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Example

Ex. Let x1 =


1
1
1
1

, x2 =


0
1
1
1

, and x3 =


0
0
1
1

, y =


2
−1
3
4

, and

W = Span{x1, x2, x3}. Find the projection of y onto W .
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Orthogonal basis

Given a basis for a subspace W of Rn, how to find an orthogonal
basis for W ?

Let {x1, x2, . . . , xp} be a basis for W .

The idea is as follows: let v1 = x1 and take W1 = Span{v1}, then
project x2 to W1 and let v2 be the component of x2 orthogonal to
W1; then let W2 = Span{v1, v2}, and project x3 to W2 and let v3 be
the component of x3 orthogonal to W2. Then {v1, v2, v3} is an
orthogonal basis for W ; and so on.

This is so-called Gram-Schmidt Process.
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The Gram-Schmidt Process

Given a basis {x1, x2, . . . , xp} for a nonzero subspace W of Rn, define

v1 = x1

v2 = x2 −
x2 · v1
v1 · v1

v1

v3 = x3 −
x3 · v1
v1 · v1

v1 −
x3 · v2
v2 · v2

v2

· · ·

vp = xp −
xp · v1
v1 · v1

v1 −
xp · v2
v2 · v2

v2 − . . .−
xp · vp−1

vp−1 · vp−1
vp−1

Then {v1, v2, . . . , vp} is an orthogonal basis for W .
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Example

Ex. Let W = span{x1, x2}, where x1 =

3
6
0

 and x2 =

1
2
2

. Construct an

orthogonal basis {v1, v2} for W .

So let v1 = x1.

let

v2 = x2 − p = x2 −
x2 · x1
x1 · x1

x1 =

1
2
2

− 15

45

3
6
0

 =

0
0
2
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Example

Ex. Let x1 =


1
1
1
1
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0
1
1
1
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 =
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Least-square problems
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Least-squares problems

We know that some linear systems Ax = b may not be consistent.

Note that no matter what x we select, the vector Ax will necessarily
be in the column space of A, Col A.

So we seek an x in Col A so that Ax is the closest point to b.

Definition: If A is m × n and b in Rn, a least-squares solution of
Ax = b is an x̂ in Rn such that ||b − Ax̂ || ≤ ||b − Ax || for all x ∈ Rn.
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Solution to the general least-squares problem

Given A and b, apply the Best Approximation Theorem to the
subspace Col A. Let b̂ = projCol Ab.

Because b̂ is in the column space of A, the equation Ax = b̂ is
consistent, and there is an x̂ in Rn such that Ax̂ = b̂.

Since b̂ is the closest point in Col A to b, a vector x̂ is a least-squares
solution of Ax = b if and only if x̂ satisfies Ax̂ = b̂.

Such an x̂ in Rn is a list of weights that will build b̂ out of the
columns of A.

Suppose x̂ satisfies Ax̂ = b̂.

By the Orthogonal Decomposition Theorem, the projection b̂ has the
property that b− b̂ is orthogonal to Col A, so b−Ax̂ is orthogonal to
each column of A.
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If aj is any column of A, then aj · (b − Ax̂) = 0, and aTj (b − Ax̂) = 0.

Since each aTj is a row of AT , we have AT (b − Ax̂) = 0.

Thus ATb − ATAx̂ = 0, and ATAx̂ = ATb.

These calculations show that each least-squares solution of Ax = b
satisfies the equation ATAx = ATb.

The matrix equation ATAx = ATb represents a system of equations
called the normal equations for Ax = b.

A solution to ATAx = ATb is often denoted by x̂ .
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THM The set of least-squares solutions of Ax = b coincides with the
nonempty set of solutions of the normal equation ATAx = ATb.

PF. The set of least-squares solutions is nonempty and each least-squares
solution x̂ satisfies the normal equations.

Conversely, suppose x̂ satisfies ATAx̂ = ATb.

Then x̂ satisfies AT (b − Ax̂) = 0, which shows that b − Ax̂ is
orthogonal to the rows of AT , and hence is orthogonal to the columns
of A.

