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1 0 0 2
Ex. Let x; = 1,x2: 1,andX3: (1),y: _31,and
1 1 1 4

W = Span{xi, x2, x3}. Find the projection of y onto W.
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Orthogonal basis

@ Given a basis for a subspace W of R”, how to find an orthogonal
basis for W?

o Let {x1,x2,...,Xp} be a basis for W.

@ The idea is as follows: let v; = x1 ap.d_.take—ldélw then
project x» to Wy and It v, be the onent of x» orthogonal to
Wi; then let W5 = Span{vi, v}, and project x3 to W5 and let v3 be
the component of x3 orthogonal to W,. Then {v1, vs, v3} is an
orthogonal basis for W; and so on.

@ This is so-called Gram-Schmidt Process.
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The Gram-Schmidt Process

o Given a basis {x1,x2,...,Xp} for a nonzero subspace W of R", define
~
Vi = X1 ?‘3 )QV
~ X — \
X2 - V1 - v \‘/\
Vo = X2 — Vi
vi-vi . Xﬁg
X3+ Vy X3+ V2 ..?J'))
V3 = X3 — Vi — v Z \,Lz/
vi- vy V2 - Vo
Xp + V1 Xp + Vo Xp * Vp_1
vp:xp—piv —piv2—...—%vp,1
vi- vy V2 - Vo Vp—1 " Vp—1
Then {v1,v,..., v} is an orthogonal basis for W.
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3 1
Ex. Let W = span{x1, x>}, where x; = [6| and x, = |2|. Construct an
0 2

orthogonal basis {v1, vo} for W.
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3 1
Ex. Let W = span{x1, x>}, where x; = [6| and x, = |2|. Construct an
0 2

orthogonal basis {v1, vo} for W.

@ Solet vi = x3.
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3 1
Ex. Let W = span{x1, x>}, where x; = [6| and x, = |2|. Construct an
0 2
orthogonal basis {v1, vo} for W.
@ Solet vi = x3.
o let
X2 X1 1 15 3 0
Vo = X0 — p=Xp — X1 = 2 _E 6|l =10
X1 2 0 2
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3 1
Ex. Let W = span{x1, x>}, where x; = [6| and x, = |2|. Construct an
0 2
orthogonal basis {v1, vo} for W.
@ Solet vi = x3.
o let
X2 X1 1 15 3 0
Vo = X0 — p=Xp — X1 = 2 _E 6|l =10
X1 2 0 2

@ Then {vi, 2} is an orthogonal basis for W.
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1 0
Ex. Let x; = 1 , Xp = i ,and x3 = and W = Span{xy, x2,x3}.

0
0
1
1 1 1
Construct an orthogonal basis {v1, v, v3} for W.
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1 0 0
1 1 0
Ex. Let x; = =11 and x3 = 1 and W = Span{xy, x2,x3}.
1 1 1
Construct an orthogonal basis {v1, v, v3} for W.
V=X, 0 1 —3/4
. . 1 1 1/4
ov2:x2—prOJW1X2:x2—%v: 1 —% 1 1§4
1 1 1/4
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1 0 0
1 1 0
Ex. Let x; = =11 and x3 = 1 and W = Span{xy, x2,x3}.
1 1 1
Construct an orthogonal basis {v1, v, v3} for W.
0 1 —3/4
. . N 1/4
0V2:X2—prOJW1X2:X2—%V1: a1 = 1/4
1 1 1/4
—3/8
. ) . —13/24
@ V3 = X3 — Projy,Xx3 :X3—()‘Z.:1 V1—|—%V2) = 11//24
11/24
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1 0 0
1 1 0
Ex. Let x; = =11 and x3 = 1 and W = Span{xy, x2,x3}.
1 1 1
Construct an orthogonal basis {v1, v, v3} for W.
0 1 —3/4
. . N 1/4
0V2:X2—prOJW1X2:X2—%V1: a1 = 1/4
1 1 1/4
—3/8
. ) . —13/24
@ V3 = X3 — Projy,Xx3 :X3—()‘Z.:1 V1—|—%V2) = 11//24
11/24

e {v1, vo,v3} is an orthogonal basis for W.
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Least-square problems
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L east-squares problems

@® We know that some linear systems Ax = b may not be consistent.
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L east-squares problems

@® We know that some linear systems Ax = b may not be consistent.

