Section 6.4-6.5 The Gram-Schmit Process, least-square problems, and applications to linear models

Gexin Yu gyu@wm.edu

College of William and Mary

Gexin Yu gyu@wm.edu Section 6.4-6.5 The Gram-Schmit Process, least-square problem

6

伺い イヨト イヨト

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

- Given a basis for a subspace *W* of **R**^{*n*}, how to find an orthogonal basis for *W*?
- Let $\{x_1, x_2, \ldots, x_p\}$ be a basis for W.
- The idea is as follows: let $v_1 = x_1$ and take $W_1 = Span\{v_1\}$, then project x_2 to W_1 and let v_2 be the component of x_2 orthogonal to W_1 ; then let $W_2 = Span\{v_1, v_2\}$, and project x_3 to W_2 and let v_3 be the component of x_3 orthogonal to W_2 . Then $\{v_1, v_2, v_3\}$ is an orthogonal basis for W; and so on.
- This is so-called Gram-Schmidt Process.

(4月) (4日) (4日) 日

. . .

• Given a basis $\{x_1, x_2, \dots, x_p\}$ for a nonzero subspace W of \mathbf{R}^n , define

$$v_{1} = x_{1}$$

$$v_{2} = x_{2} - \frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}v_{1} - \frac{x_{2} \cdot v_{2}}{v_{2}}v_{2} = x_{3} - \frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}}v_{1} - \frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}}v_{2} = x_{3} - \frac{p(v)}{v_{4}}v_{4}$$

$$v_{p} = x_{p} - \frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} - \dots - \frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}$$

Then $\{v_1, v_2, \ldots, v_p\}$ is an orthogonal basis for W.

(日) (同) (E) (E) (E)

Ex. Let
$$W = span\{x_1, x_2\}$$
, where $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{v_1, v_2\}$ for W .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Ex. Let
$$W = span\{x_1, x_2\}$$
, where $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{v_1, v_2\}$ for W .

• So let $v_1 = x_1$.

æ

Ex. Let
$$W = span\{x_1, x_2\}$$
, where $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{v_1, v_2\}$ for W .

• So let $v_1 = x_1$.

Iet

$$v_{2} = x_{2} - p = x_{2} - \frac{x_{2} \cdot x_{1}}{x_{1} \cdot x_{1}} x_{1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ex. Let
$$W = span\{x_1, x_2\}$$
, where $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{v_1, v_2\}$ for W .

• So let
$$v_1 = x_1$$
.

Iet

$$v_{2} = x_{2} - p = x_{2} - \frac{x_{2} \cdot x_{1}}{x_{1} \cdot x_{1}} x_{1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

• Then $\{v_1, v_2\}$ is an orthogonal basis for W.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Ex. Let
$$x_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$, and $x_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$ and $W = Span\{x_1, x_2, x_3\}$.
Construct an orthogonal basis $\{v_1, v_2, v_3\}$ for W .

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Ex. Let
$$x_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$, and $x_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$ and $W = Span\{x_1, x_2, x_3\}$.
Construct an orthogonal basis $\{v_1, v_2, v_3\}$ for W .
 $\bigvee_{\checkmark} = \bigvee_{\checkmark}$
 $v_2 = x_2 - proj_{W_1}x_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1}v_1 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -3/4\\1/4\\1/4\\1/4 \end{bmatrix}$.

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Ex. Let
$$x_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$, and $x_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$ and $W = Span\{x_1, x_2, x_3\}$.
Construct an orthogonal basis $\{v_1, v_2, v_3\}$ for W .
• $v_2 = x_2 - proj_{W_1}x_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1}v_1 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -3/4\\1/4\\1/4\\1/4 \end{bmatrix}$.
• $v_3 = x_3 - proj_{W_2}x_3 = x_3 - (\frac{x_3 \cdot v_1}{v_1 \cdot v_1}v_1 + \frac{x_3 \cdot v_2}{v_2 \cdot v_2}v_2) = \begin{bmatrix} -3/8\\-13/24\\11/24\\11/24\end{bmatrix}$.

