Section 7.1 Diagonalization of symmetric matrices and 7.2 Quadratic forms

Gexin Yu
gyu@wm.edu

College of William and Mary

Symmetric matrix

- A symmetric matrix is a matrix A such that $A^{T}=A$.

Symmetric matrix

- A symmetric matrix is a matrix A such that $A^{T}=A$.
- Such a matrix is necessarily square.

Symmetric matrix

- A symmetric matrix is a matrix A such that $A^{T}=A$.
- Such a matrix is necessarily square.
- Its main diagonal entries are arbitrary, but its other entries occur in pairs on opposite sides of the main diagonal.
- Theorem: If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.
- Theorem: If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

$$
A v_{1}=\lambda_{1} v_{1}
$$

Proof: Let v_{1} and v_{2} be eigenvectors that correspond to distinct eigenvalues, say λ_{1} and λ_{2}. We show that $v_{1} \cdot v_{2}=0$. Note that

$$
\begin{aligned}
\lambda_{1} v_{1} \cdot v_{2} & =\left(\lambda_{1} v_{1}\right)^{T} v_{2}=\left(A v_{1}\right)^{T} v_{2}=\left(v_{1}^{T} A^{T}\right) v_{2} \\
& =v_{1}^{T}\left(A^{T} v_{2}\right)=v_{1}^{T}\left(A v_{2}\right)=v_{1}^{T}\left(\lambda_{2} v_{2}\right)=\lambda_{2}\left(v_{1}^{T} v_{2}\right) \\
& =\lambda_{2} v_{1} \cdot v_{2} .
\end{aligned}
$$

It follows that $\left(\lambda_{1}-\lambda_{2}\right)\left(v_{1} \cdot v_{2}\right)=0$. So $v_{1} \cdot v_{2}=0$.

Orthogonally diagonalizable matrix

- An $n \times n$ matrix A is said to be orthogonally diagonzlizable if there are orthogonal matrix P (with $P^{-1}=P^{T}$) and a diagonal matrix D such that

$$
A=P D P^{T}=P D P^{-1}
$$

Orthogonally diagonalizable matrix

- An $n \times n$ matrix A is said to be orthogonally diagonzlizable if there are orthogonal matrix P (with $P^{-1}=P^{T}$) and a diagonal matrix D such that

$$
A=P D P^{T}=P D P^{-1}
$$

- Such a diagonalization requires n linearly independent and orthogonal eigenvectors.

Orthogonally diagonalizable matrix

- An $n \times n$ matrix A is said to be orthogonally diagonzlizable if there are orthogonal matrix P (with $P^{-1}=P^{T}$) and a diagonal matrix D such that

$$
A=P D P^{T}=P D P^{-1}
$$

- Such a diagonalization requires n linearly independent and orthogonal eigenvectors.
- When is this possible?

Orthogonally diagonalizable matrix

- An $n \times n$ matrix A is said to be orthogonally diagonzlizable if there are orthogonal matrix P (with $P^{-1}=P^{T}$) and a diagonal matrix D such that

$$
A=P D P^{T}=P D P^{-1}
$$

- Such a diagonalization requires n linearly independent and orthogonal eigenvectors.
- When is this possible?
- If A is orthogonally diagonalizable, then

$$
A^{T}=\left(P D P^{T}\right)^{T}=\left(P^{T}\right)^{T} D^{T} P^{T}=P D P^{T}=A
$$

Orthogonally diagonalizable matrix

- An $n \times n$ matrix A is said to be orthogonally diagonzlizable if there are orthogonal matrix P (with $P^{-1}=P^{T}$) and a diagonal matrix D such that

$$
A=P D P^{T}=P D P^{-1}
$$

- Such a diagonalization requires n linearly independent and orthogonal eigenvectors.
- When is this possible?
- If A is orthogonally diagonalizable, then

$$
A^{T}=\left(P D P^{T}\right)^{T}=\left(P^{T}\right)^{T} D^{T} P^{T}=P D P^{T}=A
$$

- So A should be symmetric.