@ Note that no matter what x we select, the vector Ax will necessarily
be in the column space of A, Col A.
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L east-squares problems

@® We know that some linear systems Ax = b may not be consistent.

@ Note that no matter what x we select, the vector Ax will necessarily
be in the column space of A, Col A.

@ So we seek an x in Col A so that Ax is the closest point to b.
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L east-squares problems

@® We know that some linear systems Ax = b may not be consistent.

@ Note that no matter what x we select, the vector Ax will necessarily
be in the column space of A, Col A.

@ So we seek an x in Col A so that Ax is the closest point to b.

@ Definition: If Ais m x nand b in R”, a least-squares solution of
Ax = bis an X in R" such that ||b — A&|| < ||b — Ax|| for all x € R".
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L east-squares problems

@® We know that some linear systems Ax = b may not be consistent.

@ Note that no matter what x we select, the vector Ax will necessarily
be in the column space of A, Col A.

@ So we seek an x in Col A so that Ax is the closest point to b.

@ Definition: If Ais m x nand b in R”, a least-squares solution of
Ax = bis an X in R" such that ||b — A%|| < ||b — Ax]| for all x € R".

V“:
RN N
S “n
= AX
Col A éAx \ “““Wt

The vector b is closer to AX than
to Ax for other x.
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Solution to the general least-squares problem

@ Given A and b, apply the Best Approximation Theorem to the
subspace Col A. Let b = projcos ab.
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Solution to the general least-squares problem

@ Given A and b, apply the Best Approximation Theorem to the
subspace Col A. Let b = projcos ab.

@ Because b is in the column space of A, the equation Ax = bis
consistent, and there is an X in R"” such that AX = b.
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Solution to the general least-squares problem

@ Given A and b, apply the Best Approximation Theorem to the
subspace Col A. Let b = projcos ab.

@ Because b is in the column space of A, the equation Ax = bis
consistent, and there is an X in R"” such that AX = b.

e Since b is the closest point in Col A to b, a vector X is a least-squares
solution of Ax = b if and only if X satisfies AX = b.

% S Sl do Ax=b
v
Frd X s4 AX —“?w\)m‘
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Solution to the general least-squares problem

@ Given A and b, apply the Best Approximation Theorem to the
subspace Col A. Let b = projcos ab.

@ Because b is in the column space of A, the equation Ax = bis
consistent, and there is an X in R"” such that AX = b.

e Since b is the closest point in Col A to b, a vector X is a least-squares
solution of Ax = b if and only if X satisfies AX = b.

@ Such an X in R" is a list of weights that will build b out of the
columns of A.
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Solution to the general least-squares problem

@ Given A and b, apply the Best Approximation Theorem to the
subspace Col A. Let b = projcos ab.

@ Because b is in the column space of A, the equation Ax = bis
consistent, and there is an X in R"” such that AX = b.

e Since b is the closest point in Col A to b, a vector X is a least-squares
solution of Ax = b if and only if X satisfies AX = b.

@ Such an X in R" is a list of weights that will build b out of the
columns of A.

@ Suppose X satisfies AX = b.
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Solution to the general least-squares problem

Given A and b, apply the Best Approximation Theorem to the
subspace Col A. Let b = projcos ab.

Because b is in the column space of A, the equation Ax = bis
consistent, and there is an X in R"” such that AX = b.

Since b is the closest point in Col A to b, a vector X is a least-squares
solution of Ax = b if and only if X satisfies AX = b.

Such an X in R" is a list of weights that will build b out of the
columns of A.

Suppose X satisfies AX = b.

By the Orthogonal Decomposition Theorem, the projection b has the
property that b — b is orthogonal to Col A, so b — AX is orthogonal to
each column of A.

Gexin Yu gyu@um.edu Section 6.4-6.5 The Gram-Schmit Process, least-square probler



e If aj is any column of A, then aj - (b— AX) =0, and aJ-T(b — AR) = 0.
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e If aj is any column of A, then aj - (b— AX) =0, and aJ-T(b — AR) = 0.

