat{x}+(b-A \hat{x})$ is a decomposition of b into the sum of a vector in $\operatorname{Col} A$ and a vector orthogonal to $\operatorname{Col} A$.

THM The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equation $A^{T} A x=A^{T} b$.
PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.

- Conversely, suppose \hat{x} satisfies $A^{T} A \hat{x}=A^{T} b$.
- Then \hat{x} satisfies $A^{T}(b-A \hat{x})=0$, which shows that $b-A \hat{x}$ is orthogonal to the rows of A^{T}, and hence is orthogonal to the columns of A.
- Since the columns of A span $\operatorname{Col} A$, the vector $b-A \hat{x}$ is orthogonal to all of $\mathrm{Col} A$.
- Hence the equation $b=A \hat{x}+(b-A \hat{x})$ is a decomposition of b into the sum of a vector in $\operatorname{Col} A$ and a vector orthogonal to $\operatorname{Col} A$.
- By the uniqueness of the orthogonal decomposition, $A \hat{x}$ must be the orthogonal projection of b onto $\operatorname{Col} A$.

THM The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equation $A^{T} A x=A^{T} b$.

PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.

- Conversely, suppose \hat{x} satisfies $A^{T} A \hat{x}=A^{T} b$.
- Then \hat{x} satisfies $A^{T}(b-A \hat{x})=0$, which shows that $b-A \hat{x}$ is orthogonal to the rows of A^{T}, and hence is orthogonal to the columns of A.
- Since the columns of A span $\operatorname{Col} A$, the vector $b-A \hat{x}$ is orthogonal to all of $\mathrm{Col} A$.
- Hence the equation $b=A \hat{x}+(b-A \hat{x})$ is a decomposition of b into the sum of a vector in $\operatorname{Col} A$ and a vector orthogonal to $\operatorname{Col} A$.
- By the uniqueness of the orthogonal decomposition, $A \hat{x}$ must be the orthogonal projection of b onto $\operatorname{Col} A$.
- That is, $A \hat{x}=\hat{b}$ and \hat{x} is a least-squares solution.

Example

Ex. Find a least-squares solution of the inconsistent system $A x=b$ for

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], b=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right] .
$$

Example

Ex. Find a least-squares solution of the inconsistent system $A x=b$ for

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], b=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Sol. To use the normal equation, compute:

$$
A^{T} A=\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right], A^{T} b=\left[\begin{array}{l}
19 \\
11
\end{array}\right]
$$

Example

Ex. Find a least-squares solution of the inconsistent system $A x=b$ for

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], b=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Sol. To use the normal equation, compute:

$$
A^{T} A=\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right], A^{T} b=\left[\begin{array}{l}
19 \\
11
\end{array}\right]
$$

- Then the equation $A^{T} A x=A^{T} b$ becomes

$$
\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
19 \\
11
\end{array}\right]
$$

Example

Ex. Find a least-squares solution of the inconsistent system $A x=b$ for

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], b=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Sol. To use the normal equation, compute:

$$
A^{T} A=\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right], A^{T} b=\left[\begin{array}{l}
19 \\
11
\end{array}\right]
$$

- Then the equation $A^{T} A x=A^{T} b$ becomes

$$
\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
19 \\
11
\end{array}\right]
$$

- Solve it, we have $\hat{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
- Note that the matrix equation $A^{T} A x=A^{T} b$ may have infinite many solutions.
- Note that the matrix equation $A^{T} A x=A^{T} b$ may have infinite many solutions.
- When will we have a unique least-squares solution to $A x=b$?
- Note that the matrix equation $A^{T} A x=A^{T} b$ may have infinite many solutions.
- When will we have a unique least-squares solution to $A x=b$?

THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:

When these statements are true, the least-squares solution \hat{x} is given by $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$.

- Note that the matrix equation $A^{T} A x=A^{T} b$ may have infinite many solutions.
- When will we have a unique least-squares solution to $A x=b$?

THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- The equation $A x=b$ has a unique least-square solution for each b in \mathbf{R}^{m}.

When these statements are true, the least-squares solution \hat{x} is given by $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$.

- Note that the matrix equation $A^{T} A x=A^{T} b$ may have infinite many solutions.
- When will we have a unique least-squares solution to $A x=b$?

THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- The equation $A x=b$ has a unique least-square solution for each b in \mathbf{R}^{m}.
- The columns of A are linearly independent.

When these statements are true, the least-squares solution \hat{x} is given by $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$.

- Note that the matrix equation $A^{T} A x=A^{T} b$ may have infinite many solutions.
- When will we have a unique least-squares solution to $A x=b$?

THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- The equation $A x=b$ has a unique least-square solution for each b in \mathbf{R}^{m}.
- The columns of A are linearly independent.
- The matrix $A^{T} A$ is invertible.

$$
A^{\top} A x=A^{\top} b
$$

When these statements are true, the least-squares solution \widehat{x} is given by $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$.

$$
x=\left(A^{\top} A\right)^{-1}\left(A^{\top} b\right)
$$

- Note that the matrix equation $A^{T} A x=A^{T} b$ may have infinite many solutions.
- When will we have a unique least-squares solution to $A x=b$?

THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- The equation $A x=b$ has a unique least-square solution for each b in \mathbf{R}^{m}.
- The columns of A are linearly independent.
- The matrix $A^{T} A$ is invertible.

When these statements are true, the least-squares solution \hat{x} is given by $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$.

- The distance from b to $A \hat{x},\|b-A \hat{x}\|$, is called the least-squares error of this approximation.

Alternative calculation

$A=$

- When the columns of $A\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$ are orthogonal, we know exactly the orthogonal projection of b on $\operatorname{Col} A$:

$$
\hat{b}=\frac{b \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{b \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p}
$$

Alternative calculation

- When the columns of $A\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$ are orthogonal, we know exactly the orthogonal projection of b on $\operatorname{Col} A$:

$$
u_{1}+u_{u_{2}} x_{2}+\ldots=A x=\hat{b}=\frac{b \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{b \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p}
$$

- Now to get the least-squares solution to $A \hat{x}=\hat{b}$, we just need to read:

$$
x_{1}=\frac{b \cdot u_{1}}{u_{1} \cdot u_{1}}, x_{2}=\frac{b \cdot u_{2}}{u_{2} \cdot u_{2}}, \ldots, x_{p}=\frac{b \cdot u_{p}}{u_{p} \cdot u_{p}}
$$

Alternative calculation

- When the columns of $A\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$ are orthogonal, we know exactly the orthogonal projection of b on $\operatorname{Col} A$:

$$
\hat{b}=\frac{b \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{b \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p}
$$

- Now to get the least-squares solution to $A \hat{x}=\hat{b}$, we just need to read:

$$
x_{1}=\frac{b \cdot u_{1}}{u_{1} \cdot u_{1}}, x_{2}=\frac{b \cdot u_{2}}{u_{2} \cdot u_{2}}, \ldots, x_{p}=\frac{b \cdot u_{p}}{u_{p} \cdot u_{p}}
$$

- Such matrices often appear in linear regression problems.

Example

Ex. Find a least-squares solution of $A x=b$ for

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], b=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Example

Ex. Find a least-squares solution of $A x=b$ for

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], b=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Sol. We know that

$$
\hat{b}=\frac{b \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{b \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=2 u_{1}+1 / 2 u_{2}=\left[\begin{array}{c}
-1 \\
1 \\
5 / 2 \\
11 / 2
\end{array}\right]
$$

Example

Ex. Find a least-squares solution of $A x=b$ for

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], b=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Sol. We know that

$$
\hat{b}=\frac{b \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{b \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=2 u_{1}+1 / 2 u_{2}=\left[\begin{array}{c}
-1 \\
1 \\
5 / 2 \\
11 / 2
\end{array}\right]
$$

- Now we solve $A \hat{x}=\hat{b}: \hat{x}=\left[\begin{array}{c}2 \\ 1 / 2\end{array}\right]$.

Example

Ex. Find a least-squares solution of $A x=b$ for

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], b=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Sol. We know that

$$
\hat{b}=\frac{b \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{b \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=2 u_{1}+1 / 2 u_{2}=\left[\begin{array}{c}
-1 \\
1 \\
5 / 2 \\
11 / 2
\end{array}\right]
$$

- Now we solve $A \hat{x}=\hat{b}: \hat{x}=\left[\begin{array}{c}2 \\ 1 / 2\end{array}\right]$.
- We can also get the least-squares error: $\|b-A \hat{x}\|=\sqrt{\text { ? }}$.

Applications to linear models

Applications to linear models

- The simplest relation between two variables x and y is the linear equation $y=\beta_{0}+\beta_{1} x$. Experimental data often produce points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ that, when graphed, seem to lie close to

Applications to linear models

- The simplest relation between two variables x and y is the linear equation $y=\beta_{0}+\beta_{1} x$. Experimental data often produce points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ that, when graphed, seem to lie close to a line.
- We want to determine β_{0} and β_{1} that make the line as "close" to the points as possible.