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Ex. Let
$$x_1 = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 0\\ 1\\ 1\\ 1 \end{bmatrix}$, and $x_3 = \begin{bmatrix} 0\\ 0\\ 1\\ 1\\ 1 \end{bmatrix}$ and $W = Span\{x_1, x_2, x_3\}$.
Construct an orthogonal basis $\{v_1, v_2, v_3\}$ for W .
• $v_2 = x_2 - proj_{W_1}x_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1}v_1 = \begin{bmatrix} 0\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} -3/4\\ 1/4\\ 1/4\\ 1/4 \end{bmatrix}$.
• $v_3 = x_3 - proj_{W_2}x_3 = x_3 - (\frac{x_3 \cdot v_1}{v_1 \cdot v_1}v_1 + \frac{x_3 \cdot v_2}{v_2 \cdot v_2}v_2) = \begin{bmatrix} -3/8\\ -13/24\\ 11/24\\ 11/24\\ 11/24 \end{bmatrix}$.

• $\{v_1, v_2, v_3\}$ is an orthogonal basis for W.

イロン 不同と 不同と 不同と

э

Least-square problems

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Least-squares problems

• We know that some linear systems Ax = b may not be consistent.

→ ∃ →

- We know that some linear systems Ax = b may not be consistent.
- Note that no matter what x we select, the vector Ax will necessarily be in the column space of A, Col A.

向下 イヨト イヨト

- We know that some linear systems Ax = b may not be consistent.
- Note that no matter what x we select, the vector Ax will necessarily be in the column space of A, Col A.
- So we seek an x in Col A so that Ax is the closest point to b.

向下 イヨト イヨト

- We know that some linear systems Ax = b may not be consistent.
- Note that no matter what x we select, the vector Ax will necessarily be in the column space of A, Col A.
- So we seek an x in Col A so that Ax is the closest point to b.
- Definition: If A is $m \times n$ and b in \mathbb{R}^n , a least-squares solution of Ax = b is an \hat{x} in \mathbb{R}^n such that $||b A\hat{x}|| \le ||b Ax||$ for all $x \in \mathbb{R}^n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- We know that some linear systems Ax = b may not be consistent.
- Note that no matter what x we select, the vector Ax will necessarily be in the column space of A, Col A.
- So we seek an x in Col A so that Ax is the closest point to b.
- Definition: If A is $m \times n$ and b in \mathbb{R}^n , a least-squares solution of Ax = b is an \hat{x} in \mathbb{R}^n such that $||b A\hat{x}|| \le ||b Ax||$ for all $x \in \mathbb{R}^n$.

- 4 同 6 4 日 6 4 日 6

• Given A and b, apply the Best Approximation Theorem to the subspace Col A. Let $\hat{b} = proj_{Col A}b$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given A and b, apply the Best Approximation Theorem to the subspace Col A. Let $\hat{b} = proj_{Col A}b$.
- Because \hat{b} is in the column space of A, the equation $Ax = \hat{b}$ is consistent, and there is an \hat{x} in \mathbf{R}^n such that $A\hat{x} = \hat{b}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Given A and b, apply the Best Approximation Theorem to the subspace Col A. Let $\hat{b} = proj_{Col A}b$.
- Because \hat{b} is in the column space of A, the equation $Ax = \hat{b}$ is consistent, and there is an \hat{x} in \mathbf{R}^n such that $A\hat{x} = \hat{b}$.
- Since b̂ is the closest point in Col A to b, a vector x̂ is a least-squares solution of Ax = b if and only if x̂ satisfies Ax̂ = b̂.

