On strong edge-coloring of graphs with maximum degree 4

Jian-Bo Lv^{1}, Xiangwen $\mathrm{Li}^{1}{ }^{*}$, Gexin $\mathrm{Yu}^{1,2} \dagger$
${ }^{1}$ Department of Mathematics, Huazhong Normal University, Wuhan, 430079, P.R. China.
${ }^{2}$ Department of Mathematics, The College of William and Mary, Williamsburg, VA, 23185, USA

Abstract

The strong chromatic index of a graph G, denoted by $\chi_{s}^{\prime}(G)$, is the least number of colors needed to edge-color G properly so that every path of length 3 uses three different colors. In this paper, we prove that if G is a graph with $\Delta(G)=4$ and maximum average degree less than $\frac{61}{18}\left(\right.$ resp. $\left.\frac{7}{2}, \frac{18}{5}, \frac{15}{4}, \frac{51}{13}\right)$, then $\chi_{s}^{\prime}(G) \leq 16$ (resp.17, 18, 19, 20), which improves the results of Bensmail, Bonamy, and Hocquard (2015).

1 Introduction

A strong edge-coloring of a graph G is a proper edge-coloring of G such that the edges of any path of length 3 use three different colors. It follows that each color class of a strong edge-coloring is an induced matching. The strong chromatic index of a graph G, denoted by $\chi_{s}^{\prime}(G)$, is the smallest integer k such that G can be strongly edge-colored with k colors. The concept of strong edgecoloring was introduced by Fouquet and Jolivet in [8, 9] and can be used to model conflict-free channel assignment in radio networks in [16, 17].

In 1985, Erdős and Nešetřil proposed the following interesting conjecture.
Conjecture 1.1 ($[7])$ For a graph G with maximum degree Δ,

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { if } \Delta \text { is even } ; \\ \frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right), & \text { if } \Delta \text { is odd } .\end{cases}
$$

When $\Delta \leq 3$, Conjecture 1.1 has been verified by Andersen [1], and independently by Horák, Qing, and Trotter [13]. When Δ is sufficiently large, Molloy and Reed in [15] proved that $\chi_{s}^{\prime}(G) \leq$ $1.998 \Delta(G)^{2}$, using probabilistic techniques. This bound is improved to $1.93 \Delta^{2}$ by Bruhn and Joos $\sqrt[3]{ }$, and very recently, is further improved to $1.835 \Delta^{2}$ by Bonamy, Perrett, and Postle [4].

The maximum average degree of a graph $G, \operatorname{mad}(G)$, is defined to be the maximum average degree over all subgraphs of G. Hocquard et al. [11, 12 and DeOrsey et al. [6] studied the strong chromatic index of subcubic graphs with bounded maximum average degree.

We study graphs with maximum degree 4 , which are conjectured to be colorable with at most 20 colors in Conjecture 1.1. Cranston [5] showed that 22 colours suffice, which is improved to

[^0]21 colours very recently by Huang, Santana and the third author [14]. However, it is still not clear if 20 colours suffice even if the minimum degree of such graphs is 3 . Bensmail, Bonamy, and Hocquard [2] studied the strong chromic index of graphs with maximum degree four and bounded maximum average degrees.

Theorem 1.2 (Bensmail, Bonamy, and Hocquard [2]) For every graph G with $\Delta=4$,
(1) If $\operatorname{mad}(G)<\frac{16}{5}$, then $\chi_{s}^{\prime}(G) \leq 16$.
(2) If $\operatorname{mad}(G)<\frac{10}{3}$, then $\chi_{s}^{\prime}(G) \leq 17$.
(3) If $\operatorname{mad}(G)<\frac{17}{5}$, then $\chi_{s}^{\prime}(G) \leq 18$.
(4) If $\operatorname{mad}(G)<\frac{18}{5}$, then $\chi_{s}^{\prime}(G) \leq 19$.
(5) If $\operatorname{mad}(G)<\frac{19}{5}$, then $\chi_{s}^{\prime}(G) \leq 20$.

In this paper, we improve the results from $\sqrt{2}]$ as follows.
Theorem 1.3 For every graph G with $\Delta=4$, each of the following holds.
(1) If $\operatorname{mad}(G)<\frac{61}{18}$, then $\chi_{s}^{\prime}(G) \leq 16$.
(2) If $\operatorname{mad}(G)<\frac{7}{2}$, then $\chi_{s}^{\prime}(G) \leq 17$.
(3) If $\operatorname{mad}(G)<\frac{18}{5}$, then $\chi_{s}^{\prime}(G) \leq 18$.
(4) If $\operatorname{mad}(G)<\frac{15}{4}$, then $\chi_{s}^{\prime}(G) \leq 19$.
(5) If $\operatorname{mad}(G)<\frac{51}{13}$, then $\chi_{s}^{\prime}(G) \leq 20$.

From the proof of Theorem $1.3(5)$, we obtain the following corollary, which implies Conjecture 1.1 is true in some spacial cases.

Corollary 1.4 For every graph G with $\Delta=4$, if there are two 3-vertices whose distance is at most 4 , then $\chi_{s}^{\prime}(G) \leq 20$.

We end this section with notation and terminology. Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$, and let $d_{G}(v)$ denote the degree of a vertex v in a graph G. We use V, E and $d(v)$ for $V(G), E(G)$ and $d_{G}(v)$, respectively, if it is understood from the context. Denote by $d(u, v)$ the distance between vertices u and v of G. A vertex is a k-vertex $\left(k^{-}-v e r t e x\right)$ if it is of degree k (at most k). Similarly, a neighbor of a vertex v is a k-neighbor of v if it is of degree k. A 4 -vertex is special if it is adjacent to a 2 -vertex. A 3 -vertex is a 3_{k}-vertex if it is adjacent to $k 3$ vertices, where $k=0,1,2$. A 4_{k}-vertex is a 4 -vertex adjacent to exactly $k 3$-vertices. Denote by $N(v)$ the neighborhood of the vertex v, let $N_{i}(v)=\{u \in V(G): d(u, v)=i\}$ for $i \geq 1$. For simplicity, $N_{0}(v)=\{v\}$ and $N_{1}(v)=N(v)$. Let $L_{i}(v)=\cup_{j=0}^{i} N_{j}(v)$ and $D_{3}(G)=\{v \in V(G): d(v)=3\}$. For a graph $G=(V, E)$ and $E^{\prime} \subseteq E, G$ has a partial edge-coloring if $G\left[E^{\prime}\right]$ has a strong edge-coloring, where $G\left[E^{\prime}\right]$ is the graph with vertex set V and edge set E^{\prime}.

In the proof of Theorem 1.3 , the well known result of Hall 10 is applied in terms of systems of distinct representatives.

Theorem $1.5(\boxed{\mathbf{1 0}}])$ Let A_{1}, \ldots, A_{n} be n subsets of a set U. A system of distinct representatives of $\left\{A_{1}, \ldots, A_{n}\right\}$ exists if and only if for all $k, 1 \leq k \leq n$ and every subcollection of size k, $\left\{A_{i_{1}}, \ldots, A_{i_{k}}\right\}$, we have $\left|A_{i_{1}} \cup \ldots \cup A_{i_{k}}\right| \geq k$.

2 Proof of Theorem 1.3

Let H be a counterexample to Theorem 1.3 with $|V(H)|+|E(H)|$ minimized. That is, for some

$$
(m, k) \in\left\{\left(\frac{61}{18}, 16\right),\left(\frac{7}{2}, 17\right),\left(\frac{18}{5}, 18\right),\left(\frac{15}{4}, 19\right),\left(\frac{51}{13}, 20\right)\right\}
$$

we have $\operatorname{mad}(H)<m$ and $\chi_{s}^{\prime}(H)>k$.
By the minimality of $H, \chi_{s}^{\prime}(H-e) \leq k$ for each $e \in E(H)$, and we may assume that H is connected. Denote by $[k]=\{1,2, \ldots, k\}$ the set of colors. If $e=u v$ is an uncolored edge in a partial coloring of H, then let $L_{H}(e)$ be the set of colors that is used on the edges incident to a vertex in $N_{H}(u) \cup N_{H}(v)$, and let $L_{H}^{\prime}(e)=[k] \backslash L_{H}(e)$. We write $L(e)$ and $L^{\prime}(e)$ for $L_{H}(e)$ and $L_{H}^{\prime}(e)$, respectively, if it is clear from the context. We now establish some properties of H.

Lemma 2.1 Let x be a vertex of H with $d(x)=d$. If the edges incident to x can be ordered as $x y_{1}, x y_{2}, \ldots, x y_{d}$ such that in a partial k-coloring of $H-x,\left|L\left(x y_{i}\right)\right| \leq k-i$, then the partial coloring can be extended to H. In particular,
(a) There is no 1-vertex in H, an if $k \geq 17$, then there is no 2-vertex in H.
(b) Each 2-vertex x in H has two 4-neighbors, each of which is adjacent to three 4-vertices.
(c) If $d(x)=3$ and $k \geq 16,17,19$, then x is adjacent to at least one, two, and three 4-vertices, respectively.
(d) If $d(x)=4$ and if $k \geq 18,19,20$, then x is adjacent to at most three, two and one 3 -vertices, respectively.