Orthogonally diagonalizable matrix

- An $n \times n$ matrix A is said to be orthogonally diagonzlizable if there are orthogonal matrix P (with $P^{-1}=P^{T}$) and a diagonal matrix D such that

$$
A=P D P^{T}=P D P^{-1}
$$

- Such a diagonalization requires n linearly independent and orthogonal eigenvectors.
- When is this possible?
- If A is orthogonally diagonalizable, then

$$
A^{T}=\left(P D P^{T}\right)^{T}=\left(P^{T}\right)^{T} D^{T} P^{T}=P D P^{T}=A
$$

- So A should be symmetric.
- Theorem: An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is symmetric.

Example

- Ex: Orthogonally diagonalize the matrix $\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 .\end{array}\right]$

Example

- Ex: Orthogonally diagonalize the matrix $\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 .\end{array}\right]$
- First of all, its charateristic equation is $\operatorname{det}(A-\lambda I)=(\lambda-7)^{2}(\lambda+2)$. So its eigenvalues are 7 (with multiplicity 2) and -2 .
$\operatorname{det}\left(\left(\begin{array}{ccc}3-\lambda & -2 & 4 \\ -2 & 6-\lambda & 2 \\ 4 & 2 & 3-\lambda\end{array}\right)\right)$

Example

- Ex: Orthogonally diagonalize the matrix $\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 .\end{array}\right]$
- First of all, its charateristic equation is $\operatorname{det}(A-\lambda I)=(\lambda-7)^{2}(\lambda+2)$. So its eigenvalues are 7 (with multiplicity 2) and -2 .
- The bases for the eigenspaces are

$$
\begin{aligned}
& \lambda=7: v_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right) ; \quad \lambda=-2: v_{3}=\left(\begin{array}{c}
-1 \\
-\frac{1}{2} \\
1
\end{array}\right)
\end{aligned}
$$

Example

- Ex: Orthogonally diagonalize the matrix $\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 .\end{array}\right]$
- First of all, its charateristic equation is $\operatorname{det}(A-\lambda I)=(\lambda-7)^{2}(\lambda+2)$. So its eigenvalues are 7 (with multiplicity 2) and -2 .
- The bases for the eigenspaces are

$$
\lambda=7: v_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right) ; \quad \lambda=-2: v_{3}=\left(\begin{array}{c}
-1 \\
-\frac{1}{2} \\
1
\end{array}\right)
$$

Example

- Ex: Orthogonally diagonalize the matrix $\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 .\end{array}\right]$
- First of all, its charateristic equation is $\operatorname{det}(A-\lambda I)=(\lambda-7)^{2}(\lambda+2)$. So its eigenvalues are 7 (with multiplicity 2) and -2 .
- The bases for the eigenspaces are

$$
\lambda=7: v_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right) ; \quad \lambda=-2: v_{3}=\left(\begin{array}{c}
-1 \\
-\frac{1}{2} \\
1
\end{array}\right)
$$

- The projection of v_{2} onto v_{1} is $\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$, so the component of v_{2} orthogonal to v_{1} is $z_{2}=v_{2}-\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left(\begin{array}{c}-\frac{1}{4} \\ 1 \\ \frac{1}{4}\end{array}\right)$
- So $\left\{v_{1}, z_{2}\right\}$ is an orthogonal set in the eigenspace for $\lambda=7$.
- Normalize v_{1} and z_{2} to get $\begin{aligned} & \text { northonormal basis for the eigenspace for }\end{aligned}$ $\lambda=7$:
$u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}$

$$
u_{1}=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right), u_{2}=\left(\begin{array}{c}
-1 / \sqrt{18} \\
4 / \sqrt{18} \\
1 / \sqrt{18}
\end{array}\right)
$$

- Normalize v_{1} and z_{2} to get a orthonormal basis for the eigenspace for $\lambda=7$:

$$
u_{1}=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right), u_{2}=\left(\begin{array}{c}
-1 / \sqrt{18} \\
4 / \sqrt{18} \\
1 / \sqrt{18}
\end{array}\right)
$$

- An orthonormal basis for the eigenspace for $\lambda=-2$ is

$$
u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\left(\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right)
$$

- Normalize v_{1} and z_{2} to get a orthonormal basis for the eigenspace for $\lambda=7$:

$$
u_{1}=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right), u_{2}=\left(\begin{array}{c}
-1 / \sqrt{18} \\
4 / \sqrt{18} \\
1 / \sqrt{18}
\end{array}\right)
$$

