What can we learn from millennial-scale climate simulations about temperature extremes?

Whitney Huang¹, Michael Stein², Elisabeth Moyer², Shanshan Sun², and David McInerney³

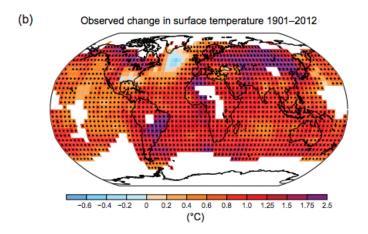
Purdue University¹, University of Chicago², University of Adelaide³

Data Science: Theory Applications

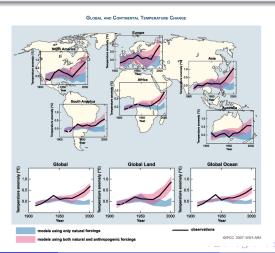
March 23, 2016

Outline

Background


2 Methodology

Results


Intergovernmental Panel on Climate Change (IPCC) findings

"Warming of the climate system is unequivocal." - IPCC AR4

IPCC findings: human influence on climate change

"Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations" - IPCC AR4

4 / 31

Extremes in a changing climate

"The climate change has begun to affect the frequency, intensity, and duration of extreme events such as extreme temperatures, extreme precipitation, etc" – IPCC AR4, IPCC SREX

Question:

how temperature extremes might change under future climate conditions?

We use climate models along with statistical approaches to this inquiry in simplified settings

Climate modeling 101

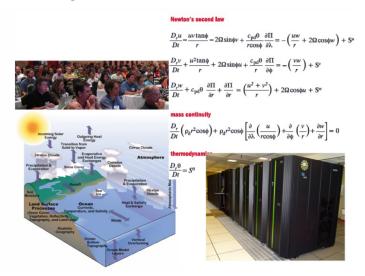
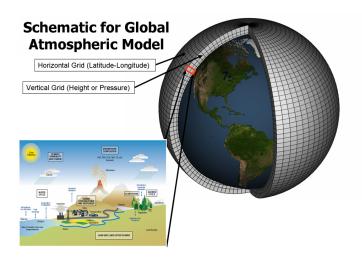
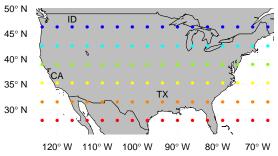


Figure: Slide courtesy of Steve Sain


6 / 31

Climate modeling 101

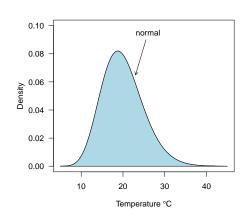
Newton's second law $\frac{D_r u}{Dt} - \frac{uv \tan\phi}{r} - 2\Omega \sin\phi v + \frac{c_{pd}\theta}{r\cos\phi} \frac{\partial \Pi}{\partial \lambda} = -\left(\frac{uw}{r} + 2\Omega \cos\phi w\right) + S^u$ $\frac{2\tan\phi}{r} + 2\Omega\sin\phi u + \frac{c_{\rm pd}\theta}{r} \frac{\partial\Pi}{\partial\phi} = -\left(\frac{vw}{r}\right) + S^v$ $= \left(\frac{u^2 + v^2}{r}\right) + 2\Omega \cos\phi u + S^w$ $\left[\frac{u}{\cos\phi}\right] + \frac{\partial}{\partial\phi} \left(\frac{v}{r}\right) + \frac{\partial w}{\partial r} = 0$


Figure: Slide courtesy of Steve Sain

Atmosphere-Ocean General Circulation Models (GCMs)

This project

- Data: 1000-year CCSM3 (a NCAR GCM model) runs, fully equilibrated pre-industrial and future (700 ppm CO₂) conditions
- Method: fit generalized extreme value (GEV) distribution to annual maxima/minima daily temperatures, compute the changes in return levels