Proof. We color $x y_{d}, x y_{d 1}, \ldots, x y_{1}$ in order and obtain a strong-edge coloring of H. For the "in particular" part, let x be $d(x)=d$ and the neighbors of x are $y_{1}, y_{2}, \ldots, y_{d}$ with $d\left(y_{1}\right) \geq d\left(y_{2}\right) \leq$ $\ldots \geq d\left(y_{d}\right)$. Then in each case, $H-x$ has a strong k-edge-coloring.
(a) When $d(x)=1,|L(x y)| \geq k-12 \geq 4$, so $x y$ can be colored. When $d(x)=2$, then $\left|L\left(x y_{1}\right)\right|,\left|L\left(x y_{2}\right)\right| \geq k-15 \geq 2$ if $k \geq 17$, so there is no 2-vertex if $k \geq 17$.
(b) As $d(x)=2,\left|L\left(x y_{1}\right)\right|,\left|L\left(x y_{2}\right)\right| \geq k-15 \geq 1$, with $\left|L\left(x y_{1}\right)\right|=\left|L\left(x y_{2}\right)\right|=1$ only if both y_{1} and y_{2} are 4 -vertices and adjacent to three 4 -neighbors. So if y_{1} or y_{2} is not a 4 -vertex or one of them is not adjacent to three 4 -neighbors, we can color $x y_{1}$ and $x y_{2}$.
(c) Note that $d(x)=3$ and $d\left(y_{1}\right) \geq d\left(y_{2}\right) \geq d\left(y_{3}\right)$. If x has three 3-neighbors and $k \geq 16$, then $\left|L\left(x y_{i}\right)\right| \leq 12 \leq k-4$; if x has two 3-neighbors and $k \geq 17$, then $\left|L\left(x y_{1}\right)\right| \leq 16 \leq k-1$ and $\left|L\left(x y_{2}\right)\right|,\left|L\left(x y_{3}\right)\right| \leq 13 \leq k-4$; if x has one 3-neighbors and $k \geq 19$, then $\left|L\left(x y_{1}\right)\right|,\left|L\left(x y_{2}\right)\right| \leq 17 \leq$ $k-2$ and $\left|L\left(x y_{3}\right)\right| \leq 14 \leq k-5$. So by the main statement, the coloring of $H-x$ can be extended to H in each of the cases.
(d) Note that $d(x)=4$ and $d\left(y_{1}\right) \geq d\left(y_{2}\right) \geq d\left(y_{3}\right) \geq d\left(x y_{4}\right)$. If x has four 3 -neighbors and $k \geq 18$, then $\left|L\left(x y_{i}\right)\right| \leq 14 \leq k-4$; if x has three 3-neighbors and $k \geq 19$, then $\left|L\left(x y_{1}\right)\right| \leq 18 \leq k-1$ and $\left|L\left(x y_{i}\right)\right| \leq 15 \leq k-4$ for $i \in\{2,3,4\}$. So by the main statement, the coloring of $H-x$ can be extended to H in each of the cases. When $k \geq 20$ and x has two 3 -neighbors, we uncolor $y_{4} w$, where $w \neq x$ is a neighbor of y_{4}. Then $\left|L^{\prime}\left(x y_{1}\right)\right|,\left|L^{\prime}\left(x y_{1}\right)\right| \geq 2$ and $\left|L^{\prime}\left(x y_{3}\right)\right|,\left|L^{\prime}\left(x y_{4}\right)\right| \geq 5$ and $\left|L^{\prime}\left(y_{4} w\right)\right| \geq 4$. So we can color $x y_{1}, x y_{2}, y_{4} w, x y_{3}, x y_{4}$ in the order and obtain a coloring of H.

Let the initial charge of $x \in V(H)$ be $\omega(x)=d(x)-m$. It follows from the hypothesis that $\sum_{x \in V(H)} \omega(x)<0$. We redistribute the weights using the following discharging rules:
(R1) When $k=16$, each 4 -vertex v gives $4-m$ to its unique 2-neighbor if it has one. Otherwise, it gives $\frac{3 m-10}{6}$ to the 2 -vertices in $L_{2}(v)$. It gives $m-3$ to each 3_{2}-neighbor, $\frac{m-3}{2}$ to each 3_{1}-neighbor, and $\frac{m-3}{3}$ to each 3_{0}-neighbor.
(R2) When $k \geq 17$, each 4-vertex u gives $\frac{4-m}{l}$ to each of the $l 3$-vertices in $L_{i+1}(u) \cap D_{3}(G)$ when $L_{i}(u) \cap D_{3}(G)$ is empty, where $i \geq 0$.

For each vertex $x \in V(H)$, let $\omega^{*}(x)$ be the final weight of x after the discharging process. If each vertex $x \in V(H)$ has $\omega^{*}(x) \geq 0$, then

$$
0 \leq \sum_{x \in V(H)} \omega^{*}(x)=\sum_{x \in V(H)} \omega(x)<0 .
$$

This is a contradiction. So there must be some vertex, say $x_{0} \in V(H)$, with $\omega^{*}\left(x_{0}\right)<0$.
Lemma 2.2 If $k \geq 17$, then x_{0} is a 3-vertex. If $k=16$, then x_{0} is a 4-vertex.
Proof. If $k \geq 17$, then there is no 2 -vertex by Lemma 2.1(a). By (R2), $\omega^{*}(x)=0$ if $d(x)=4$. So, x_{0} is a 3 -vertex.

Let $k=16$. By Lemmas 2.1 (a) and 2.1 (b), each 2-vertex x is adjacent to two 4 -vertices in $N(x)$ and adjacent to six 4 -vertices in $N_{2}(x) \backslash N(x)$. By (R1), $\omega^{*}(x)=2-\frac{61}{18}+2\left(4-\frac{61}{18}\right)+6 \cdot\left(3 \cdot \frac{61}{18}-10\right) / 6=$ 0 . Assume that x_{0} is a 3 -vertex. If x_{0} is a 3_{2}-vertex, by (R1), $\omega\left(x_{0}\right)=3-\frac{61}{18}+\frac{61}{18}-3=0$, a contradiction; if x_{0} is a 3_{1}-vertex, then by (R1), $\omega\left(x_{0}\right)=3-\frac{61}{18}+2 \cdot\left(\frac{61}{18}-3\right) / 2=0$, a contradiction; if x_{0} is a 3_{0}-vertex, then by (R1) $\omega\left(x_{0}\right)=3-\frac{61}{18}+3 \cdot\left(\frac{61}{18}-3\right) / 3=0$, a contradiction; Thus, x_{0} is not a 3 -vertex. So, x_{0} is a 4 -vertex.
2.1 Case 1: $(m, k)=\left(\frac{61}{18}, 16\right)$

Lemma 2.3 If v is a 3_{2}-vertex, then its 4-neighbor is adjacent to three 4-vertices.
Proof. Suppose to the contrary that a 3 -vertex v is adjacent to two 3 -vertices u and w and a 4 -vertex t that is adjacent to a 3-vertex t_{1}. By the minimality of $H, H^{\prime}=H-v$ has a strong edge-coloring with at most sixteen colors. Observe that $\left|L^{\prime}(u v)\right| \geq 3,\left|L^{\prime}(v w)\right| \geq 3$ and $\left|L^{\prime}(v t)\right| \geq 1$. Thus, we color $v t, u v$ and $v w$ in turn to obtain a strong edge-coloring of H, a contradiction.

Figure 1: A 4 -vertex v adjacent to four 3 -vertices
Lemma 2.4 $A 4_{4}$-vertex v is adjacent to at most one 3_{1}-vertex.
Proof. Suppose otherwise that there exists a 4_{4}-vertex v adjacent to two 3_{1}-vertices w and u. Let $d\left(u_{1}\right)=d\left(w_{1}\right)=3$. We use notations in Figure 1. By the minimality of $H, H^{\prime}=H-v$ has a strong edge-coloring with at most 16 colors.

We claim that $w_{1} \neq u_{1}$. For otherwise, $\left|L^{\prime}(u v)\right| \geq 4,\left|L^{\prime}(v w)\right| \geq 4,\left|L^{\prime}(v p)\right| \geq 2$ and $\left|L^{\prime}(v t)\right| \geq 2$. Thus, we color $v t, v p, v w$ and $v u$ in turn to obtain a strong edge-coloring of H, a contradiction.

We also claim that $u_{1} w_{1} \notin E(H)$. Suppose otherwise. We uncolor edges $u u_{1}$ and $w w_{1}$. Then $\left|L^{\prime}(u v)\right| \geq 5,\left|L^{\prime}(v w)\right| \geq 5,\left|L^{\prime}(v t)\right| \geq 4,\left|L^{\prime}(v p)\right| \geq 4,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 6,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 6$. Then we color edges $v t, v p, v w, u v, u u_{1}$ and $w w_{1}$ in turn to obtain a strong edge-coloring of H, a contradiction.

Now, we uncolor edges $u u_{1}$ and $w w_{1}$. Then $\left|L^{\prime}(u v)\right| \geq 5,\left|L^{\prime}(v w)\right| \geq 5,\left|L^{\prime}(v t)\right| \geq 4,\left|L^{\prime}(v p)\right| \geq 4$, $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 4,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 4$. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right) \neq \emptyset$, then we color edges $u u_{1}, w w_{1}$ with a same color and then color $v t, v p, v w$ and $u v$ in turn. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right)=\emptyset$, then $\left|L^{\prime}\left(u u_{1}\right) \cup L^{\prime}\left(w w_{1}\right)\right| \geq$ 8. Let $T=\left\{u v, v w, v t, v p, u u_{1}, w w_{1}\right\}$, for any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{*}(e)\right| \geq|S|$. By Theorem 1.5 , we can assign a distinct color to each uncolored edge. Thus, we obtain a strong edge-coloring of H, a contradiction.

Figure 2: The distance between two 2 -vertices v and u is 3
Lemma 2.5 The distance between two 2-vertices is at least 4.
Proof. By Lemma 2.1 (b), the distance between every two 2 -vertices is at least 3 . Suppose otherwise that there exist two 2 -vertices u and v with $d(u, v)=3$. We shall use the notations in Figure 2. By the minimality of $H, H^{\prime}=H-\{v, u\}$ has a strong edge-coloring with at most sixteen colors. One can observe that $\left|L^{\prime}(w v)\right| \geq 1,\left|L^{\prime}(v x)\right| \geq 2,\left|L^{\prime}(u t)\right| \geq 1,\left|L^{\prime}(y u)\right| \geq 2$.