@ Since each aJT is a row of AT, we have AT (b — A%) = 0.
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e If aj is any column of A, then aj - (b— AX) =0, and aJ-T(b — AR) = 0.
@ Since each aJT is a row of AT, we have AT (b — A%) = 0.

@ Thus ATb— ATAL =0, and ATAR = ATh.
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e If aj is any column of A, then aj - (b— AX) =0, and ajT(b — AR) = 0.
@ Since each aJT is a row of AT, we have AT (b — A%) = 0.
o Thus ATh— ATA% =0, and ATAX = AT b.

@ These calculations show that each least-squares solution of Ax = b
satisfies the equation AT Ax = AT b. ‘

Gexin Yu gyu@wm.edu Section 6.4-6.5 The Gram-Schmit Process, least-square probler



e If aj is any column of A, then aj - (b— AX) =0, and ajT(b — AR) = 0.
@ Since each aJT is a row of AT, we have AT (b — A%) = 0.
o Thus ATh— ATA% =0, and ATAX = AT b.

@ These calculations show that each least-squares solution of Ax = b
satisfies the equation AT Ax = AT b.

@ The matrix equation AT Ax = AT b represents a system of equations
called the normal equations for Ax = b.
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e If aj is any column of A, then aj - (b— AX) =0, and ajT(b — AR) = 0.
@ Since each aJT is a row of AT, we have AT (b — A%) = 0.
o Thus ATh— ATA% =0, and ATAX = AT b.

@ These calculations show that each least-squares solution of Ax = b
satisfies the equation AT Ax = AT b.

@ The matrix equation AT Ax = AT b represents a system of equations
called the normal equations for Ax = b.

o A solution to AT Ax = AT b is often denoted by X.
~——
v—q
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THM The set of least-squares solutions of Ax = b coincides with the
nonempty set of solutions of the normal equation AT Ax = AT b.
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C,
THM The set of |east-squares solutions of Ax = b coincides with the

nonempty set of solutions of the normal equation AT Ax = AT b.

v . .
PF. The set of least-squares solutions is nonempty and each least-squares
solution X satisfies the normal equations. C < ¢
( 2

¢, £¢,

L
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THM The set of least-squares solutions of Ax = b coincides with the
nonempty set of solutions of the normal equation AT Ax = AT b.

PF. The set of least-squares solutions is nonempty and each least-squares
solution X satisfies the normal equations.

e Conversely, suppose X satisfies AT A% = AT b.
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THM The set of least-squares solutions of Ax = b coincides with the
nonempty set of solutions of the normal equation AT Ax = AT b.

PF. The set of least-squares solutions is nonempty and each least-squares
solution X satisfies the normal equations.

e Conversely, suppose X satisfies AT A% = AT b.

@ Then X satisfies AT (b — AR) = 0, which shows that b — A% is
orthogonal to the rows of AT, and hence is orthogonal to the columns
of A.
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THM The set of least-squares solutions of Ax = b coincides with the
nonempty set of solutions of the normal equation AT Ax = AT b.

PF. The set of least-squares solutions is nonempty and each least-squares
solution X satisfies the normal equations.

e Conversely, suppose X satisfies AT A% = AT b.

@ Then X satisfies AT (b — AR) = 0, which shows that b — A% is
orthogonal to the rows of AT, and hence is orthogonal to the columns
of A.

@ Since the columns of A span Col A, the vector b — AR is orthogonal
to all of Col A.
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THM The set of least-squares solutions of Ax = b coincides with the
nonempty set of solutions of the normal equation AT Ax = AT b.

PF. The set of least-squares solutions is nonempty and each least-squares
solution X satisfies the normal equations.

e Conversely, suppose X satisfies AT A% = AT b.

@ Then X satisfies AT (b — AR) = 0, which shows that b — A% is
orthogonal to the rows of AT, and hence is orthogonal to the columns
of A.

@ Since the columns of A span Col A, the vector b — AR is orthogonal
to all of Col A.