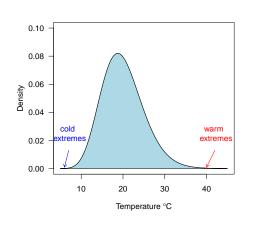

Outline

Background

Methodology

Results

Normal distribution for sample averages



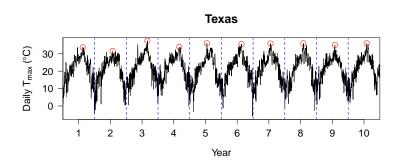
If Y_1, Y_2, \dots, Y_n is a random sample from a underlying distribution, then (under some mild conditions)

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i \approx N(\mu, \frac{\sigma^2}{n})$$

- μ : population mean
- σ^2 : population variance

Generalized extreme value (GEV) distribution for sample maxima/minima

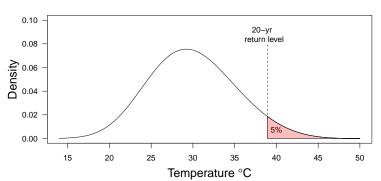
If Y_1, Y_2, \dots, Y_n is a random sample, then


$$\max_{1 \le i \le n} Y_i \approx \mathsf{GEV}(\mu_{(n)}, \sigma_{(n)}, \xi)$$

- $\mu_{(n)}$: location, describe the "center" of extremes
- $\sigma_{(n)}$: scale, describe the "spread" of extremes
- ξ: shape, describe the tail "heaviness" of extremes

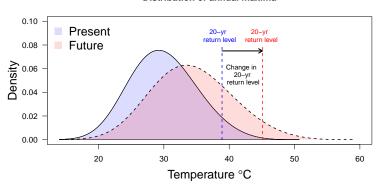
Model "block extremes" as GEV distributions

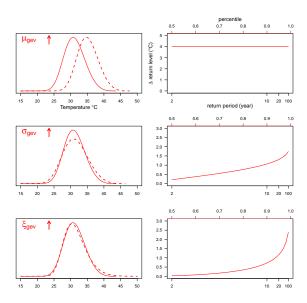
- Determine the block size and compute maxima/minima for blocks
- Fit the GEV to the block maxima/minima


Example: annual maximum temperature

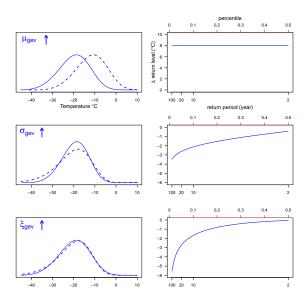
Return levels

r-year return level: the magnitude of a rare event exceeded on average once per r years


Distribution of annual maxima


Changes in extremes

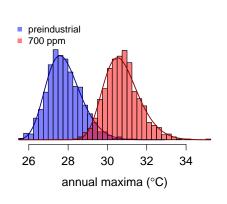
Changes in extremes is usually summarized by changes in return levels

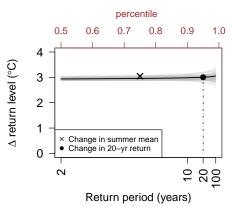

Distribution of annual maxima

Changes in warm temperature extremes

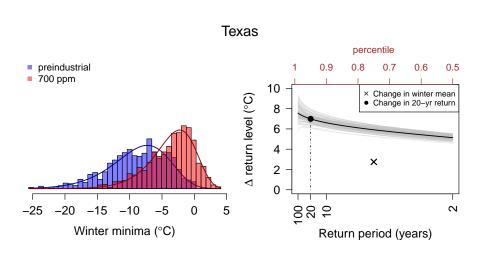
Changes in cold temperature extremes

Outline

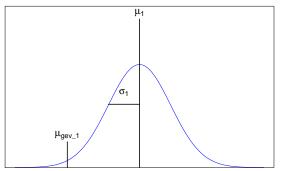

Background


2 Methodology

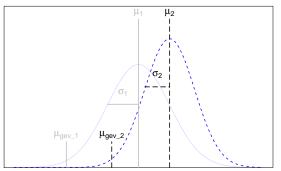
Results


Summer warm extremes shift with means

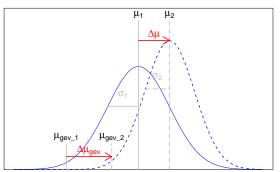
California



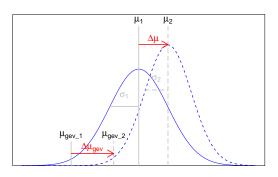
Winter cold extremes shift more than means with changes in spread


Can cold extreme shifts be explained by changes in mean/standard deviation of overall distribution?