We first claim that $\left|L^{\prime}(v x)\right|=\left|L^{\prime}(u y)\right|=2$. By symmetry, suppose otherwise that $\left|L^{\prime}(v x)\right| \geq 3$. In this case, we can color $w v, u t, u y$ and $v x$ in turn and we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

Next, we claim that $\left|L^{\prime}(w v)\right|=\left|L^{\prime}(u t)\right|=1$. By symmetry, suppose otherwise that $\left|L^{\prime}(w v)\right| \geq 2$. Thus, we can color $u t, u y, v x$ and $w v$ in turn and we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

Finally, we claim that $L^{\prime}(w v) \subseteq L^{\prime}(v x)$ and $L^{\prime}(u t) \subseteq L^{\prime}(u y)$. By symmetry, suppose otherwise that if $L^{\prime}(w v) \nsubseteq L^{\prime}(v x)$. In this case, we can color $u t, u y, v x$ and $w v$ in turn and we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

We distinguish the following two cases:
Case 1. $L^{\prime}(v x) \neq L^{\prime}(u y)$.
If $L^{\prime}(v x) \cap L^{\prime}(u y)=\emptyset$, then we can color $v w, u t, v x$ and $u y$ in turn and we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

Thus, we assume that $L^{\prime}(v x) \cap L^{\prime}(u y) \neq \emptyset$. Since $L^{\prime}(v x) \neq L^{\prime}(u y)$, we assume, without loss of generality, that $L^{\prime}(v x)=\{1,2\}$ and $L^{\prime}(u y)=\{1,3\}$. If $L^{\prime}(w v)=L^{\prime}(u t)=\{1\}$, we can color $w v$ and $u t$ with 1 , and color $v x$ and $u y$ with 2 and 3 , respectively. It follows that we obtain a desired strong edge-coloring with sixteen colors, a contradiction. So, we assume that $L^{\prime}(w v) \neq L^{\prime}(u t)$. By symmetry we may assume that either $L^{\prime}(w v)=\{1\}$ and $L^{\prime}(u t)=\{3\}$ or $L^{\prime}(w v)=\{2\}$ and
$L^{\prime}(u t)=\{3\}$. In the former case, we can color $w v$ and $y u$ with 1 , and color $v x$ and $u t$ with 2 and 3 , respectively. So, we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

In the latter case, we assume, without loss of generality, that $c(x y)=4$. Note that $4 \notin$ $\left\{c\left(w w_{1}\right), c\left(w w_{2}\right), c\left(w w_{3}\right), c\left(w_{1} w_{4}\right), c\left(w_{1} w_{5}\right), c\left(w_{1} w_{6}\right), c\left(w_{2} w_{7}\right), c\left(w_{2} w_{8}\right), c\left(w_{2} w_{9}\right), c\left(w_{3} w_{10}\right), c\left(w_{3} w_{11}\right)\right.$, $\left.c\left(w_{3} w_{12}\right)\right\}$, for otherwise we obtain $\left|L^{\prime}(w v)\right| \geq 2$, contrary to our claim that $\left|L^{\prime}(w v)\right|=1$. Similarly, $4 \notin\left\{c\left(t t_{1}\right), c\left(t t_{2}\right), c\left(t t_{3}\right), c\left(t_{1} t_{4}\right), c\left(t_{1} t_{5}\right), c\left(t_{1} t_{6}\right), c\left(t_{2} t_{7}\right), c\left(t_{2} t_{8}\right), c\left(t_{2} t_{9}\right), c\left(t_{3} t_{10}\right), c\left(t_{3} t_{11}\right), c\left(t_{3} t_{12}\right)\right\}$. Since $L^{\prime}(v x)=\{1,2\}$ and $L^{\prime}(u y)=\{1,3\}, 1 \notin\left\{c\left(x x_{1}\right), c\left(x x_{2}\right), c\left(x_{1} x_{3}\right), c\left(x_{1} x_{4}\right), c\left(x_{1} x_{5}\right), c\left(x_{2} x_{6}\right), c\left(x_{2} x_{7}\right)\right.$, $\left.c\left(x_{2} x_{8}\right), c\left(y y_{1}\right), c\left(y y_{2}\right), c\left(y_{1} y_{3}\right), c\left(y_{1} y_{4}\right), c\left(y_{1} y_{5}\right), c\left(y_{2} y_{6}\right), c\left(y_{2} y_{7}\right), c\left(y_{2} y_{8}\right)\right\}$. Thus, we can recolor $x y$ with 1 and color $w v$, ut with the same color 4 , color $v x, y u$ with with 2 and 3 , respectively, and we obtain a desired strong edge-coloring with sixteen colors, a contradiction.
Case 2. $L^{\prime}(v x)=L^{\prime}(u y)$.
In this case, we assume, without loss of generality, that $L^{\prime}(v x)=L^{\prime}(u y)=\{1,2\}$. By symmetry, we assume that either $L^{\prime}(w v)=\{1\}$ and $L^{\prime}(u t)=\{2\}$ or $L^{\prime}(w v)=L^{\prime}(u t)=\{1\}$. In the former case, we can color $w v, u y$ with the same color 1 and color $v x$, $u t$ with the same color 2. So, we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

In the latter case, we assume, without loss of generality, that $c(x y)=3$. Note that $3 \notin$ $\left\{c\left(w w_{1}\right), c\left(w w_{2}\right), c\left(w w_{3}\right), c\left(w_{1} w_{4}\right), c\left(w_{1} w_{5}\right), c\left(w_{1} w_{6}\right), c\left(w_{2} w_{7}\right), c\left(w_{2} w_{8}\right), c\left(w_{2} w_{9}\right), c\left(w_{3} w_{10}\right), c\left(w_{3} w_{11}\right)\right.$, $\left.c\left(w_{3} w_{12}\right)\right\}$, for otherwise, we obtain that $\left|L^{\prime}(w v)\right| \geq 2$, contrary to our claim that $\left|L^{\prime}(w v)\right|=1$. Similarly, $3 \notin\left\{c\left(t t_{1}\right), c\left(t t_{2}\right), c\left(t t_{3}\right), c\left(t_{1} t_{4}\right), c\left(t_{1} t_{5}\right), c\left(t_{1} t_{6}\right), c\left(t_{2} t_{7}\right), c\left(t_{2} t_{8}\right), c\left(t_{2} t_{9}\right), c\left(t_{3} t_{10}\right), c\left(t_{3} t_{11}\right), c\left(t_{3} t_{12}\right)\right\}$. Since $L^{\prime}(v x)=\{1,2\}=L^{\prime}(u y)=\{1,2\}, 2 \notin\left\{c\left(x x_{1}\right), c\left(x x_{2}\right), c\left(x_{1} x_{3}\right), c\left(x_{1} x_{4}\right), c\left(x_{1} x_{5}\right), c\left(x_{2} x_{6}\right)\right.$, $\left.c\left(x_{2} x_{7}\right), c\left(x_{2} x_{8}\right), c\left(y y_{1}\right), c\left(y y_{2}\right), c\left(y_{1} y_{3}\right), c\left(y_{1} y_{4}\right), c\left(y_{1} y_{5}\right), c\left(y_{2} y_{6}\right), c\left(y_{2} y_{7}\right), c\left(y_{2} y_{8}\right)\right\}$. Thus, we can recolor $x y$ with 2 and color both $w v$ and $u y$ with 3 , color both $v x$ and $u t$ with 1 . Therefore, we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

Consider the final charge of x_{0}. By Lemma 2.2, x_{0} is a 4 -vertex.
If x_{0} is adjacent to a 2 -vertex, then by Lemma 2.1 (b), the other three neighbors are all 4 vertices. By (R1), $\omega^{*}\left(x_{0}\right) \geq 4-\frac{61}{18}-\left(4-\frac{61}{18}\right)=0$, a contradiction. Thus, x_{0} has no 2 -neighbor. By Lemma 2.5, each 4 -neighbor of x_{0} (if any) is adjacent to at most one 2 -vertex.

If x_{0} is adjacent to a 3_{2}-vertex, then by Lemma 2.3 , the other three neighbors are 4 -vertices. By (R1), $\omega^{*}\left(x_{0}\right) \geq 4-\frac{61}{18}-\left(\frac{61}{18}-3\right)-3 \cdot\left(3 \cdot \frac{61}{18}-10\right) / 6=\frac{5}{36}>0$, a contradiction. Thus, x_{0} is not adjacent to any 3_{2}-neighbor. Assume that x_{0} is adjacent to a 3_{1}-vertex. If x_{0} is a 4_{4}-vertex, then by Lemma 2.4 , x_{0} is adjacent to at most one 3_{1}-vertex. By (R1), $\omega^{*}\left(x_{0}\right) \geq 4-\frac{61}{18}-\left(\frac{61}{18}-3\right) / 2-3 \cdot\left(\frac{61}{18}-3\right) / 3=\frac{1}{36}>0$. If x_{0} is not a 44 -vertex, then by (R1), $\omega^{*}\left(x_{0}\right) \geq 4-\frac{61}{18}-3 \cdot\left(\frac{61}{18}-3\right) / 2-\left(3 \cdot \frac{61}{18}-10\right) / 6=$ $\left(61-18 \cdot \frac{61}{18}\right) / 6=0$, a contradiction. Thus, x_{0} is adjacent to only 3_{0}-neighbors or 4 -vertices. By (R1), $\omega^{*}\left(x_{0}\right) \geq 4-\frac{61}{18}-4 \cdot\left(\frac{61}{18}-3\right) / 3=\left(24-7 \cdot \frac{61}{18}\right) / 3>0$, contrary to the assumption that $\omega^{*}\left(x_{0}\right)<0$.

2.2 Case 2: $(m, k)=(7 / 2,17)$

Lemma 2.6 H does not contain the following three configurations:
(1) A 3_{1}-vertex v adjacent to a 4_{3}-vertex u (see Figure 3).

Figure 3: A 3_{1}-vertex v adjacent to a 4_{3}-vertex u
(2) A 3_{0}-vertex v adjacent to two 4_{4}-vertices u, w and one 4_{3}-vertex t (see Figure 4).
(3) A 3_{0}-vertex v adjacent to one 4_{4}-vertex u and two 4_{3}-vertices w, t (see Figure 5).