- An orthonormal basis for the eigenspace for $\lambda=-2$ is

$$
u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\left(\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right)
$$

- Now $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthonormal set.
- Normalize v_{1} and z_{2} to get a orthonormal basis for the eigenspace for $\lambda=7$:

$$
u_{1}=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right), u_{2}=\left(\begin{array}{c}
-1 / \sqrt{18} \\
4 / \sqrt{18} \\
1 / \sqrt{18}
\end{array}\right)
$$

- An orthonormal basis for the eigenspace for $\lambda=-2$ is

$$
u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\left(\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right)
$$

- Now $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthonormal set.
- Let

$$
P=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & -\frac{2}{3} \\
0 & \frac{4}{\sqrt{18}} & -\frac{1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right], \quad D=\left[\begin{array}{ccc}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

- Normalize v_{1} and z_{2} to get a orthonormal basis for the eigenspace for $\lambda=7$:

$$
u_{1}=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right), u_{2}=\left(\begin{array}{c}
-1 / \sqrt{18} \\
4 / \sqrt{18} \\
1 / \sqrt{18}
\end{array}\right)
$$

- An orthonormal basis for the eigenspace for $\lambda=-2$ is

$$
u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\left(\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right)
$$

- Now $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthonormal set.
- Let

$$
P=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & -\frac{2}{3} \\
0 & \frac{4}{\sqrt{18}} & -\frac{1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right], \quad D=\left[\begin{array}{ccc}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

- then P orthogonally diagonalizes A, and $A=P D P^{\top}$.

the Spectral Theorem

- The set of eigenvalues of a matrix A is sometimes called the spectrum of A.

the Spectral Theorem

- The set of eigenvalues of a matrix A is sometimes called the spectrum of A.
- Spectral Theorem: An $n \times n$ symmetric matrix A has the following properties:

the Spectral Theorem

- The set of eigenvalues of a matrix A is sometimes called the spectrum of A.
- Spectral Theorem: An $n \times n$ symmetric matrix A has the following properties:
(1) A has n real eigenvalues, counting multiplicities.

the Spectral Theorem

- The set of eigenvalues of a matrix A is sometimes called the spectrum of A.
- Spectral Theorem: An $n \times n$ symmetric matrix A has the following properties:
(1) A has n real eigenvalues, counting multiplicities.
(2) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.

the Spectral Theorem

- The set of eigenvalues of a matrix A is sometimes called the spectrum of A.
- Spectral Theorem: An $n \times n$ symmetric matrix A has the following properties:
(1) A has n real eigenvalues, counting multiplicities.
(2) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
(3) The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.

the Spectral Theorem

- The set of eigenvalues of a matrix A is sometimes called the spectrum of A.
- Spectral Theorem: An $n \times n$ symmetric matrix A has the following properties:
(1) A has n real eigenvalues, counting multiplicities.
(2) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
(3) The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
(9) A is orthogonally diagonalizable.

Spectral decomposition

- Suppose that $A=P D P^{-1}$, where the columns of P are orthonormal eigenvectors u_{1}, \ldots, u_{n} of A and the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are in the diagonal matrix D. Then

Spectral decomposition

- Suppose that $A=P D P^{-1}$, where the columns of P are orthonormal eigenvectors u_{1}, \ldots, u_{n} of A and the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are in the diagonal matrix D. Then

$$
\begin{aligned}
A & =P D P^{T}=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 \ldots & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right]\left(\begin{array}{c}
u_{1}^{T} \\
u_{2}^{T} \\
\ldots \\
u_{n}^{T}
\end{array}\right) \\
& =\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}+\ldots+\lambda_{n} u_{n} u_{n}^{T}
\end{aligned}
$$

- The expression $A=\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}+\ldots+\lambda_{n} u_{n} u_{n}^{T}$ is called a spectral decomposition of A, because if breaks A into pieces determined by the spectrum (eigenvalues) of A.