@ Hence the equation b = A% + (b — AX) is a decomposition of b into
the sum of a vector in Col A and a vector orthogonal to Col A.
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THM The set of |east-squares solutionsof Ax = b coincides with the

nonempty set of solutions of the normal equation ’/ﬂ—AX = ATb.

PF. The set of least-squares solutions is nonempty and each least-squares
solution X satisfies the normal equations.

e Conversely, suppose X satisfies AT A% = AT b.

@ Then X satisfies AT (b — AR) = 0, which shows that b — A% is
orthogonal to the rows of AT, and hence is orthogonal to the columns
of A.

@ Since the columns of A span Col A, the vector b — AR is orthogonal
to all of Col A.

@ Hence the equation b = A% + (b — AX) is a decomposition of b into
the sum of a vector in Col A and a vector orthogonal to Col A.

@ By the uniqueness of the orthogonal decomposition, AX must be the
orthogonal projection of b onto Col A.
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THM The set of least-squares solutions of Ax = b coincides with the
nonempty set of solutions of the normal equation AT Ax = AT b.

PF. The set of least-squares solutions is nonempty and each least-squares
solution X satisfies the normal equations.

e Conversely, suppose X satisfies AT A% = AT b.

@ Then X satisfies AT (b — AR) = 0, which shows that b — A% is
orthogonal to the rows of AT, and hence is orthogonal to the columns
of A.

@ Since the columns of A span Col A, the vector b — AR is orthogonal
to all of Col A.

@ Hence the equation b = A% + (b — AX) is a decomposition of b into
the sum of a vector in Col A and a vector orthogonal to Col A.

@ By the uniqueness of the orthogonal decomposition, AX must be the
orthogonal projection of b onto Col A.

o Thatis, AX=band X is a least-squares solution.
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Ex. Find a least-squares solution of the inconsistent system Ax = b for

4 0 2
A=l0 2|,p=1|0
11 11
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Ex. Find a least-squares solution of the inconsistent system Ax = b for

4 0 2 @\
A=10 2|,b=]0].

11 11 p}‘\/&x:v‘u

Sol. To use the normal equation, compute: e
17 1 19
Ta_ Ty
ATA = {1 5],A b= M
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Ex. Find a least-squares solution of the inconsistent system Ax = b for

4 0 2
A=l0 2|,p=1|0
11 11

Sol. To use the normal equation, compute:

a7 1 7, (19
AA_[l 5| ATb= 1]

@ Then the equation AT Ax = AT b becomes

o] )= L]
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Ex. Find a least-squares solution of the inconsistent system Ax = b for

4 0 2
A=l0 2|,p=1|0
11 11

Sol. To use the normal equation, compute:

a7 1 7, (19
AA_[l 5| ATb= 1]

@ Then the equation AT Ax = AT b becomes
17 1) (x| _ (19
1 5| |x| |11

@ Solve it, we have X = {1}
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o Note that the matrix equation AT Ax = AT b may have infinite many
solutions.
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o Note that the matrix equation AT Ax = AT b may have infinite many
solutions.

@ When will we have a unique least-squares solution to Ax = b?
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o Note that the matrix equation AT Ax = AT b may have infinite many
solutions.

@ When will we have a unique least-squares solution to Ax = b?

THM Let A be an m x n matrix. The following statements are logically
equivalent:

When these statements are true, the least-squares solution X is given
by £ = (ATA)"1ATb.
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o Note that the matrix equation AT Ax = AT b may have infinite many
solutions.

@ When will we have a unique least-squares solution to Ax = b?

THM Let A be an m x n matrix. The following statements are logically
equivalent:
» The equation Ax = b has a unique least-square solution for each b in
R™.

When these statements are true, the least-squares solution X is given
by £ = (ATA)"1ATb.
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o Note that the matrix equation AT Ax = AT b may have infinite many
solutions.

@ When will we have a unique least-squares solution to Ax = b?

THM Let A be an m x n matrix. The following statements are logically
equivalent:
» The equation Ax = b has a unique least-square solution for each b in
R™.
» The columns of A are linearly independent.

When these statements are true, the least-squares solution X is given
by £ = (ATA)"1ATb.
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o Note that the matrix equation AT Ax = AT b may have infinite many
solutions.