Proof. (1) Suppose otherwise that there exists a 3_{1}-vertex v that is adjacent to a 4_{3}-vertex u. Let t, u_{1} and u_{2} be 3 -vertices and let w and u_{3} be 4 -vertices. we use the notations in Figure 3 . By minimality of $H, H^{\prime}=H-\{u, v\}$ has a strong edge-coloring with at most seventeen colors. Observe that $\left|L^{\prime}(u v)\right| \geq 5,\left|L^{\prime}(v w)\right| \geq 3,\left|L^{\prime}(v t)\right| \geq 6,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{2}\right)\right| \geq 4$ and $\left|L^{\prime}\left(u u_{3}\right)\right| \geq 1$. Thus, we color $u u_{3}, v w, u u_{1}, u u_{2}, u v$ and $v t$ in turn and obtain a desired strong edge-coloring with seventeen colors, a contradiction.

Figure 4: A 3_{0}-vertex v adjacent to two 4_{4}-vertices and one 4_{3}-vertex
(2) Suppose otherwise that there exists a 3_{0}-vertex v adjacent to two 4_{4}-vertices u, w and one 4_{3}-vertex t. We shall use the notations Figure 4 . Let $H^{\prime}=H-\{v\}$. By the minimality of H, H^{\prime} has a strong edge-coloring with at most seventeen colors. Observe that $\left|L^{\prime}(u v)\right| \geq 2,\left|L^{\prime}(v w)\right| \geq 2$, $\left|L^{\prime}(v t)\right| \geq 1$. Note that there are 3 uncolored edges. If we can assign a distinct color to uncolored edge, then we obtain a desired strong edge-coloring with seventeen colors, a contradiction.

Thus, assume that we cannot assign three distinct colors to these three uncolored edges. By Theorem 1.5, $L^{\prime}(v t) \subseteq L^{\prime}(u v)=L^{\prime}(v w)$ and $\left|L^{\prime}(u v)\right|=2$. Without loss of generality, we consider the following two cases.
Case 1. $L^{\prime}(v t)=\{1\}, L^{\prime}(u v)=L^{\prime}(v w)=\{1,2\}$.
Since $L^{\prime}(v t)=\{1\}, c\left(t t_{1}\right), c\left(t t_{2}\right), c\left(t t_{3}\right), c\left(u u_{1}\right), c\left(u u_{2}\right), c\left(u u_{3}\right), c\left(w w_{1}\right), c\left(w w_{2}\right)$ and $c\left(w w_{3}\right)$ are distinct. Suppose otherwise. We obtain $\left|L^{\prime}(u v)\right| \geq 3,\left|L^{\prime}(v w)\right| \geq 3,\left|L^{\prime}(v t)\right| \geq 2$. In this case, we can color $v t, u v$ and $v w$ and obtain a desired strong edge-coloring with seventeen colors, a contradiction. Thus, since $L^{\prime}(v t)=\{1\}$ and $L^{\prime}(u v)=L^{\prime}(v w)=\{1,2\}$, we may assume, without loss of generality, that $c\left(t t_{1}\right)=3, c\left(t t_{2}\right)=4, c\left(t t_{3}\right)=5, c\left(u u_{1}\right)=6, c\left(u u_{2}\right)=7, c\left(u u_{3}\right)=8, c\left(w w_{1}\right)=9$, $c\left(w w_{2}\right)=10, c\left(w w_{3}\right)=11, c\left(t_{1} t_{4}\right)=12, c\left(t_{1} t_{5}\right)=13, c\left(t_{1} t_{6}\right)=14, c\left(t_{2} t_{7}\right)=15, c\left(t_{2} t_{8}\right)=16$, $c\left(t_{3} t_{9}\right)=17, c\left(t_{3} t_{10}\right)=2, c\left(u_{1} u_{4}\right)=12, c\left(u_{1} u_{5}\right)=13, c\left(u_{2} x\right)=14, c\left(u_{2} y\right)=15, c\left(u_{3} u_{6}\right)=16$,
$c\left(u_{3} u_{7}\right)=17, c\left(w_{1} w_{4}\right)=12, c\left(w_{1} w_{5}\right)=13, c\left(w_{2} r\right)=14, c\left(w_{2} s\right)=15, c\left(w_{3} w_{6}\right)=16, c\left(w_{3} w_{7}\right)=$ 17. This implies that $\left\{c\left(x x_{1}\right), c\left(x x_{2}\right), c\left(x x_{3}\right), c\left(y y_{1}\right), c\left(y y_{2}\right), c\left(y y_{3}\right)\right\}=\{3,4,5,9,10,11\}$. Suppose otherwise. We can pick a color $\alpha \in\{3,4,5,9,10,11\} \backslash\left\{c\left(x x_{1}\right), c\left(x x_{2}\right), c\left(x x_{3}\right), c\left(y y_{1}\right), c\left(y y_{2}\right), c\left(y y_{3}\right)\right\}$, recolor $u u_{2}$ with α and then we can color $u v$ with 7 , $v w$ with 2 , $v t$ with 1 . So, we obtain a desired strong edge-coloring with seventeen colors, a contradiction. Similarly, we can prove that $\left\{c\left(r r_{1}\right), c\left(r r_{2}\right), c\left(r r_{3}\right), c\left(s s_{1}\right), c\left(s s_{2}\right), c\left(s s_{3}\right)\right\}=\{3,4,5,6,7,8\}$. Therefore, we can recolor both $u u_{2}$ and $w w_{2}$ with 2 , then color $u v$ with $7, v w$ with 10 , $v t$ with 1 . Thus, we obtain a desired strong edge-coloring with seventeen colors, a contradiction.
Case 2. $L^{\prime}(v t)=L^{\prime}(u v)=L^{\prime}(v w)=\{1,2\}$.
Since $L^{\prime}(v t)=L^{\prime}(u v)=L^{\prime}(v w)=\{1,2\}, c\left(t t_{1}\right), c\left(t t_{2}\right), c\left(t t_{3}\right), c\left(u u_{1}\right), c\left(u u_{2}\right), c\left(u u_{3}\right), c\left(w w_{1}\right)$, $c\left(w w_{2}\right)$ and $c\left(w w_{3}\right)$ are distinct. We assume, without loss of generality, that $c\left(u u_{1}\right)=3, c\left(u u_{2}\right)=$ $4, c\left(u u_{3}\right)=5, c\left(w w_{1}\right)=6, c\left(w w_{2}\right)=7, c\left(w w_{3}\right)=8, c\left(t t_{1}\right)=9, c\left(t t_{2}\right)=10, c\left(t t_{3}\right)=11$, $c\left(u_{1} u_{4}\right)=12, c\left(u_{1} u_{5}\right)=13, c\left(u_{2} x\right)=14, c\left(u_{2} y\right)=15, c\left(u_{3} u_{6}\right)=16, c\left(u_{3} u_{7}\right)=17, c\left(w_{1} w_{4}\right)=12$, $c\left(w_{1} w_{5}\right)=13, c\left(w_{2} r\right)=14, c\left(w_{2} s\right)=15, c\left(w_{3} w_{6}\right)=16, c\left(w_{3} w_{7}\right)=17, c\left(t_{1} t_{4}\right)=12, c\left(t_{1} t_{5}\right)=$ $13, c\left(t_{1} t_{6}\right)=14, c\left(t_{2} t_{7}\right)=15, c\left(t_{2} t_{8}\right)=16, c\left(t_{3} t_{9}\right)=17$. Since $L^{\prime}(v t)=\{1,2\}, c\left(t_{3} t_{10}\right) \in$ $\{3,4,5,6,7,8,12,13,14,15,16\}$. This implies that $\left\{c\left(x x_{1}\right), c\left(x x_{2}\right), c\left(x x_{3}\right), c\left(y y_{1}\right), c\left(y y_{2}\right), c\left(y y_{3}\right)\right\}=$ $\{6,7,8,9,10,11\}$, for otherwise we can pick a color $\alpha \in\{6,7,8,9,10,11\} \backslash\left\{c\left(x x_{1}\right), c\left(x x_{2}\right), c\left(x x_{3}\right)\right.$, $\left.c\left(y y_{1}\right), c\left(y y_{2}\right), c\left(y y_{3}\right)\right\}$ and recolor $u u_{2}$ with α, then we can color $u v$ with 4 , $v w$ with 2 , vt with 1. So, we obtain a desired strong edge-coloring with seventeen colors, a contradiction. Similarly, $\left\{c\left(r r_{1}\right), c\left(r r_{2}\right), c\left(r r_{3}\right), c\left(s s_{1}\right), c\left(s s_{2}\right), c\left(s s_{3}\right)\right\}=\{3,4,5,9,10,11\}$. Therefore, we can recolor both $u u_{2}$ and $w w_{2}$ with 2 , then we can color $u v$ with 4 , $v w$ with 7 , $v t$ with 1 . Thus, we obtain a desired strong edge-coloring with seventeen colors, a contradiction.

Figure 5: A 3_{0}-vertex v adjacent to one 4_{4}-vertex and two 4_{3}-vertices
(3) Suppose otherwise that a 3_{0}-vertex v is adjacent to one 4_{4}-vertex u and two 4_{3}-vertices w and t. Let each of $u_{1}, u_{2}, u_{3}, w_{1}$ and w_{2} be a 3 -vertex and w_{3} is 4 -vertex. We use the notations in Figure 5. By the minimality of $H, H^{\prime}=H-v$ has a strong edge-coloring.

We claim that $u_{i} \neq w_{j}$, where $i=1,2,3$ and $j=1,2$. For otherwise, $\left|L^{\prime}(u v)\right| \geq 3,\left|L^{\prime}(v t)\right| \geq 1$, $\left|L^{\prime}(v w)\right| \geq 2$, we color $v t, v w$, and $v u$ in turn to obtain a strong edge-coloring of H, a contradiction. By (1), a 3_{1}-vertex is not adjacent to a 4_{3}-vertex. Thus, $u_{1} w_{1} \notin E(H)$.