Spectral decomposition

- Suppose that $A=P D P^{-1}$, where the columns of P are orthonormal eigenvectors u_{1}, \ldots, u_{n} of A and the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are in the diagonal matrix D. Then

$$
\begin{aligned}
A & =P D P^{T}=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 \ldots & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right]\left(\begin{array}{c}
u_{1}^{T} \\
u_{2}^{T} \\
\ldots \\
u_{n}^{T}
\end{array}\right) \\
& =\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}+\ldots+\lambda_{n} u_{n} u_{n}^{T}
\end{aligned}
$$

- The expression $A=\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}+\ldots+\lambda_{n} u_{n} u_{n}^{T}$ is called a spectral decomposition of A, because if breaks A into pieces determined by the spectrum (eigenvalues) of A.
- Each term in the decomposition is an $n \times n$ matrix of rank 1 .

Example

- Ex:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
7 & 2 \\
2 & 4
\end{array}\right]= \\
{\left[\begin{array}{cc}
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{ll}
8 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right]} \\
И_{1} \\
u_{2}
\end{gathered}
$$

Example

- Ex:

$$
A=\left[\begin{array}{ll}
7 & 2 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{ll}
8 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right]
$$

- Then

$$
A=8 u_{1} u_{1}^{T}+3 u_{2} u_{2}^{T}=\left[\begin{array}{cc}
\frac{32}{5} & \frac{16}{5} \\
\frac{16}{5} & \frac{8}{5}
\end{array}\right]+\left[\begin{array}{cc}
\frac{3}{5} & -\frac{6}{5} \\
-\frac{6}{5} & \frac{12}{5}
\end{array}\right]
$$

Quadratic forms

- A quadratic form is a function defined on \mathbf{R}^{n} whose value at a vector x in \mathbf{R}^{n} can be computed by an expression of the form $Q(x)=x^{T} A x$, where A is an $n \times n$ symmetric matrix.

Quadratic forms

- A quadratic form is a function defined on \mathbf{R}^{n} whose value at a vector x in \mathbf{R}^{n} can be computed by an expression of the form $Q(x)=x^{T} A x$, where A is an $n \times n$ symmetric matrix.
- The matrix A is called the matrix of the quadratic form.

$$
\begin{aligned}
& 2 x_{1}^{2}+3 x_{1} x_{2}-2 x_{1} x_{3}+4 x_{2} x_{3}+x_{2}^{2}+5 x_{3}^{2} \\
& A=\underbrace{1}_{x_{2}\left(\begin{array}{ccc}
x_{1} \\
x_{3} \\
22^{2} 3 / 2 \\
3 / 2 & 1 & -1 \\
-1 & 2 & 5
\end{array}\right)} \\
& 11 \\
& x^{T} A x \\
& x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{6}
\end{array}\right) \\
& \begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}
\end{aligned}
$$

Quadratic forms

- A quadratic form is a function defined on \mathbf{R}^{n} whose value at a vector x in \mathbf{R}^{n} can be computed by an expression of the form $Q(x)=x^{T} A x$, where A is an $n \times n$ symmetric matrix.
- The matrix A is called the matrix of the quadratic form.
- Ex: let $x=\binom{x_{1}}{x_{2}}$. Compute $x^{T} A x$ for the following matrices:

$$
\begin{aligned}
& { }_{x}^{\top} A_{x} \\
& =\left(\begin{array}{ll}
\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right)
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =\left(\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{cc}
3 & -2 \\
-2 & 7
\end{array}\right] \\
& =\left(\begin{array}{ll}
4 & x_{1}
\end{array} \quad 3 x\right)\binom{x_{1}}{x_{2}}=\left(4 x_{1}^{2}+\right) x_{2}^{2}
\end{aligned}
$$

Quadratic forms

- A quadratic form is a function defined on \mathbf{R}^{n} whose value at a vector x in \mathbf{R}^{n} can be computed by an expression of the form $Q(x)=x^{T} A x$, where A is an $n \times n$ symmetric matrix.
- The matrix A is called the matrix of the quadratic form.
- Ex: let $x=\binom{x_{1}}{x_{2}}$. Compute $x^{T} A x$ for the following matrices:

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{cc}
3 & -2 \\
-2 & 7
\end{array}\right]
$$

- $x^{\top} A x=4 x_{1}^{2}+3 x_{2}^{2}$.