Applications to linear models

- The simplest relation between two variables x and y is the linear equation $y=\beta_{0}+\beta_{1} x$. Experimental data often produce points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ that, when graphed, seem to lie close to a line.
- We want to determine β_{0} and β_{1} that make the line as "close" to the points as possible.
- Suppose that β_{0} and β_{1} are fixed, and consider the line $y=\beta_{0}+\beta_{1} x$.

Applications to linear models

- The simplest relation between two variables x and y is the linear equation $y=\beta_{0}+\beta_{1} x$. Experimental data often produce points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ that, when graphed, seem to lie close to a line.
- We want to determine β_{0} and β_{1} that make the line as "close" to the points as possible.
- Suppose that β_{0} and β_{1} are fixed, and consider the line $y=\beta_{0}+\beta_{1} x$.
- For each point $\left(x_{i}, y_{i}\right)$, there is a corresponding point $\left(x_{i}, \beta_{0}+\beta_{1} x_{i}\right)$ on the line.

Applications to linear models

- The simplest relation between two variables x and y is the linear equation $y=\beta_{0}+\beta_{1} x$. Experimental data often produce points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ that, when graphed, seem to lie close to a line.
- We want to determine β_{0} and β_{1} that make the line as "close" to the points as possible.
- Suppose that β_{0} and β_{1} are fixed, and consider the line $y=\beta_{0}+\beta_{1} x$.
- For each point $\left(x_{i}, y_{i}\right)$, there is a corresponding point $\left(x_{i}, \beta_{0}+\beta_{1} x_{i}\right)$ on the line.
- We call y_{i} the observed value of y and $\beta_{0}+\beta_{1} x_{i}$ the predicted y-value. The difference of an observed y-value and the predicted y-value is called a residual.

Applications to linear models

- The simplest relation between two variables x and y is the linear equation $y=\beta_{0}+\beta_{1} x$. Experimental data often produce points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ that, when graphed, seem to lie close to a line.
- We want to determine β_{0} and β_{1} that make the line as "close" to the points as possible.
- Suppose that β_{0} and β_{1} are fixed, and consider the line $y=\beta_{0}+\beta_{1} x$.
- For each point $\left(x_{i}, y_{i}\right)$, there is a corresponding point $\left(x_{i}, \beta_{0}+\beta_{1} x_{i}\right)$ on the line.
- We call y_{i} the observed value of y and $\beta_{0}+\beta_{1} x_{i}$ the predicted y-value. The difference of an observed y-value and the predicted y-value is called a residual.
- The least-squares line, or the line of regression of y on x, is the line $y=\beta_{0}+\beta_{1} x$ that minimizes the sum of the squares of the residuals.
- The β_{0} and β_{1} satisfy the following

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right]} \\
& \beta_{0}+\beta_{1} x_{1}=Y_{1} \\
& \beta_{0}+\beta_{1} x_{2}=y_{2} \\
& \vdots \\
& \beta_{0}+\beta_{1} x_{n}=y_{n}
\end{aligned}
$$

- The β_{0} and β_{1} satisfy the following

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right]
$$

- Or simply just $X \beta=y$.

- The β_{0} and β_{1} satisfy the following

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{4}
$$

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right]
$$

- Or simply just $X \beta=y$.
- We can find the least-squares solution to $X \beta=y$ by solving the matrix equation $X^{\top} X \beta=X^{\top} y$.

Example

- Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(2,1),(5,2),(7,3)$ and $(8,3)$.

Example

- Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(2,1),(5,2),(7,3)$ and $(8,3)$.
Sol. We solve the equation $X^{\top} X \beta=X^{T} y$, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right], y=\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]
$$

Example

- Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(2,1),(5,2),(7,3)$ and $(8,3)$.
Sol. We solve the equation $X^{\top} X \beta=X^{T} y$, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right], y=\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]
$$

- The equation can be written as

$$
\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
9 \\
57
\end{array}\right]
$$

Example

- Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(2,1),(5,2),(7,3)$ and $(8,3)$.
Sol. We solve the equation $X^{T} X \beta=X^{T} y$, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right], y=\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]
$$

- The equation can be written as

$$
\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
9 \\
57
\end{array}\right]
$$

- So the solution is $\left[\beta_{0} \beta_{1}\right]=[2 / 75 / 14]$.

Example

- Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(2,1),(5,2),(7,3)$ and $(8,3)$.
Sol. We solve the equation $X^{T} X \beta=X^{T} y$, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right], y=\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]
$$

- The equation can be written as

$$
\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
9 \\
57
\end{array}\right]
$$

- So the solution is $\left[\beta_{0} \beta_{1}\right]=[2 / 75 / 14]$.
- The least-squares line is $y=2 / 7+5 / 14 x$.