Now, we erased the colors of edges $u u_{1}, w w_{1}$. Then $\left|L^{\prime}(u v)\right| \geq 4,\left|L^{\prime}(v w)\right| \geq 3,\left|L^{\prime}(v t)\right| \geq 3$, $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 2$. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right) \neq \emptyset$, then we color edges $u u_{1}, w w_{1}$ with the same color and then color $v t, v w, u v$ in turn. Thus, we obtain a strong edge-coloring of H, a contradiction. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right)=\emptyset$, then $\left|L^{\prime}\left(u u_{1}\right) \cup L^{\prime}\left(w w_{1}\right)\right| \geq 5$. Let $T=\left\{u v, v w, v t, u u_{1}, w w_{1}\right\}$, for any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.5, we can assign a distinct color to uncolored edge. Thus, we obtain a strong edge-coloring of H, a contradiction.

Consider the final charge of x_{0}. By Lemma 2.2, x_{0} is a 3 -vertex. By Lemma 2.1 (c), x_{0} is adjacent to at least two 4 -vertices.

If x_{0} is a 3_{1}-vertex, then x_{0} is not adjacent to a 4_{3}-vertex by Lemma 2.6(1). Thus, $\omega^{*}\left(x_{0}\right) \geq$ $3-\frac{7}{2}+2 \cdot\left(4-\frac{7}{2}\right) / 2=7-2 \cdot \frac{7}{2}=0$. Thus, we assume that x_{0} is a 3_{0}-vertex. In this case, Lemma 2.6 (2) implies that x_{0} is adjacent to at most two 4_{4}-vertices. If x_{0} is adjacent to two 4_{4}-vertices, then x_{0} is not adjacent to 4_{3}-vertices by Lemma 2.6 (2). Thus, $\omega^{*}\left(x_{0}\right) \geq 3-\frac{7}{2}+2 \cdot\left(4-\frac{7}{2}\right) / 4+\left(4-\frac{7}{2}\right) / 2=$ $7-2 \cdot \frac{7}{2} \geq 0$. If x_{0} is adjacent to one 4_{4}-vertex, then x_{0} is not adjacent to two 4_{3}-vertices by Lemma 2.6(3). Thus, $\omega^{*}\left(x_{0}\right) \geq 3-\frac{7}{2}+\left(4-\frac{7}{2}\right) / 4+\left(4-\frac{7}{2}\right) / 3+\left(4-\frac{7}{2}\right) / 2=22 / 3-\frac{25}{12} \cdot \frac{7}{2}=\frac{1}{24}>0$. If v is not adjacent to 4_{4}-vertices, then $\omega^{*}(v) \geq 3-\frac{7}{2}+3 \cdot\left(4-\frac{7}{2}\right) / 3=7-2 \cdot \frac{7}{2}=0$.
2.3 Case 3: $(m, k)=\left(\frac{18}{5}, 18\right)$

Lemma 2.7 H does not contain the following two configurations:
(1) A 3_{1}-vertex v adjacent to a 4_{2}-vertex u.
(2) A 3_{0}-vertex v adjacent to $a 4_{3}$-vertex u and $a 4_{2}$-vertex w (see Figure 6).

Figure 6: A 3_{0}-vertex v adjacent to a 4_{3}-vertex and a 4_{2}-vertex
Proof. (1) Suppose otherwise that a 3_{1}-vertex v is adjacent to a 4_{2}-vertex u. Let $N(v)=\{u, w, t\}$, where t is a 3 -vertex and w is a 4 -vertex. By the minimality of $H, H^{\prime}=H-v$ has a strong edge-coloring with at most eighteen colors. It is easy to verify that $\left|L^{\prime}(u v)\right| \geq 2,\left|L^{\prime}(v t)\right| \geq 4$ and $\left|L^{\prime}(v w)\right| \geq 1$. Thus, we color $v w, u v$, and $v t$ in turn and we obtain a desired strong edge-coloring with eighteen colors, a contradiction.
(2) Suppose otherwise that a 3_{0}-vertex v is adjacent to a 4_{3}-vertex u and 4_{2}-vertex w. Let t, u_{3}, w_{2} and w_{3} be 4 -vertices and let u_{1}, u_{2} and w_{1} be 3 -vertices. We use the notations in Figure 6 . By the minimality of $H, H^{\prime}=H-v$ has a strong edge-coloring.

We claim that $w_{1} \neq u_{i}$, where $i=1,2$. Suppose that $w_{1}=u_{1}$. Uncolor $u u_{1}$, then $\left|L^{\prime}(u v)\right| \geq 4$, $\left|L^{\prime}(v w)\right| \geq 3,\left|L^{\prime}(v t)\right| \geq 1$ and $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 4$. Thus, we can color $v t, v w, u u_{1}$ and $u v$ in turn to obtain a strong edge-coloring of H, a contradiction.

By (1), a 3_{1}-vertex is not adjacent to a 4_{2}-vertex. Thus, $u_{1} w_{1} \notin E(H)$.
Now, uncolor $u u_{1}, w w_{1}$, then $\left|L^{\prime}(u v)\right| \geq 4,\left|L^{\prime}(v w)\right| \geq 3,\left|L^{\prime}(v t)\right| \geq 2,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3,\left|L^{\prime}\left(w w_{1}\right)\right| \geq$ 2. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right) \neq \emptyset$, we color edges $u u_{1}, w w_{1}$ with the same color and color $v t, v w, u v$ in turn to obtain a strong edge-coloring of H, a contradiction. Thus, we assume that $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right)=\emptyset$. Note that $\left|L^{\prime}\left(u u_{1}\right) \cup L^{\prime}\left(w w_{1}\right)\right| \geq 5$. Let $T=\left\{u v, v w, v t, u u_{1}, w w_{1}\right\}$, for any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.5, we can assign five distinct colors to uncolored edges. Thus, we obtain a strong edge-coloring with eighteen colors, a contradiction.

Consider the final charge of x_{0}. By Lemma 2.2, x_{0} is a 3 -vertex. By Lemma 2.1 (c), x_{0} is adjacent to at least two 4 -vertices. If x_{0} is a 3_{1}-vertex, then x_{0} is not adjacent to a 4_{2}-vertex by Lemma 2.7(1). Thus, by (R2), $\omega^{*}\left(x_{0}\right) \geq 3-\frac{18}{5}+\left(4-\frac{18}{5}\right) \cdot 2=11-3 \cdot \frac{18}{5}=\frac{1}{5}>0$, a contradiction.

Thus, we assume that x_{0} is a 3_{0}-vertex. By Lemma 2.1 (d), x_{0} is not adjacent to a 4_{4}-vertex. If x_{0} is adjacent to a 4_{3}-vertex, then x_{0} is not adjacent to any 4_{2}-vertex by Lemma 2.7(2). This implies that $\omega^{*}\left(x_{0}\right) \geq 3-\frac{18}{5}+\left(4-\frac{18}{5}\right) / 3+\left(4-\frac{18}{5}\right) \cdot 2=\frac{28}{3}-9=\frac{1}{3}>0$, a contradiction.

If x_{0} is not adjacent to any 4 -vertex, then $\omega^{*}\left(x_{0}\right) \geq 3-\frac{18}{5}+3 \cdot\left(4-\frac{18}{5}\right) / 2=9-5 \cdot\left(\frac{18}{5} / 2\right) \geq 0$, a contradiction.
2.4 Case 4: $(m, k)=\left(\frac{15}{4}, 19\right)$

Figure 7: A 4_{2}-vertex
Lemma 2.8 There is no 4_{2}-vertex.
Proof. Suppose otherwise that u is a 4_{2}-vertex. Let u_{1} and u_{2} be 3 -vertices and let u_{3} and u_{4} be 4 -vertices. We shall use the notations in Figure 7. We first establish the following claims.

Claim 1. $\left\{u_{11}, u_{12}\right\} \cap\left\{u_{21}, u_{22}\right\}=\emptyset$.
Proof of Claim 1. Suppose otherwise that $u_{11}=u_{21}$ by symmetry. Let $H^{\prime}=H-\left\{u, u_{1}, u_{2}\right\}$. By the minimality of H, H^{\prime} has a strong edge-coloring with at most nineteen colors. In this case, one can see that $\left|L^{\prime}\left(u u_{3}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{4}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 8,\left|L^{\prime}\left(u u_{2}\right)\right| \geq 8,\left|L^{\prime}\left(u_{1} u_{11}\right)\right| \geq 8,\left|L^{\prime}\left(u_{1} u_{12}\right)\right| \geq$ $5,\left|L^{\prime}\left(u_{2} u_{21}\right)\right| \geq 8$ and $\left|L^{\prime}\left(u_{2} u_{22}\right)\right| \geq 5$. We can properly color $u u_{3}, u u_{4}, u_{1} u_{12}, u_{2} u_{22}, u u_{1}, u u_{2}, u_{1} u_{11}$ and $u_{2} u_{21}$ in turn. Thus, we obtain a strong edge-coloring with nineteen colors, a contradiction. This proves Claim 1.