Quadratic forms

- A quadratic form is a function defined on \mathbf{R}^{n} whose value at a vector x in \mathbf{R}^{n} can be computed by an expression of the form $Q(x)=x^{T} A x$, where A is an $n \times n$ symmetric matrix.
- The matrix A is called the matrix of the quadratic form.
- Ex: let $x=\binom{x_{1}}{x_{2}}$. Compute $x^{T} A x$ for the following matrices:

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{cc}
3 & -2 \\
-2 & 7
\end{array}\right]
$$

- $x^{\top} A x=4 x_{1}^{2}+3 x_{2}^{2}$.
- $x^{T} B x=3 x_{1}^{2}-4 x_{1} x_{2}+7 x_{2}^{2}$.

Quadratic forms

- A quadratic form is a function defined on \mathbf{R}^{n} whose value at a vector x in \mathbf{R}^{n} can be computed by an expression of the form $Q(x)=x^{T} A x$, where A is an $n \times n$ symmetric matrix.
- The matrix A is called the matrix of the quadratic form.
- Ex: let $x=\binom{x_{1}}{x_{2}}$. Compute $x^{T} A x$ for the following matrices:
- $x^{T} A x=\left(4 x_{1}^{2}+(3) x_{2}^{2}\right.$. $\left.\begin{array}{cc}(4) & 0 \\ 0 & 3\end{array}\right]$,

$$
B=\left[\begin{array}{cc}
3) \\
-2 & -2 \\
\hline
\end{array}\right]
$$

- $x^{T} B x=(3) 1_{1}^{2}\left(-4 x_{1} x_{2}+(7) x_{2}^{2}\right.$.
- The term $-4 x_{1} x_{2}$ is called a cross-product term.

Change of variable in a quadratic form

- If x represents a variable vector in \mathbf{R}^{n}, then a change of variable is an equation of the form $x=P y$, or $y=P^{-1} x$, where P is an invertible matrix and y is a new variable vector in \mathbf{R}^{n}.

Change of variable in a quadratic form

- If x represents a variable vector in \mathbf{R}^{n}, then a change of variable is an equation of the form $x=P y$, or $y=P^{-1} x$, where P is an invertible matrix and y is a new variable vector in \mathbf{R}^{n}.
- By make a change of variable on $x^{T} A x$, we have

$$
x^{T} A x=(P y)^{T} A(P y)=y^{T} P^{T} A P y=y^{T}\left(P^{T} A P\right) y
$$

we obtain a new matrix of the quadratic form $P^{T} A P$.

Change of variable in a quadratic form

- If x represents a variable vector in \mathbf{R}^{n}, then a change of variable is an equation of the form $x=P y$, or $y=P^{-1} x$, where P is an invertible matrix and y is a new variable vector in \mathbf{R}^{n}.
- By make a change of variable on $x^{T} A x$, we have

$$
x^{T} A x=(P y)^{T} A(P y)=y^{T} P^{T} A P y=y^{T}\left(P^{T} A P\right) y
$$

we obtain a new matrix of the quadratic form $P^{T} A P$.

- Since A issymmetric, there is an orthogonal matrix P such that
$P^{T} A P$ is a diagonal matrix D, and the quadratic form above becomes $y^{T} D y$, which contains no cross-product terms.

Change of variable in a quadratic form

- If x represents a variable vector in \mathbf{R}^{n}, then a change of variable is an equation of the form $x=P y$, or $y=P^{-1} x$, where P is an invertible matrix and y is a new variable vector in \mathbf{R}^{n}.
- By make a change of variable on $x^{T} A x$, we have

$$
x^{T} A x=(P y)^{T} A(P y)=y^{T} P^{T} A P y=y^{T}\left(P^{T} A P\right) y
$$

we obtain a new matrix of the quadratic form $P^{T} A P$.

- Since A is symmetric, there is an orthogonal matrix P such that $P^{T} A P$ is a diagonal matrix D, and the quadratic form above becomes $y^{T} D y$, which contains no cross-product terms.
- Theorem: Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\bar{x}=P y$, that transforms the quadratic form $x^{T} A x$ into a quadratic form $y^{\top} D y$ with no cross-product term.

Example

- Ex: Make a change of variable that transforms the quadratic form $Q(x)=x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ into a quadratic form with no cross-product term.