Present-day tempeature


Can cold extreme shifts be explained by changes in mean/standard deviation of overall distribution?

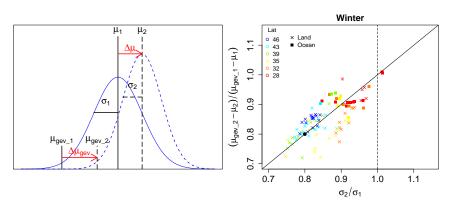
Future temperature



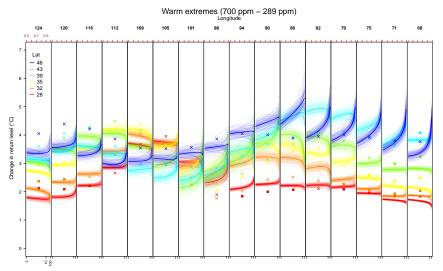
Can cold extreme shifts be explained by changes in mean/standard deviation of overall distribution?

Mean shift vs. extreme shift

Reduced wintertime variability would increase shift of cold extremes

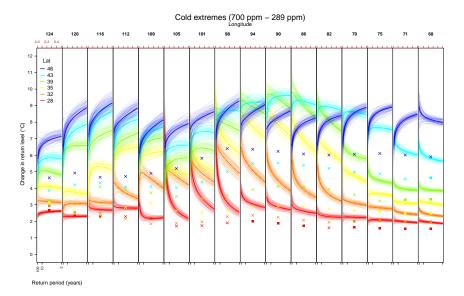

If all the changes from present to future are due to mean/standard deviation (i.e. $T_2 = \alpha + \beta T_1$), then

$$\frac{\mu_{\text{gev}}_2 - \mu_2}{\mu_{\text{gev}}_1 - \mu_1} = \frac{\sigma_2}{\sigma_1}$$

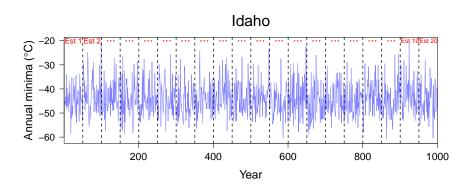


Warmer winter cold extremes largely explained by changes in overall distribution

- 2 1:1 line: extreme shifts only due to overall mean/variance changes



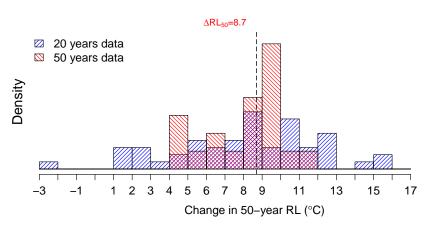
Changes in U.S. warm extremes



Return period (years)

Changes in U.S. cold extremes

How well can we estimate the changes with shorter runs or data?


We assess this by

- divide the time series into segments (e.g. 50-year)
- redo the analysis to each segment, compare the results with the "ground truth"

28 / 31

Sampling error is large for short runs

Estimates of change in 50-year RL

Summary and discussion

- Warm extremes: mainly due to the summer mean shifts
- Cold extremes: shifts larger than the winter mean shifts, but are largely explainable by mean shifts combined with reduced wintertime temperature variability.
- Sampling error is large for studying extremes in short datasets

Acknowledgments

 RDCEP: Center for Robust Decision Making on Climate and Energy Policy

 STATMOS: Research Network for Statistical Methods for Atmospheric and Oceanic Sciences

 Under revision at Advances in Statistical Climatology, Meteorology and Oceanography (ASCMO)