Claim 2. There is a pair of non adjacent vertices $u_{1 i}$ and $u_{2 j}$ for some $i, j \in\{1,2\}$.
Proof of Claim 2. Suppose otherwise that for each $i, j \in\{1,2\}, u_{1 i} u_{2 j} \in E(G)$. In this case, let $N\left(u_{1 i}\right)=\left\{u_{1}, u_{21}, u_{22}, u_{1 i}^{\prime}\right\}$ for $i=1,2$ and $N\left(u_{2 j}\right)=\left\{u_{2}, u_{11}, u_{12}, u_{2 j}^{\prime}\right\}$ for $j=1,2$. Let $H^{\prime}=H-\left\{u_{1}, u_{2}, u_{11}, u_{12}, u_{21}, u_{22}\right\}$. By the minimality of H, H^{\prime} has a strong edge-coloring with at most nineteen colors. One can observe that $L^{\prime}\left(u u_{1}\right)\left|\geq 11, L^{\prime}\left(u u_{2}\right)\right| \geq 11, L^{\prime}\left(u_{1} u_{11}\right) \mid \geq 14$, $L^{\prime}\left(u_{1} u_{12}\right)\left|\geq 14, L^{\prime}\left(u_{2} u_{21}\right)\right| \geq 14, L^{\prime}\left(u_{2} u_{22}\right)\left|\geq 14, L^{\prime}\left(u_{11} u_{21}\right)\right| \geq 13, L^{\prime}\left(u_{11} u_{22}\right)\left|\geq 13, L^{\prime}\left(u_{12} u_{21}\right)\right| \geq$ $13, L^{\prime}\left(u_{12} u_{22}\right)\left|\geq 13, L^{\prime}\left(u_{11} u_{11}^{\prime}\right)\right| \geq 7, L^{\prime}\left(u_{12} u_{12}^{\prime}\right)\left|\geq 7, L^{\prime}\left(u_{21} u_{21}^{\prime}\right)\right| \geq 7$, and $L^{\prime}\left(u_{22} u_{22}^{\prime}\right) \mid \geq 7$. Thus, we can properly color $u_{11} u_{11}^{\prime}, u_{12} u_{12}^{\prime}, u_{21} u_{21}^{\prime}, u_{22} u_{22}^{\prime}, u u_{1}, u u_{2}, u_{11} u_{21}, u_{11} u_{22}, u_{12} u_{21}, u_{12} u_{22}, u_{1} u_{11}$, $u_{1} u_{12}, u_{2} u_{21}, u_{2} u_{22}$ in turn and obtain a strong edge-coloring with nineteen colors, a contradiction. This proves Claim 2.

By Claims 1 and 2, we assume that the distance between $u_{1} u_{11}$ and $u_{2} u_{21}$ is at least 3. In order to prove Lemma 2.8, we need the following claim.

Claim 3. One of the following holds.
(1) There is a pair of non adjacent vertices u_{12} and $u_{2 j}$ for some $j \in\{1,2\}$.
(2) There is a pair of non adjacent vertices $u_{1 i}$ and u_{21} for some $i \in\{1,2\}$.

Proof of Claim 3. By symmetry, we only prove (1). Suppose otherwise that for each $j \in\{1,2\}$, $u_{12} u_{2 j} \in E(G)$. Let $N\left(u_{12}\right)=\left\{u_{1}, u_{21}, u_{22}, u_{12}^{\prime}\right\}, N\left(u_{21}\right)=\left\{u_{2}, u_{12}, u_{21}^{\prime}, u_{21}^{\prime \prime}\right\}$ and $N\left(u_{22}\right)=$ $\left\{u_{2}, u_{12}, u_{22}^{\prime}, u_{22}^{\prime \prime}\right\}$. Let $H^{\prime}=H-\left\{u_{1}, u_{2}, u_{12}, u_{21}, u_{22}\right\}$. By the minimality of H, H^{\prime} has a strong edge-coloring with at most nineteen colors. One can observe that $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 8,\left|L^{\prime}\left(u u_{2}\right)\right| \geq$ 11, $\left|L^{\prime}\left(u_{1} u_{11}\right)\right| \geq 7,\left|L^{\prime}\left(u_{1} u_{12}\right)\right| \geq 13,\left|L^{\prime}\left(u_{12} u_{21}\right)\right| \geq 10,\left|L^{\prime}\left(u_{12} u_{22}\right)\right| \geq 10,\left|L^{\prime}\left(u_{2} u_{21}\right)\right| \geq 13$,
$\left|L^{\prime}\left(u_{2} u_{22}\right)\right| \geq 13,\left|L^{\prime}\left(u_{12} u_{12}^{\prime}\right)\right| \geq 7,\left|L^{\prime}\left(u_{21} u_{21}^{\prime}\right)\right| \geq 7,\left|L^{\prime}\left(u_{21} u_{21}^{\prime \prime}\right)\right| \geq 7,\left|L^{\prime}\left(u_{22} u_{22}^{\prime}\right)\right| \geq 7$, and $\left|L^{\prime}\left(u_{22} u_{22}^{\prime \prime}\right)\right| \geq 7$. Thus, we can properly color $u_{12} u_{12}^{\prime}, u_{21} u_{21}^{\prime}, u_{21} u_{21}^{\prime \prime}, u_{22} u_{22}^{\prime}, u_{22} u_{22}^{\prime \prime}, u_{1} u_{11}, u u_{1}, u_{12} u_{21}$, $u_{12} u_{22}, u u_{2}, u_{2} u_{21}, u_{2} u_{22}, u_{1} u_{12}$ in turn and obtain a strong edge-coloring with nineteen colors, a contradiction. This proves Claim 3.

Let $H^{\prime}=H-\left\{u, u_{1}, u_{2}\right\}$. By the minimality of H, H^{\prime} has a strong edge-coloring with at most nineteen colors. One can observe that $\left|L^{\prime}\left(u u_{3}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{4}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 7,\left|L^{\prime}\left(u u_{2}\right)\right| \geq$ $7,\left|L^{\prime}\left(u_{1} u_{11}\right)\right| \geq 4,\left|L^{\prime}\left(u_{1} u_{12}\right)\right| \geq 4,\left|L^{\prime}\left(u_{2} u_{21}\right)\right| \geq 4$ and $\left|L^{\prime}\left(u_{2} u_{22}\right)\right| \geq 4$.
Claim 4. (1) $L^{\prime}\left(u_{1} u_{11}\right) \cap L^{\prime}\left(u_{2} u_{21}\right)=\emptyset$.
(2) Either $L^{\prime}\left(u_{1} u_{12}\right) \cap L^{\prime}\left(u_{2} u_{2 j}\right)=\emptyset$ for some $j \in\{1,2\}$ or $L^{\prime}\left(u_{2} u_{21}\right) \cap L^{\prime}\left(u_{1} u_{1 i}\right)=\emptyset$ for some $i \in\{1,2\}$.
Proof of Claim 4. We only prove (1) and the proof of (2) is similar. Suppose otherwise that $\alpha \in L^{\prime}\left(u_{1} u_{11}\right) \cap L^{\prime}\left(u_{2} u_{21}\right)$ by symmetry. We assign α to both $u_{1} u_{11}$ and $u_{2} u_{21}$, then properly color $u_{1} u_{12}, u u_{3}, u u_{4}$. By Claim $1, u_{12} \neq u_{22}$. If u_{12} is adjacent to u_{22}, then one can observe that $\left|L^{\prime}\left(u u_{3}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{4}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 7,\left|L^{\prime}\left(u u_{2}\right)\right| \geq 7,\left|L^{\prime}\left(u_{1} u_{11}\right)\right| \geq 4,\left|L^{\prime}\left(u_{1} u_{12}\right)\right| \geq$ $5,\left|L^{\prime}\left(u_{2} u_{21}\right)\right| \geq 4$ and $\left|L^{\prime}\left(u_{2} u_{22}\right)\right| \geq 5$. So, we can properly color $u_{2} u_{22}$. Thus, we may assume that the distance between $u_{1} u_{12}$ and $u_{2} u_{22}$ is at least 3 . In this case, we also properly color $u_{2} u_{22}$. In each case, since $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 7$ and $\left|L^{\prime}\left(u u_{2}\right)\right| \geq 7$, we can properly color $u u_{1}, u u_{2}$. Thus, we obtain a strong edge-coloring with nineteen colors, a contradiction. This proves our claim.

By Claim 4, we may assume that $\left|L^{\prime}\left(u_{1} u_{11}\right) \cup L^{\prime}\left(u_{2} u_{21}\right)\right| \geq 8$ and that either $\mid L^{\prime}\left(u_{1} u_{12} \cup\right.$ $L^{\prime}\left(u_{2} u_{2 j}\right) \mid \geq 8$ for some $j \in\{1,2\}$ or $\left|L^{\prime}\left(u_{1} u_{1 i}\right) \cup L^{\prime}\left(u_{2} u_{21}\right)\right| \geq 8$ for some $i \in\{1,2\}$. For any subset $T \subseteq\left\{u u_{1}, u u_{2}, u u_{3}, u u_{4}, u_{1} u_{11}, u_{1} u_{12}, u_{2} u_{21}, u_{2} u_{22}\right\},\left|\sum_{e \in T} L^{\prime}(e)\right| \geq|T|$. By Theorem 1.5, we can assign eight distinct colors to eight uncolored edges to obtain a strong-edge coloring with nineteen colors, a contradiction.

Consider the final weight of x_{0}. By Lemma 2.2, x_{0} is a 3 -vertex. By Lemma 2.1 (c), x_{0} is adjacent to at least three 4 -vertices, and by Lemmas 2.1 (d) and 2.8 , none of which is a 4_{3}-vertex or a 4_{4}-vertex or 4_{2}-vertex. Furthermore, x_{0} is adjacent to at most one 4_{1}-vertex.

Since x_{0} is not adjacent to a 4_{2}-vertex, $\omega^{*}(v)=3-\frac{15}{4}+3\left(4-\frac{15}{4}\right)=15-4 \cdot \frac{15}{4}=0$, a contradiction.

2.5 Case 5: $(m, k)=\left(\frac{51}{13}, 20\right)$

Lemma 2.9 The distance between two 3-vertices is at least 4 .
Proof. By Lemma 2.1 (d), the distance between two 3 -vertices is at least 3. Suppose that there exists the distance between two 3 -vertices v and y at distance 3. Let $N(v)=\{u, w, t\}, N(t)=$ $\left\{v, t_{1}, t_{2}, x\right\}$, and $N(x)=\left\{t, x_{1}, x_{2}, y\right\}$ (see Figure 8).