Example

- Ex: Make a change of variable that transforms the quadratic form $Q(x)=x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ into a quadratic form with no cross-product term.
- The matrix of the given quadratic form is

$$
A=\left[\begin{array}{cc}
1 & -4 \\
-4 & -5
\end{array}\right]
$$

Example

- Ex: Make a change of variable that transforms the quadratic form $Q(x)=x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ into a quadratic form with no cross-product term.
- The matrix of the given quadratic form is

$$
A=\left[\begin{array}{cc}
1 & -4 \\
-4 & -5
\end{array}\right]
$$

- Orthogonally diagonalize A : the eigenvalues of A are 3 and -7 , and the associated unit eigenvectors are $\lambda=3:\left[\frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}}\right]^{T}$ and $\lambda=-7:\left[\frac{1}{\sqrt{5}} \frac{2}{\sqrt{5}}\right]^{T}$.

Example

- Ex: Make a change of variable that transforms the quadratic form $Q(x)=x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ into a quadratic form with no cross-product term.
- The matrix of the given quadratic form is

$$
A=\left[\begin{array}{cc}
1 & -4 \\
-4 & -5
\end{array}\right]
$$

- Orthogonally diagonalize A : the eigenvalues of A are 3 and -7 , and the associated unit eigenvectors are $\lambda=3:\left[\frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}}\right]^{T}$ and $\lambda=-7:\left[\frac{1}{\sqrt{5}} \frac{2}{\sqrt{5}}\right]^{T}$.
- Let

$$
P=\left[\begin{array}{cc}
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right], D=\left[\begin{array}{cc}
3 & 0 \\
0 & -7
\end{array}\right]
$$

Example

- Ex: Make a change of variable that transforms the quadratic form $Q(x)=x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ into a quadratic form with no cross-product term.
- The matrix of the given quadratic form is

$$
A=\left[\begin{array}{cc}
1 & -4 \\
-4 & -5
\end{array}\right]
$$

- Orthogonally diagonalize A : the eigenvalues of A are 3 and -7 , and the associated unit eigenvectors are $\lambda=3:\left[\frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}}\right]^{T}$ and $\lambda=-7:\left[\frac{1}{\sqrt{5}} \frac{2}{\sqrt{5}}\right]^{T}$.
- Let

$$
P=\left[\begin{array}{cc}
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right], D=\left[\begin{array}{cc}
3 & 0 \\
0 & -7
\end{array}\right]
$$

- then $A=P D P^{T}$ and $D=P^{T} A P$. Let $x=P y$, then

$$
x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}=y^{T} D y=3 y_{1}^{2}-7 y_{2}^{2}
$$

The principal axes theorem

- The columns of P in the theorem are called the principal axes of the quadratic form $x^{T} A x$.

The principal axes theorem

- The columns of P in the theorem are called the principal axes of the quadratic form $x^{T} A x$.
- The vector y is the coordinate vector of x relative to the orthonormal basis of \mathbf{R}^{n} given by these principal axes.

The principal axes theorem

- The columns of P in the theorem are called the principal axes of the quadratic form $x^{T} A x$.
- The vector y is the coordinate vector of x relative to the orthonormal basis of \mathbf{R}^{n} given by these principal axes.
- It can be shown that the set of all x in \mathbf{R}^{n} that satisfy $x^{T} A x=c$ either corresponds to an ellipse (or a circle), a hyperbola, two intersecting lines, or a single point, or contains no points at all.

The principal axes theorem

- The columns of P in the theorem are called the principal axes of the quadratic form $x^{T} A x$.
- The vector y is the coordinate vector of x relative to the orthonormal basis of \mathbf{R}^{n} given by these principal axes.
- It can be shown that the set of all x in \mathbf{R}^{n} that satisfy $x^{T} A x=c$ either corresponds to an ellipse (or a circle), a hyperbola, two intersecting lines, or a single point, or contains no points at all.
- If A is a diagonal matrix, the graph is in standard position, such as the figure below:

The principal axes theorem

- The columns of P in the theorem are called the principal axes of the quadratic form $X^{T} A x-\left[u_{1} u_{v}\right]$
- The vector $\not y$ is the coordinate vector of x relative to the orthonormal basis of R/ given by these principal axes.
- It can be shown that the set of all x in \mathbf{R}^{n} that satisfy $x^{T} A x=c$ either co responds to an ellipse (or a circle), a hyperbola, two intersecting lines, or a single point, or contains no points at all.
- If A is a diagonal matrix, the graph is in standard position, such as the figure Below:
- If A is not a diagonal phatrix, the graph of equation is rotated out of the standard position.