east-square solver to Ax=b
I
find
$$\hat{x}$$
 s.t A \hat{x} = Proj b
Lag

- Given A and b, apply the Best Approximation Theorem to the subspace Col A. Let $\hat{b} = proj_{Col A}b$.
- Because \hat{b} is in the column space of A, the equation $Ax = \hat{b}$ is consistent, and there is an \hat{x} in \mathbb{R}^n such that $A\hat{x} = \hat{b}$.
- Since b̂ is the closest point in Col A to b, a vector x̂ is a least-squares solution of Ax = b if and only if x̂ satisfies Ax̂ = b̂.
- Such an x̂ in Rⁿ is a list of weights that will build b̂ out of the columns of A.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given A and b, apply the Best Approximation Theorem to the subspace Col A. Let $\hat{b} = proj_{Col A}b$.
- Because \hat{b} is in the column space of A, the equation $Ax = \hat{b}$ is consistent, and there is an \hat{x} in \mathbb{R}^n such that $A\hat{x} = \hat{b}$.
- Since b̂ is the closest point in Col A to b, a vector x̂ is a least-squares solution of Ax = b if and only if x̂ satisfies Ax̂ = b̂.
- Such an x̂ in Rⁿ is a list of weights that will build b̂ out of the columns of A.
- Suppose \hat{x} satisfies $A\hat{x} = \hat{b}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Given A and b, apply the Best Approximation Theorem to the subspace Col A. Let $\hat{b} = proj_{Col A}b$.
- Because \hat{b} is in the column space of A, the equation $Ax = \hat{b}$ is consistent, and there is an \hat{x} in \mathbb{R}^n such that $A\hat{x} = \hat{b}$.
- Since b̂ is the closest point in Col A to b, a vector x̂ is a least-squares solution of Ax = b if and only if x̂ satisfies Ax̂ = b̂.
- Such an x̂ in Rⁿ is a list of weights that will build b̂ out of the columns of A.
- Suppose \hat{x} satisfies $A\hat{x} = \hat{b}$.
- By the Orthogonal Decomposition Theorem, the projection \hat{b} has the property that $b \hat{b}$ is orthogonal to *Col A*, so $b A\hat{x}$ is orthogonal to each column of *A*.

(四) (日) (日)

• If a_j is any column of A, then $a_j \cdot (b - A\hat{x}) = 0$, and $a_j^T (b - A\hat{x}) = 0$.

個 と く ヨ と く ヨ と …

- If a_j is any column of A, then $a_j \cdot (b A\hat{x}) = 0$, and $a_i^T (b A\hat{x}) = 0$.
- Since each a_i^T is a row of A^T , we have $A^T(b A\hat{x}) = 0$.

向下 イヨト イヨト

- If a_j is any column of A, then $a_j \cdot (b A\hat{x}) = 0$, and $a_j^T (b A\hat{x}) = 0$.
- Since each a_i^T is a row of A^T , we have $A^T(b A\hat{x}) = 0$.
- Thus $A^T b A^T A \hat{x} = 0$, and $A^T A \hat{x} = A^T b$.

・吊り イヨト イヨト ニヨ

- If a_j is any column of A, then $a_j \cdot (b A\hat{x}) = 0$, and $a_j^T (b A\hat{x}) = 0$.
- Since each a_i^T is a row of A^T , we have $A^T(b A\hat{x}) = 0$.
- Thus $A^T b A^T A \hat{x} = 0$, and $A^T A \hat{x} = A^T b$.
- These calculations show that each least-squares solution of Ax = b satisfies the equation $A^T Ax = A^T b$.

(4月) (4日) (4日) 日

- If a_j is any column of A, then $a_j \cdot (b A\hat{x}) = 0$, and $a_j^T (b A\hat{x}) = 0$.
- Since each a_i^T is a row of A^T , we have $A^T(b A\hat{x}) = 0$.

• Thus
$$A^T b - A^T A \hat{x} = 0$$
, and $A^T A \hat{x} = A^T b$.

- These calculations show that each least-squares solution of Ax = b satisfies the equation $A^T Ax = A^T b$.
- The matrix equation $A^T A x = A^T b$ represents a system of equations called the normal equations for A x = b.