Figure 8: The distance between two 3 -vertices v and y is 3

By Lemma 2.1(d), wy $\notin E(H)$. By the minimality of $H, H^{\prime}=H-v$ has a strong edge-coloring c with at most twenty colors. In the strong edge-coloring c of H^{\prime}, we erased the colors of edges $t x$ and $x y$ so that we get a partial coloring c^{\prime}. Observe that $\left|L^{\prime}(u v)\right| \geq 3,\left|L^{\prime}(v w)\right| \geq 3,\left|L^{\prime}(v t)\right| \geq 4$, $\left|L^{\prime}(t x)\right| \geq 2$ and $\left|L^{\prime}(x y)\right| \geq 2$. If $L^{\prime}(x y) \cap L^{\prime}(v w) \neq \emptyset$, we color edges $x y$, vw with the same color and then color $t x, u v, v t$ in turn and we obtain a desired strong edge-coloring with twenty colors, a contradiction. If $L^{\prime}(x y) \cap L^{\prime}(v w)=\emptyset$, then $\left|L^{\prime}(x y) \cup L^{\prime}(v w)\right| \geq 5$. Let $T=\{u v, v w, v t, t x, x y\}$, for any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.5, we can assign a distinct color to uncolored edge, then we obtain a desired strong edge-coloring with twenty colors, a contradiction.

Lemma 2.10 The distance between two 3-vertices is at least 5 .
Proof. By Lemma 2.9, the distance between two 3 -vertices is at least 4. Suppose otherwise that there exist two 3 -vertices v and x at distance 4 . We use the notations in Figure 9.

Figure 9: The distance between two 3 -vertices v and x is 4

By the minimality of $H, H^{\prime}=H-\{v, x\}$ has a strong edge-coloring c with at most twenty colors. In the strong edge-coloring c of H^{\prime}, we erased the colors of edges $s t$ and $t p$ so that we get a partial coloring c^{\prime}. We will extend this partial coloring c^{\prime} to a strong edge-coloring of H. One can observe that $\left|L^{\prime}(u v)\right| \geq 3,\left|L^{\prime}(v w)\right| \geq 3,\left|L^{\prime}(v s)\right| \geq 4,\left|L^{\prime}(s t)\right| \geq 2,\left|L^{\prime}(t p)\right| \geq 2,\left|L^{\prime}(p x)\right| \geq 4$, $\left|L^{\prime}(x y)\right| \geq 3,\left|L^{\prime}(x z)\right| \geq 3$. We consider the following two cases.

Case 1. One of $L^{\prime}(u v) \cap L^{\prime}(t p), L^{\prime}(w v) \cap L^{\prime}(t p), L^{\prime}(x y) \cap L^{\prime}(s t)$ and $L^{\prime}(x z) \cap L^{\prime}(s t)$ is not empty.
We assume, without loss of generality, that $L^{\prime}(u v) \cap L^{\prime}(t p) \neq \emptyset$. We establish the following claim.

Claim 1. (1) $L^{\prime}(u v) \cap L^{\prime}(t p) \subseteq L^{\prime}(p x), L^{\prime}(u v) \cap L^{\prime}(t p) \subseteq L^{\prime}(x y)$ and $L^{\prime}(u v) \cap L^{\prime}(t p) \subseteq L^{\prime}(x z)$.
(2) $L^{\prime}(x y) \subseteq L^{\prime}(p x)$ and $L^{\prime}(x z) \subseteq L^{\prime}(p x)$.
(3) $\left|L^{\prime}(p x)\right|=4,\left|L^{\prime}(x y)\right|=3$ and $\left|L^{\prime}(x z)\right|=3$.
(4) $L^{\prime}(x y)=L^{\prime}(x z)$.
(5) $L^{\prime}(s t) \subseteq L^{\prime}(p x)$ and $\left|L^{\prime}(s t)\right|=2$.
(6) $\left|L^{\prime}(s t) \cap L^{\prime}(x y)\right|=1$.
(7) $\left|L^{\prime}(v s)\right|=4,\left|L^{\prime}(u v)\right|=3$ and $\left|L^{\prime}(v w)\right|=3$.

Proof of Claim 1. (1) We only prove that $L^{\prime}(u v) \cap L^{\prime}(t p) \subseteq L^{\prime}(p x)$. The proofs for other cases are similar. Suppose otherwise we can pick $\alpha \in L^{\prime}(u v) \cap L^{\prime}(t p)$ and $\alpha \notin L^{\prime}(p x)$, then we can
color $u v$ and $t p$ with α and color $s t, w v, v s, x y, x z, p x$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(2) We only prove that $L^{\prime}(x y) \subseteq L^{\prime}(p x)$ and the proof for the other case is similar. Suppose otherwise. We can pick $\beta \in L^{\prime}(x y)$ and $\beta \notin L^{\prime}(p x)$. By (1), $L^{\prime}(u v) \cap L^{\prime}(t p) \subseteq L^{\prime}(p x)$ and hence $\beta \notin L^{\prime}(u v) \cap L^{\prime}(t p)$. Since $L^{\prime}(u v) \cap L^{\prime}(t p) \neq \emptyset$, we color $u v$ and $t p$ with the same color, color $x y$ with the color β and color $s t, w v, v s, x z, p x$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(3) We only prove that $\left|L^{\prime}(p x)\right|=4$ and the proofs for other cases are similar. Suppose otherwise that $\left|L^{\prime}(p x)\right| \geq 5$. We can color $u v$ and $t p$ with the same color and color $s t, w v, v s, x z, x y, p x$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(4) If $L^{\prime}(x y) \neq L^{\prime}(x z)$, then we have $L^{\prime}(x y) \cup L^{\prime}(x z)=L^{\prime}(p x)$ since $L^{\prime}(x y) \subseteq L^{\prime}(p x)$ and $L^{\prime}(x z) \subseteq L^{\prime}(p x)$. Thus we can color $u v$ and $t p$ with the same color and color $s t, w v, v s$ in turn so that we get a partial coloring $c^{\prime \prime}$. One can observe that $\mid L^{\prime}(p x) \backslash\left\{c^{\prime \prime}(t p), c^{\prime \prime}(s t\} \mid \geq 2\right.$, $\left|L^{\prime}(x y) \backslash\left\{c^{\prime \prime}(t p)\right\}\right|=2,\left|L^{\prime}(x z) \backslash\left\{c^{\prime \prime}(t p)\right\}\right|=2$ and $\left|L^{\prime}(x y) \cup L^{\prime}(x z) \backslash\left\{c^{\prime \prime}(t p)\right\}\right|=3$. By Theorem 1.5 , we can assign distinct colors to $x y, x z$ and $p x$. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(5) Suppose otherwise we can pick $\beta^{\prime} \in L^{\prime}(s t)$ and $\beta^{\prime} \notin L^{\prime}(p x)$. By (1), $L^{\prime}(u v) \cap L^{\prime}(t p) \subseteq L^{\prime}(p x)$. Then $\beta^{\prime} \notin L^{\prime}(u v) \cap L^{\prime}(t p)$. Thus, we color $u v$ and $t p$ with the same color, color st with the color β^{\prime} and color $w v, v s, x y, x z, p x$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction. Suppose otherwise that $\left|L^{\prime}(s t)\right| \geq 3$. We color $u v$ and $t p$ with the same color, then color $x y, x z, x p, s t, v w$ and $v s$ in turn. Therefore, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(6) We first show that $L^{\prime}(s t) \cap L^{\prime}(x y) \neq \emptyset$. Suppose otherwise that $L^{\prime}(s t) \cap L^{\prime}(x y)=\emptyset$. By (2) and (5), $L^{\prime}(x y) \subseteq L^{\prime}(p x)$ and $L^{\prime}(s t) \subseteq L^{\prime}(p x)$. This implies that $\left|L^{\prime}(p x)\right| \geq\left|L^{\prime}(x y)\right|+\left|L^{\prime}(s t)\right| \geq 5$, contrary to (3). We now show that $\left|L^{\prime}(s t) \cap L^{\prime}(x y)\right|=1$. Suppose otherwise that $\left|L^{\prime}(s t) \cap L^{\prime}(x y)\right| \geq$ 2. We color $u v$ and $t p$ with the same color α^{*} and we can pick $\beta^{\prime \prime} \in L^{\prime}(s t) \cap L^{\prime}(x y) \backslash\left\{\alpha^{*}\right\}$. Thus we color st, $x y$ with the same color $\beta^{\prime \prime}$ and color $w v, v s, x z$ and $p x$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(7) By (6), $L^{\prime}(s t) \cap L^{\prime}(x y) \neq \emptyset$. By replacing that $L^{\prime}(u v) \cap L^{\prime}(t p) \neq \emptyset$ by that $L^{\prime}(s t) \cap L^{\prime}(x y) \neq \emptyset$, we obtain $\left|L^{\prime}(v s)\right|=4,\left|L^{\prime}(u v)\right|=3$ and $\left|L^{\prime}(v w)\right|=3$ by the argument in the proof of (3).

So far, we have proved Claim 1.
By Claim 1(4), we assume, without loss of generality, that $L^{\prime}(p x)=\{1,2,3,4\}, L^{\prime}(x y)=$ $L^{\prime}(x z)=\{1,2,3\}$. By Claim $1(5)$, we assume, without loss of generality, that $L^{\prime}(s t)=\{3,4\}$. By Claim 1(7), we may assume, without loss of generality, that $L^{\prime}(v s)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}, L^{\prime}(u v)=$ $L^{\prime}(w v)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and $L^{\prime}(t p)=\left\{\alpha_{3}, \alpha_{4}\right\}$.

