1. Let $A=\left[\begin{array}{cccc}1 & 3 & -4 & 7 \\ 2 & 6 & 5 & 1 \\ 3 & 9 & 4 & 5\end{array}\right]$.
(a) Find all the solutions of the non-homogeneous system $A x=b$, and write them in parametric form, where $b=\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right]$.
(b) Find all the solutions of the homogeneous system $A x=0$, and write them in parametric form.
(c) Are the columns of the matrix A linearly independent? Write down a linear relation between the columns of A if they are dependent.
2. Let $S=\operatorname{Span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. where

$$
u_{1}=\left[\begin{array}{c}
1 \\
-2 \\
3 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
0 \\
1 \\
1 \\
-2
\end{array}\right], u_{3}=\left[\begin{array}{c}
1 \\
-3 \\
2 \\
3
\end{array}\right], u_{4}=\left[\begin{array}{c}
0 \\
1 \\
1 \\
-3
\end{array}\right]
$$

(a) Are $u_{1}, u_{2}, u_{3}, u_{4}$ linearly independent?
(b) Find all the vectors $u=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that the u is in S. Write these u in parametric form. Justify your answer.
(c) Is $v=\left[\begin{array}{c}-1 \\ 3 \\ -2 \\ 1\end{array}\right]$ in S ? Is $w=\left[\begin{array}{c}1 \\ 3 \\ -2 \\ 1\end{array}\right]$ in S ?
3. Consider the 4×4 matrix:

$$
A=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
1 & \lambda & 1 & 0 \\
0 & 1 & \lambda & 1 \\
0 & 0 & 1 & \lambda
\end{array}\right]
$$

(a) Find $\operatorname{det}(A)$;
(b) Find A^{-1};
(c) find LU-decomposition of A.
4. Let $e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Suppose $T: R^{3} \mapsto R^{2}$ is a linear transformation such that $T\left(e_{1}+e_{2}\right)=\left[\begin{array}{c}1 \\ -1\end{array}\right], T\left(e_{1}-e_{2}\right)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $T\left(e_{1}+e_{2}+e_{3}\right)=\left[\begin{array}{c}1 \\ -2\end{array}\right]$. What is $T\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)$?
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T(x)=\left(x_{1}-2 x_{2}, x_{1}+5 x_{2}\right)
$$

(a) Determine the standard matrix, A, of T.
(b) Find A^{-1}.
(c) Is T is one to one? onto? Why?
(d) If $A x=\left[\begin{array}{c}14 \\ 7\end{array}\right]$, solve for x.