- 本部 ト イヨ ト - - ヨ

- If a_j is any column of A, then $a_j \cdot (b A\hat{x}) = 0$, and $a_j^T (b A\hat{x}) = 0$.
- Since each a_i^T is a row of A^T , we have $A^T(b A\hat{x}) = 0$.

• Thus
$$A^T b - A^T A \hat{x} = 0$$
, and $A^T A \hat{x} = A^T b$.

- These calculations show that each least-squares solution of Ax = b satisfies the equation $A^T Ax = A^T b$.
- The matrix equation $A^T A x = A^T b$ represents a system of equations called the normal equations for A x = b.

• A solution to
$$A^T A x = A^T b$$
 is often denoted by \hat{x} .

マボン イラン イラン 一日

THM The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.

伺下 イヨト イヨト

THM The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$. PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations. $C \subseteq C$

- THM The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.
 - PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.
 - Conversely, suppose \hat{x} satisfies $A^T A \hat{x} = A^T b$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- THM The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.
 - PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.
 - Conversely, suppose \hat{x} satisfies $A^T A \hat{x} = A^T b$.
 - Then \hat{x} satisfies $A^T(b A\hat{x}) = 0$, which shows that $b A\hat{x}$ is orthogonal to the rows of A^T , and hence is orthogonal to the columns of A.

- THM The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.
 - PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.
 - Conversely, suppose \hat{x} satisfies $A^T A \hat{x} = A^T b$.
 - Then \hat{x} satisfies $A^T(b A\hat{x}) = 0$, which shows that $b A\hat{x}$ is orthogonal to the rows of A^T , and hence is orthogonal to the columns of A.
 - Since the columns of A span Col A, the vector $b A\hat{x}$ is orthogonal to all of Col A.

- 사례가 사용가 사용가 구용

- THM The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.
 - PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.
 - Conversely, suppose \hat{x} satisfies $A^T A \hat{x} = A^T b$.
 - Then \hat{x} satisfies $A^T(b A\hat{x}) = 0$, which shows that $b A\hat{x}$ is orthogonal to the rows of A^T , and hence is orthogonal to the columns of A.
 - Since the columns of A span Col A, the vector $b A\hat{x}$ is orthogonal to all of Col A.
 - Hence the equation $b = A\hat{x} + (b A\hat{x})$ is a decomposition of b into the sum of a vector in Col A and a vector orthogonal to Col A.

- THM The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.
 - PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.
 - Conversely, suppose \hat{x} satisfies $A^T A \hat{x} = A^T b$.
 - Then \hat{x} satisfies $A^T(b A\hat{x}) = 0$, which shows that $b A\hat{x}$ is orthogonal to the rows of A^T , and hence is orthogonal to the columns of A.
 - Since the columns of A span Col A, the vector $b A\hat{x}$ is orthogonal to all of Col A.
 - Hence the equation $b = A\hat{x} + (b A\hat{x})$ is a decomposition of b into the sum of a vector in Col A and a vector orthogonal to Col A.
 - By the uniqueness of the orthogonal decomposition, $A\hat{x}$ must be the orthogonal projection of *b* onto *Col A*.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- THM The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.
 - PF. The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.
 - Conversely, suppose \hat{x} satisfies $A^T A \hat{x} = A^T b$.
 - Then \hat{x} satisfies $A^T(b A\hat{x}) = 0$, which shows that $b A\hat{x}$ is orthogonal to the rows of A^T , and hence is orthogonal to the columns of A.
 - Since the columns of A span Col A, the vector $b A\hat{x}$ is orthogonal to all of Col A.
 - Hence the equation $b = A\hat{x} + (b A\hat{x})$ is a decomposition of b into the sum of a vector in Col A and a vector orthogonal to Col A.
 - By the uniqueness of the orthogonal decomposition, $A\hat{x}$ must be the orthogonal projection of *b* onto *Col A*.
 - That is, $A\hat{x} = \hat{b}$ and \hat{x} is a least-squares solution.