The principal axes theorem

- The columns of P in the theorem are called the principal axes of the quadratic form $x^{T} A x$.
- The vector y is the coordinate vector of x relative to the orthonormal basis of \mathbf{R}^{n} given by these principal axes.
- It can be shown that the set of all x in \mathbf{R}^{n} that satisfy $x^{T} A x=c$ either corresponds to an ellipse (or a circle), a hyperbola, two intersecting lines, or a single point, or contains no points at all.
- If A is a diagonal matrix, the graph is in standard position, such as the figure below:
- If A is not a diagonal matrix, the graph of equation is rotated out of the standard position.
- Finding the principal axes (determined by the eigenvectors of A) amounts to finding a new coordinate system with respect to which the graph is in standard position.

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is
- positive definite if $Q(x)>0$ for all $x \neq 0$;

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is
- positive definite if $Q(x)>0$ for all $x \neq 0$;
- negative definite if $Q(x)<0$ for all $x \neq 0$;

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is
- positive definite if $Q(x)>0$ for all $x \neq 0$;
- negative definite if $Q(x)<0$ for all $x \neq 0 ; \rightarrow-x_{1}^{2}-4 x_{2}^{2}<0$
- indefinite if $Q(x)$ assumes both positive and negative values.

$$
x_{1}^{2}-2 x_{2}^{2}\left\{\begin{array}{l}
>0 \\
<0
\end{array}\right.
$$

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is
- positive definite if $Q(x)>0$ for all $x \neq 0$;
- negative definite if $Q(x)<0$ for all $x \neq 0$;
- indefinite if $Q(x)$ assumes both positive and negative values.
- Also, Q is said to be positive semidefinite if $Q(x) \geq 0$ for all x, and negative semidefinite if $Q(x) \leq 0$ for all x.

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is
- positive definite if $Q(x)>0$ for all $x \neq 0$;
- negative definite if $Q(x)<0$ for all $x \neq 0$;
- indefinite if $Q(x)$ assumes both positive and negative values.
- Also, Q is said to be positive semidefinite if $Q(x) \geq 0$ for all x, and negative semidefinite if $Q(x) \leq 0$ for all x.
- Theorem: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $x T A x$ is:

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is
- positive definite if $Q(x)>0$ for all $x \neq 0$;
- negative definite if $Q(x)<0$ for all $x \neq 0$;
- indefinite if $Q(x)$ assumes both positive and negative values.
- Also, Q is said to be positive semidefinite if $Q(x) \geq 0$ for all x, and negative semidefinite if $Q(x) \leq 0$ for all x.
- Theorem: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $x T A x$ is: $\longrightarrow \lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\cdots \lambda_{n} x_{n}^{2}$
- positive definite if and only if the eigenvalues of A are all positive,

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is
- positive definite if $Q(x)>0$ for all $x \neq 0$;
- negative definite if $Q(x)<0$ for all $x \neq 0$;
- indefinite if $Q(x)$ assumes both positive and negative values.
- Also, Q is said to be positive semidefinite if $Q(x) \geq 0$ for all x, and negative semidefinite if $Q(x) \leq 0$ for all x.
- Theorem: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $x T A x$ is:
- positive definite if and only if the eigenvalues of A are all positive,
- negative definite if and only if the eigenvalues of A are all negative, or

Classifying quadratic forms

- Definition: A quadratic form $Q(x)$ is
- positive definite if $Q(x)>0$ for all $x \neq 0$;
- negative definite if $Q(x)<0$ for all $x \neq 0$;
- indefinite if $Q(x)$ assumes both positive and negative values.
- Also, Q is said to be positive semidefinite if $Q(x) \geq 0$ for all x, and negative semidefinite if $Q(x) \leq 0$ for all x.
- Theorem: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $x T A x$ is:
- positive definite if and only if the eigenvalues of A are all positive,
- negative definite if and only if the eigenvalues of A are all negative, or
- indefinite if and only if A has both positive and negative eigenvalues.