@ When will we have a unique least-squares solution to Ax = b?

THM Let A be an m x n matrix. The following statements are logically

equivalent:
» The equation Ax = b has a unique least-square solution for each b in
R™. : o
» The columns of A are linearly independent. T )
» The matrix AT A is invertible. A kx =h L
When these statements are true, the least-squares sollqlon X is given
by X = (ATA)"1ATb. U

<= (F)TL)
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o Note that the matrix equation AT Ax = AT b may have infinite many
solutions.

@ When will we have a unique least-squares solution to Ax = b?

THM Let A be an m x n matrix. The following statements are logically

equivalent:

» The equation Ax = b has a unique least-square solution for each b in

R™.

» The columns of A are linearly independent.

» The matrix AT A is invertible.
When these statements are true, the least-squares solution X is given
by £ = (ATA)"1ATb.

@ The distance from b to AX, ||b— AX||, is called the least-squares error
of this approximation.

Gexin Yu gyu@um.edu Section 6.4-6.5 The Gram-Schmit Process, least-square probler



Alternative calculation

@ When the columns of &[u; up ... up] are orthogonal, we know
exactly the orthogonal projection of b on Col A:
b-u b-up

mF...+—up
u - up-up

b=
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Alternative calculation

@ When the columns of Alu; up ... up)] are orthogonal, we know
exactly the orthogonal projection of b on Col A:
~ b- uy b- up

UxeUn-.x A = b= ...+ —=>u,
u - up-up

o Now to get the least-squares solution to AX = b, we just need to read:

b~U1 b‘U2 b-up
X1 = , X2 = sy Xp =
uy - uy up - up Up - Up
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Alternative calculation

@ When the columns of Alu; up ... up)] are orthogonal, we know
exactly the orthogonal projection of b on Col A:
b-u b-up

mF...+—up
u - up-up

b=

o Now to get the least-squares solution to AX = b, we just need to read:

b~U1 b‘U2 b-up
X1 = , X2 = sy Xp =
uy - uy up - up Up - Up

@ Such matrices often appear in linear regression problems.
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Ex. Find a least-squares solution of Ax = b for
1 -6 -1

1

A= 1

1
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Ex. Find a least-squares solution of Ax = b for

1 -6 -1

1 -2 2

A= 1 1 b= 1

1 7 6

Sol. We know that
-1
~ b-U1 b-U2 1
b= =2 1/2ur =

UI‘UIU1+U2‘U2U2 u +1/2up 5/2
11/2
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Ex. Find a least-squares solution of Ax = b for

1 —6 -1
1 -2 2
A=l 1 PE
17 6

Sol. We know that
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Ex. Find a least-squares solution of Ax = b for

1 -6 -1

1 -2 2

A= 1 1 b= 1

1 7 6

Sol. We know that
-1
~ b-U1 b-U2 1
b= =2 1/2ur =

UI‘UIU1+U2‘U2U2 u +1/2up 5/2
11/2

I
@ Now we solve AX = b: X = [1/2].

e We can also get the least-squares error: ||b — AX|| = %(' T,
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Applications to linear models
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Applications to linear models

@ The simplest relation between two variables x and y is the linear
equation y = By + PB1x. Experimental data often produce points
(x1,y1), (x2,¥2), - - ., (Xn, ¥n) that, when graphed, seem to lie close to
a line.

-

~
J&N ]
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Applications to linear models

@ The simplest relation between two variables x and y is the linear
equation y = By + PB1x. Experimental data often produce points
(x1,y1), (x2,¥2), - - ., (Xn, ¥n) that, when graphed, seem to lie close to
a line.

@ We want to determine By and (31 that make the line as ‘“close” to the
points as possible.
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Applications to linear models

@ The simplest relation between two variables x and y is the linear
equation y = By + PB1x. Experimental data often produce points
(x1,y1), (x2,¥2), - - ., (Xn, ¥n) that, when graphed, seem to lie close to
a line.

@ We want to determine By and (31 that make the line as ‘“close” to the
points as possible.