Ex. Find a least-squares solution of the inconsistent system Ax = b for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$

ヘロン 人間 とくほど 人間 と

Ex. Find a least-squares solution of the inconsistent system Ax = b for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

Sol. To use the normal equation, compute:

$$A^{\mathsf{T}}A = \begin{bmatrix} 17 & 1\\ 1 & 5 \end{bmatrix}, A^{\mathsf{T}}b = \begin{bmatrix} 19\\ 11 \end{bmatrix}$$

I ∃ →

AAXEAL

Ex. Find a least-squares solution of the inconsistent system Ax = b for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$

Sol. To use the normal equation, compute:

$$A^{\mathsf{T}}A = \begin{bmatrix} 17 & 1\\ 1 & 5 \end{bmatrix}, A^{\mathsf{T}}b = \begin{bmatrix} 19\\ 11 \end{bmatrix}$$

• Then the equation $A^T A x = A^T b$ becomes

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

- ∢ ⊒ ⊳

Ex. Find a least-squares solution of the inconsistent system Ax = b for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

Sol. To use the normal equation, compute:

$$A^{\mathsf{T}}A = \begin{bmatrix} 17 & 1\\ 1 & 5 \end{bmatrix}, A^{\mathsf{T}}b = \begin{bmatrix} 19\\ 11 \end{bmatrix}$$

• Then the equation $A^T A x = A^T b$ becomes

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

• Solve it, we have $\hat{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

• Note that the matrix equation $A^T A x = A^T b$ may have infinite many solutions.

イロン イヨン イヨン イヨン

э

- Note that the matrix equation $A^T A x = A^T b$ may have infinite many solutions.
- When will we have a unique least-squares solution to Ax = b?

・ロト ・回ト ・ヨト ・ヨト

- Note that the matrix equation $A^T A x = A^T b$ may have infinite many solutions.
- When will we have a unique least-squares solution to Ax = b?
- THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- Note that the matrix equation $A^T A x = A^T b$ may have infinite many solutions.
- When will we have a unique least-squares solution to Ax = b?
- THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:
 - The equation Ax = b has a unique least-square solution for each b in \mathbf{R}^m .

- Note that the matrix equation $A^T A x = A^T b$ may have infinite many solutions.
- When will we have a unique least-squares solution to Ax = b?
- THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:
 - The equation Ax = b has a unique least-square solution for each b in \mathbf{R}^m .
 - The columns of A are linearly independent.

- Note that the matrix equation $A^T A x = A^T b$ may have infinite many solutions.
- When will we have a unique least-squares solution to Ax = b?
- THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:
 - The equation Ax = b has a unique least-square solution for each b in \mathbf{R}^m .
 - The columns of A are linearly independent.
 - ► The matrix *A^TA* is invertible.

When these statements are true, the least-squares solution \hat{x} is given by $\hat{x} = (A^T A)^{-1} A^T b$. $\chi = (A^T A)^{-1} (A^T b)$

AAX=Ab

伺 とう ヨン うちょう

- Note that the matrix equation $A^T A x = A^T b$ may have infinite many solutions.
- When will we have a unique least-squares solution to Ax = b?
- THM Let A be an $m \times n$ matrix. The following statements are logically equivalent:
 - The equation Ax = b has a unique least-square solution for each b in \mathbf{R}^m .
 - The columns of A are linearly independent.
 - ► The matrix *A^TA* is invertible.

• The distance from b to $A\hat{x}$, $||b - A\hat{x}||$, is called the least-squares error of this approximation.