Since the columns of A span Col A, the vector b − Ax̂ is orthogonal
to all of Col A.

Hence the equation b = Ax̂ + (b − Ax̂) is a decomposition of b into
the sum of a vector in Col A and a vector orthogonal to Col A.

By the uniqueness of the orthogonal decomposition, Ax̂ must be the
orthogonal projection of b onto Col A.

That is, Ax̂ = b̂ and x̂ is a least-squares solution.
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Example

Ex. Find a least-squares solution of the inconsistent system Ax = b for

A =

4 0
0 2
1 1

 , b =

 2
0

11

 .

Sol. To use the normal equation, compute:

ATA =

[
17 1
1 5

]
,ATb =

[
19
11

]
Then the equation ATAx = ATb becomes[

17 1
1 5

] [
x1
x2

]
=

[
19
11

]

Solve it, we have x̂ =

[
1
2

]
.
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Note that the matrix equation ATAx = ATb may have infinite many
solutions.

When will we have a unique least-squares solution to Ax = b?

THM Let A be an m × n matrix. The following statements are logically
equivalent:

I The equation Ax = b has a unique least-square solution for each b in
Rm.

I The columns of A are linearly independent.
I The matrix ATA is invertible.

When these statements are true, the least-squares solution x̂ is given
by x̂ = (ATA)−1ATb.

The distance from b to Ax̂ , ||b−Ax̂ ||, is called the least-squares error
of this approximation.
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Alternative calculation

When the columns of A[u1 u2 . . . up] are orthogonal, we know
exactly the orthogonal projection of b on Col A:

b̂ =
b · u1
u1 · u1

u1 + . . .+
b · up
up · up

up

Now to get the least-squares solution to Ax̂ = b̂, we just need to read:

x1 =
b · u1
u1 · u1

, x2 =
b · u2
u2 · u2

, . . . , xp =
b · up
up · up

Such matrices often appear in linear regression problems.
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Example

Ex. Find a least-squares solution of Ax = b for

A =


1 −6
1 −2
1 1
1 7

 , b =


−1
2
1
6



Sol. We know that

b̂ =
b · u1
u1 · u1

u1 +
b · u2
u2 · u2

u2 = 2u1 + 1/2u2 =


−1
1

5/2
11/2


Now we solve Ax̂ = b̂: x̂ =

[
2

1/2

]
.

We can also get the least-squares error: ||b − Ax̂ || =
√

.
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Applications to linear models
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Applications to linear models

The simplest relation between two variables x and y is the linear
equation y = β0 + β1x . Experimental data often produce points
(x1, y1), (x2, y2), . . . , (xn, yn) that, when graphed, seem to lie close to
a line.

We want to determine β0 and β1 that make the line as “close” to the
points as possible.

Suppose that β0 and β1 are fixed, and consider the line y = β0 + β1x .

For each point (xi , yi ), there is a corresponding point (xi , β0 + β1xi )
on the line.

We call yi the observed value of y and β0 + β1xi the predicted
y -value. The difference of an observed y -value and the predicted
y -value is called a residual.

The least-squares line, or the line of regression of y on x , is the line
y = β0 + β1x that minimizes the sum of the squares of the residuals.
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The β0 and β1 satisfy the following
1 x1
1 x2
. . .
1 xn

[β0β1
]

=


y1
y2
. . .
yn



Or simply just Xβ = y .

We can find the least-squares solution to Xβ = y by solving the
matrix equation XTXβ = XT y .
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Example

Find the equation y = β0 + β1x of the least-squares line that best fits
the data points (2, 1), (5, 2), (7, 3) and (8, 3).

Sol. We solve the equation XTXβ = XT y , where

X =


1 2
1 5
1 7
1 8

 , y =


1
2
3
3


The equation can be written as[

4 22
22 142

] [
β0
β1

]
=

[
9

57

]
So the solution is [β0 β1] = [2/7 5/14].

The least-squares line is y = 2/7 + 5/14x .
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