@ Suppose that By and 1 are fixed, and consider the line y = B + B1x.
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Applications to linear models

@ The simplest relation between two variables x and y is the linear
equation y = By + PB1x. Experimental data often produce points

(x1,y1), (x2,¥2), - - ., (Xn, ¥n) that, when graphed, seem to lie close to
a line.

@ We want to determine By and (31 that make the line as ‘“close” to the
points as possible.

@ Suppose that By and 1 are fixed, and consider the line y = B + B1x.
@ For each point (x;, i), there is a correspopding point (x;, Bo + S1x;i)
on the line. - s Xl _)\/I @*Q‘Xi

//‘: -
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Applications to linear models

@ The simplest relation between two variables x and y is the linear
equation y = By + PB1x. Experimental data often produce points
(x1,y1), (x2,¥2), - - ., (Xn, ¥n) that, when graphed, seem to lie close to
a line.

@ We want to determine By and (31 that make the line as ‘“close” to the
points as possible.

@ Suppose that By and 1 are fixed, and consider the line y = B + B1x.

e For each point (x;, i), there is a corresponding point (x;, 8o + S1x;i)
on the line.

@ We call y; the observed value of y and By + B1x; the predicted
y-value. The difference of an observed y-value and the predicted
y-value is called a residual.
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Applications to linear models

The simplest relation between two variables x and y is the linear
equation y = By + PB1x. Experimental data often produce points
(x1,y1), (x2,¥2), - - ., (Xn, ¥n) that, when graphed, seem to lie close to
a line.

We want to determine 5y and [3; that make the line as “close” to the
points as possible.

Suppose that 5y and 31 are fixed, and consider the line y = 5y + [1x.

For each point (x;, y;), there is a corresponding point (x;, 5o + [1xi)
on the line.
We call y; the observed value of y and By + B1x; the predicted

y-value. The difference of an observed y-value and the predicted
y-value is called a residual.

The least-squares line, or the line of regression of y on x, is the line
y = Bo + [1x that minimizes the sum of the squares of the residuals.
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@ The [y and f; satisfy the following
I x "
I x [50] _ |y

. b1
1 x, Yn

Q"* le\:\/l
B+ 0% =%

o+ fia =,
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@ The [y and f; satisfy the following

1 x %1
1 x [50] |
.. Bl

1 x, Yn

@ Or simply just X3 =y.
|
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Y = (or (4 o (i

@ The [y and f; satisfy the following

1 x %1
1 x [50] |
.. Bl

1 x, Yn

@ Or simply just X3 =y.

@ We can find the least-squares solution to X3 = y by solving the
matrix equation X7 X3 = XTy.
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@ Find the equation y = By + B1x of the least-squares line that best fits
the data points (2,1), (5,2),(7,3) and (8, 3).
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@ Find the equation y = By + B1x of the least-squares line that best fits
the data points (2,1), (5,2),(7,3) and (8, 3).

Sol. We solve the equation X7 X3 = X Ty, where

Y =

el el
0 N 01N
W WwWwN =
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@ Find the equation y = By + B1x of the least-squares line that best fits
the data points (2,1), (5,2),(7,3) and (8, 3).

Sol. We solve the equation’)gi(ﬁ_Z_XLL, where
—

X = Y=

el el
0 N 01N
W WwWwN =

@ The equation can be written as

2 1) 2] - 5]
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@ Find the equation y = By + B1x of the least-squares line that best fits
the data points (2,1), (5,2),(7,3) and (8, 3).

Sol. We solve the equation X7 X3 = X Ty, where

Y =

el el
0 N 01N
W WwWwN =

@ The equation can be written as

2 1) 2] - 5]

@ So the solution is [y 1] = [2/7 5/14].
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@ Find the equation y = By + B1x of the least-squares line that best fits
the data points (2,1), (5,2),(7,3) and (8, 3).

Sol. We solve the equation X7 X3 = X Ty, where

Y =

el el
0 N 01N
W WwWwN =

@ The equation can be written as

4 278 _[9
22 142| |p1| |57
@ So the solution is [y 1] = [2/7 5/14].
@ The least-squares line is y = 2/7 + 5/14x.
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