イロト イボト イヨト イヨト 二日

Alternative calculation

When the columns of A[u₁ u₂ ... u_p] are orthogonal, we know exactly the orthogonal projection of b on Col A:

$$\hat{b} = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{b \cdot u_p}{u_p \cdot u_p} u_p$$

(4回) (4回) (4回)

• When the columns of $A[u_1 \ u_2 \ \dots \ u_p]$ are orthogonal, we know exactly the orthogonal projection of *b* on *Col A*:

$$\mathbf{u}_{\mathbf{x}} + \mathbf{u}_{\mathbf{x}} + \cdots = \mathbf{A} \times \mathbf{f} \quad \hat{b} = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \cdots + \frac{b \cdot u_p}{u_p \cdot u_p} u_p$$

• Now to get the least-squares solution to $A\hat{x} = \hat{b}$, we just need to read:

$$x_1 = \frac{b \cdot u_1}{u_1 \cdot u_1}, x_2 = \frac{b \cdot u_2}{u_2 \cdot u_2}, \dots, x_p = \frac{b \cdot u_p}{u_p \cdot u_p}$$

▲圖 → ▲ 国 → ▲ 国 →

• When the columns of $A[u_1 \ u_2 \ \dots \ u_p]$ are orthogonal, we know exactly the orthogonal projection of b on *Col* A:

$$\hat{b} = rac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + rac{b \cdot u_p}{u_p \cdot u_p} u_p$$

• Now to get the least-squares solution to $A\hat{x} = \hat{b}$, we just need to read:

$$x_1 = \frac{b \cdot u_1}{u_1 \cdot u_1}, x_2 = \frac{b \cdot u_2}{u_2 \cdot u_2}, \dots, x_p = \frac{b \cdot u_p}{u_p \cdot u_p}$$

• Such matrices often appear in linear regression problems.

・ 同 ト ・ ヨ ト ・ ヨ ト

Ex. Find a least-squares solution of Ax = b for

$$A = \begin{bmatrix} 1 & -6\\ 1 & -2\\ 1 & 1\\ 1 & 7 \end{bmatrix}, b = \begin{bmatrix} -1\\ 2\\ 1\\ 6 \end{bmatrix}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Ex. Find a least-squares solution of Ax = b for

$$A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$$

Sol. We know that

$$\hat{b} = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{b \cdot u_2}{u_2 \cdot u_2} u_2 = 2u_1 + 1/2u_2 = \begin{bmatrix} -1\\1\\5/2\\11/2 \end{bmatrix}$$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Ex. Find a least-squares solution of Ax = b for

$$A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$$

Sol. We know that

$$\hat{b} = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{b \cdot u_2}{u_2 \cdot u_2} u_2 = 2u_1 + 1/2u_2 = \begin{bmatrix} -1\\1\\5/2\\11/2\end{bmatrix}$$

• Now we solve
$$A\hat{x} = \hat{b}$$
: $\hat{x} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Ex. Find a least-squares solution of Ax = b for

$$A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$$

Sol. We know that

$$\hat{b} = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{b \cdot u_2}{u_2 \cdot u_2} u_2 = 2u_1 + 1/2u_2 = \begin{bmatrix} -1\\1\\5/2\\11/2\end{bmatrix}$$

• Now we solve
$$A\hat{x} = \hat{b}$$
: $\hat{x} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$.
• We can also get the least-squares error: $||b - A\hat{x}|| = \sqrt{2}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

• The simplest relation between two variables x and y is the linear equation $y = \beta_0 + \beta_1 x$. Experimental data often produce points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ that, when graphed, seem to lie close to a line.

- The simplest relation between two variables x and y is the linear equation $y = \beta_0 + \beta_1 x$. Experimental data often produce points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ that, when graphed, seem to lie close to a line.
- We want to determine β₀ and β₁ that make the line as "close" to the points as possible.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- The simplest relation between two variables x and y is the linear equation $y = \beta_0 + \beta_1 x$. Experimental data often produce points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ that, when graphed, seem to lie close to a line.
- We want to determine β_0 and β_1 that make the line as "close" to the points as possible.
- Suppose that β_0 and β_1 are fixed, and consider the line $y = \beta_0 + \beta_1 x$.

▲□→ ▲ 国→ ▲ 国→

- The simplest relation between two variables x and y is the linear equation $y = \beta_0 + \beta_1 x$. Experimental data often produce points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ that, when graphed, seem to lie close to a line.
- We want to determine β_0 and β_1 that make the line as "close" to the points as possible.
- Suppose that β_0 and β_1 are fixed, and consider the line $y = \beta_0 + \beta_1 x$.

