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Intergovernmental Panel on Climate Change (IPCC) findings

“Warming of the climate system is unequivocal.” – IPCC AR4
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IPCC findings: human influence on climate change
“Most of the observed increase in global average temperatures since the
mid-20th century is very likely due to the observed increase in
anthropogenic greenhouse gas concentrations” – IPCC AR4
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Extremes in a changing climate

“The climate change has begun to affect the frequency, intensity, and
duration of extreme events such as extreme temperatures, extreme
precipitation, etc” – IPCC AR4, IPCC SREX

Question:
how temperature extremes might change under future climate conditions?

We use climate models along with statistical approaches to this inquiry in
simplified settings
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Climate modeling 101

Figure: Slide courtesy of Steve Sain
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Climate modeling 101

Figure: Slide courtesy of Steve Sain
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Atmosphere-Ocean General Circulation Models (GCMs)
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This project
Data: 1000-year CCSM3 (a NCAR GCM model) runs, fully
equilibrated pre-industrial and future (700 ppm CO2) conditions

Method: fit generalized extreme value (GEV) distribution to annual
maxima/minima daily temperatures, compute the changes in return
levels
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Normal distribution for sample averages
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If Y1,Y2, · · · ,Yn is a random
sample from a underlying
distribution, then (under some
mild conditions)

Ȳn =
1
n

n∑
i=1

Yi ≈ N(µ,
σ2

n
)

µ: population mean
σ2: population variance
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Generalized extreme value (GEV) distribution for sample
maxima/minima
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If Y1,Y2, · · · ,Yn is a random
sample, then

max
1≤i≤n

Yi ≈ GEV(µ(n), σ(n), ξ)

µ(n): location, describe the
“center” of extremes
σ(n): scale, describe the
“spread” of extremes
ξ: shape, describe the tail
“heaviness” of extremes
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Model “block extremes” as GEV distributions

Determine the block size and compute maxima/minima for blocks

Fit the GEV to the block maxima/minima

Example: annual maximum temperature
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Return levels

r-year return level: the magnitude of a rare event exceeded on average
once per r years
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Changes in extremes

Changes in extremes is usually summarized by changes in return levels
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Changes in warm temperature extremes
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Changes in cold temperature extremes
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Summer warm extremes shift with means
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Winter cold extremes shift more than means with changes in
spread

Winter minima (°C)
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Can cold extreme shifts be explained by changes in
mean/standard deviation of overall distribution?

Present−day tempeature
µ1

σ1

µgev_1
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Can cold extreme shifts be explained by changes in
mean/standard deviation of overall distribution?

Future temperature
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Can cold extreme shifts be explained by changes in
mean/standard deviation of overall distribution?

Mean shift vs. extreme shift
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Reduced wintertime variability would increase shift of cold
extremes
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If all the changes from present to future are due to mean/standard
deviation (i.e. T2 = α + βT1), then

µgev_2 − µ2
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=
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Warmer winter cold extremes largely explained by changes in
overall distribution

1 Plot µgev_2−µ2
µgev_1−µ1

vs. σ2
σ1

2 1:1 line: extreme shifts only due to overall mean/variance changes
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Changes in U.S. warm extremes
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Changes in U.S. cold extremes
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How well can we estimate the changes with shorter runs or
data?
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We assess this by
1 divide the time series into segments (e.g. 50-year)
2 redo the analysis to each segment, compare the results with the

“ground truth”
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Sampling error is large for short runs
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Summary and discussion

Warm extremes: mainly due to the summer mean shifts

Cold extremes: shifts larger than the winter mean shifts, but are
largely explainable by mean shifts combined with reduced wintertime
temperature variability.

Sampling error is large for studying extremes in short datasets
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