• For each point (x_i, y_i) , there is a corresponding point $(x_i, \beta_0 + \beta_1 x_i)$ on the line. $x_i \rightarrow y_i \quad \beta_i + \beta_i x_i$

×, ×2

- The simplest relation between two variables x and y is the linear equation $y = \beta_0 + \beta_1 x$. Experimental data often produce points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ that, when graphed, seem to lie close to a line.
- We want to determine β₀ and β₁ that make the line as "close" to the points as possible.
- Suppose that β_0 and β_1 are fixed, and consider the line $y = \beta_0 + \beta_1 x$.
- For each point (x_i, y_i), there is a corresponding point (x_i, β₀ + β₁x_i) on the line.
- We call y_i the observed value of y and $\beta_0 + \beta_1 x_i$ the predicted y-value. The difference of an observed y-value and the predicted y-value is called a residual.

- The simplest relation between two variables x and y is the linear equation $y = \beta_0 + \beta_1 x$. Experimental data often produce points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ that, when graphed, seem to lie close to a line.
- We want to determine β_0 and β_1 that make the line as "close" to the points as possible.
- Suppose that β_0 and β_1 are fixed, and consider the line $y = \beta_0 + \beta_1 x$.
- For each point (x_i, y_i), there is a corresponding point (x_i, β₀ + β₁x_i) on the line.
- We call y_i the observed value of y and $\beta_0 + \beta_1 x_i$ the predicted y-value. The difference of an observed y-value and the predicted y-value is called a residual.
- The least-squares line, or the line of regression of y on x, is the line $y = \beta_0 + \beta_1 x$ that minimizes the sum of the squares of the residuals.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

• The β_0 and β_1 satisfy the following

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

$$(\beta_{0} + (\beta_{1} \times_{1} = Y_{1} + \beta_{1} \times_{2} = Y_{2})$$

 \vdots
 $\xi_{0} + (\beta_{1} \times_{2} = Y_{2})$

・ロト ・回 ト ・ヨト ・ヨト

æ

• The β_0 and β_1 satisfy the following

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{bmatrix}$$

• Or simply just $X\beta = y$.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

э

$$\gamma = (\beta_0 + (\beta_1 \times_1 + (\beta_2 \times_2 + \dots + (\beta_k \times_k))))$$

• The β_0 and β_1 satisfy the following

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

• Or simply just $X\beta = y$.

 We can find the least-squares solution to Xβ = y by solving the matrix equation X^TXβ = X^Ty.

向下 イヨト イヨト

• Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the data points (2, 1), (5, 2), (7, 3) and (8, 3).

- 4 同 6 4 日 6 4 日 6

• Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the data points (2, 1), (5, 2), (7, 3) and (8, 3).

Sol. We solve the equation $X^T X \beta = X^T y$, where

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Find the equation y = β₀ + β₁x of the least-squares line that best fits the data points (2,1), (5,2), (7,3) and (8,3).

Sol. We solve the equation $X^T X \beta = X^T y$, where

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

• The equation can be written as

$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

向下 イヨト イヨト

Find the equation y = β₀ + β₁x of the least-squares line that best fits the data points (2, 1), (5, 2), (7, 3) and (8, 3).

Sol. We solve the equation $X^T X \beta = X^T y$, where

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

The equation can be written as

$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

• So the solution is $[\beta_0 \ \beta_1] = [2/7 \ 5/14].$

向下 イヨト イヨト

Find the equation y = β₀ + β₁x of the least-squares line that best fits the data points (2, 1), (5, 2), (7, 3) and (8, 3).

Sol. We solve the equation $X^T X \beta = X^T y$, where

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

• The equation can be written as

$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

- So the solution is $[\beta_0 \ \beta_1] = [2/7 \ 5/14].$
- The least-squares line is y = 2/7 + 5/14x.