We claim that $L^{\prime}(t p)=\left\{\alpha_{3}, \alpha_{4}\right\}=\{3,4\}$. If $3 \notin L^{\prime}(t p)$, then $3 \in L(t p)$. Since $L^{\prime}(s t)=\{3,4\}$ and $L^{\prime}(p x)=\{1,2,3,4\}, 3 \notin L(s t) \cup L(p x)$ and $L(t p) \subseteq L(s t) \cup L(p x)$. This implies that $3 \notin L(t p)$, a contradiction. Thus, $3 \in L^{\prime}(t p)$. By symmetry, we may assume that $4 \in L^{\prime}(t p)$. If $L^{\prime}(v s)=$ $\left\{\alpha_{1}, \alpha_{2}, 3,4\right\}$ and $L^{\prime}(u v)=L^{\prime}(w v)=\left\{\alpha_{1}, \alpha_{2}, 4\right\}$, then we color both $t p$ and $u v$ with 4, color both st and $x y$ with 3 and color $w v$ with α_{1}, color $v s$ with α_{2}, color $x z$ with 1 and color $p x$ with 2 . This means that we obtain a desired strong edge-coloring with twenty colors, a contradiction. Therefore, we may assume that $L^{\prime}(v s)=\left\{\alpha_{1}, \alpha_{2}, 3,4\right\}, L^{\prime}(u v)=L^{\prime}(w v)=\left\{\alpha_{1}, \alpha_{2}, 3\right\}$.

Recall that $L^{\prime}(p x)=\{1,2,3,4\}$. We may assume, without loss of generality, that $c^{\prime}\left(p p_{1}\right)=5$, $c^{\prime}\left(p p_{2}\right)=6, c^{\prime}\left(p_{1} p_{3}\right)=7, c^{\prime}\left(p_{1} p_{4}\right)=8, c^{\prime}\left(p_{1} p_{5}\right)=9, c^{\prime}\left(p_{2} p_{6}\right)=10, c^{\prime}\left(p_{2} p_{7}\right)=11, c^{\prime}\left(p_{2} p_{8}\right)=12$, $c^{\prime}\left(t t_{1}\right)=13, c^{\prime}\left(t t_{2}\right)=14, c^{\prime}\left(y y_{1}\right)=15, c^{\prime}\left(y y_{2}\right)=16, c^{\prime}\left(y y_{3}\right)=17, c^{\prime}\left(z z_{1}\right)=18, c^{\prime}\left(z z_{2}\right)=19$, $c^{\prime}\left(z z_{3}\right)=20$. We now claim that $\{15,16,17,18,19,20\} \subseteq\left\{p_{3} p_{9}, p_{3} p_{10}, p_{3} p_{11}, p_{4} p_{12}, p_{4} p_{13}, p_{4} p_{14}, p_{5} p_{15}\right.$,
$\left.p_{5} p_{16}, p_{5} p_{17}\right\}$. If $15 \notin\left\{p_{3} p_{9}, p_{3} p_{10}, p_{3} p_{11}, p_{4} p_{12}, p_{4} p_{13}, p_{4} p_{14}, p_{5} p_{15}, p_{5} p_{16}, p_{5} p_{17}\right\}$, we recolor $p p_{1}$ with color 15 , color st with 5 , color $p t$ with 3 , color $x y$ with 1 , color $x z$ with 2 , color $p x$ with 4 , color $v s$ with 4 , color $u v$ with 3 and color $w v$ with a color $\alpha^{* *} \in\left\{\alpha_{1}, \alpha_{2}\right\}$ and $\alpha^{* *} \neq 5$. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction. Similarly, we can prove that $\{16,17,18,19,20\} \subseteq\left\{p_{3} p_{9}, p_{3} p_{10}, p_{3} p_{11}, p_{4} p_{12}, p_{4} p_{13}, p_{4} p_{14}, p_{5} p_{15}, p_{5} p_{16}, p_{5} p_{17}\right\}$.

By symmetry, we may assume that $c^{\prime}\left(p_{3} p_{9}\right)=15, c^{\prime}\left(p_{3} p_{10}\right)=16, c^{\prime}\left(p_{3} p_{11}\right)=17, c^{\prime}\left(p_{4} p_{12}\right)=18$, $c^{\prime}\left(p_{4} p_{13}\right)=19, c^{\prime}\left(p_{4} p_{14}\right)=20$. Now we claim that $5 \in\left\{\alpha_{1}, \alpha_{2}\right\}$. If $5 \notin\left\{\alpha_{1}, \alpha_{2}\right\}$, we can pick $\beta^{*} \in\{1,2,3,4\} \backslash\left\{c^{\prime}\left(p_{5} p_{15}\right), c^{\prime}\left(p_{5} p_{16}\right), c^{\prime}\left(p_{5} p_{17}\right)\right\}$. If $\beta^{*} \in\{1,2\}$, then we recolor $p p_{1}$ with β^{*} and color both st and $x y$ with 5 , color $p t$ with 4 , color $x z$ with the color in $\{1,2\} \backslash\left\{\beta^{*}\right\}$, color both $p x$ and $v s$ with 3 , color $u v$ and $w v$ with α_{1} and α_{2} respectively. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction. If $\beta^{*} \in\{3,4\}$, then we recolor $p p_{1}$ with β^{*} and color both st and $x y$ with 5 , color $p t$ with a color in $\{3,4\} \backslash\left\{\beta^{*}\right\}$, color $x z$ with 1 , color $p x$ with 2 , color $v s$ with α_{1}, color $u v$ and $w v$ with 3 and α_{2}, respectively. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

By symmetry, we have $6 \in\left\{\alpha_{1}, \alpha_{2}\right\}$. Therefore we have $L^{\prime}(v s)=\{3,4,5,6\}, L^{\prime}(u v)=L^{\prime}(w v)=$ $\{3,5,6\}$. Since $L^{\prime}(p x)=\{1,2,3,4\}, L^{\prime}(x y)=L^{\prime}(x z)=\{1,2,3\}$ and by symmetry, we claim that $\left\{c^{\prime}\left(s s_{1}\right), c^{\prime}\left(s s_{2}\right)\right\}=\{1,2\}$.

Now we claim that $\left\{c^{\prime}\left(p_{5} p_{15}\right), c^{\prime}\left(p_{5} p_{16}\right), c^{\prime}\left(p_{5} p_{17}\right)\right\}=\{1,2,4\}$. If $1 \notin\left\{c^{\prime}\left(p_{5} p_{15}\right), c^{\prime}\left(p_{5} p_{16}\right), c^{\prime}\left(p_{5} p_{17}\right)\right\}$, we recolor $p p_{1}$ with 1 and color both st and $x y$ with 5 , color $p t$ with 3 , color $x z$ with 2 , color both $p x$ and $v s$ with 4 , color $u v$ with 3 and color $w v$ with 6 . Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction. Similarly, we can prove that $2 \in\left\{c^{\prime}\left(p_{5} p_{15}\right), c^{\prime}\left(p_{5} p_{16}\right), c^{\prime}\left(p_{5} p_{17}\right)\right\}$.

If $4 \notin\left\{c^{\prime}\left(p_{5} p_{15}\right), c^{\prime}\left(p_{5} p_{16}\right), c^{\prime}\left(p_{5} p_{17}\right)\right\}$, we recolor $p p_{1}$ with 4 and color both st and $x y$ with 5 , color $p t$ with 3 , color $x z$ with 1 , color $p x$ with 2 and $v s$ with 4 , color $u v$ with 3 and color $w v$ with 6. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

Recall $L^{\prime}(s t)=L^{\prime}(t p)=\{3,4\}$ and $\left\{c^{\prime}\left(s s_{1}\right), c^{\prime}\left(s s_{2}\right)\right\}=\{1,2\}$. We assume, without loss of generality, that $c^{\prime}\left(t_{1} t_{3}\right)=15, c^{\prime}\left(t_{1} t_{4}\right)=16, c^{\prime}\left(t_{1} t_{5}\right)=17, c^{\prime}\left(t_{2} t_{6}\right)=18, c^{\prime}\left(t_{2} t_{7}\right)=19, c^{\prime}\left(t_{2} t_{8}\right)=20$. $c^{\prime}\left(s_{1} s_{3}\right)=7, c^{\prime}\left(s_{1} s_{4}\right)=8, c^{\prime}\left(s_{1} s_{5}\right)=9, c^{\prime}\left(s_{2} s_{6}\right)=10, c^{\prime}\left(s_{2} s_{7}\right)=11, c^{\prime}\left(s_{2} s_{8}\right)=12$. By symmetry of p and s, we may assume that $\left\{c^{\prime}\left(s_{3} s_{9}\right), c^{\prime}\left(s_{3} s_{10}\right), c^{\prime}\left(s_{3} s_{11}\right), c^{\prime}\left(s_{4} s_{12}\right), c^{\prime}\left(s_{4} s_{13}\right), c^{\prime}\left(s_{4} s_{14}\right), c^{\prime}\left(s_{5} s_{15}\right)\right.$, $\left.c^{\prime}\left(s_{5} s_{16}\right), c^{\prime}\left(s_{5} s_{17}\right)\right\}=\{15,16,17,18,19,20,4,5,6\}$. Therefore, we can recolor both $s s_{1}$ and $p p_{1}$ with 3 , color st with 1 , color $t p$ with 5 , color $x y, x z, p x, u v, w v, v s$ with $1,2,4,5,6,4$, respectively, Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

Case 2. $L^{\prime}(u v) \cap L^{\prime}(t p)=\emptyset, L^{\prime}(w v) \cap L^{\prime}(t p)=\emptyset, L^{\prime}(x y) \cap L^{\prime}(s t)=\emptyset$ and $L^{\prime}(x z) \cap L^{\prime}(s t)=\emptyset$.
In this case, we have $\left|L^{\prime}(u v) \cup L^{\prime}(t p)\right| \geq 5,\left|L^{\prime}(w v) \cup L^{\prime}(t p)\right| \geq 5,\left|L^{\prime}(x y) \cup L^{\prime}(s t)\right| \geq 5, \mid L^{\prime}(x z) \cup$ $L^{\prime}(s t) \mid \geq 5$. We now prove the following claim.

Claim 2. (1) $\left|L^{\prime}(v s)\right|=4$ and $\left|L^{\prime}(p x)\right|=4$.
(2) $\left|L^{\prime}(u v)\right|=\left|L^{\prime}(w v)\right|=3$.
$(3) L^{\prime}(u v) \subseteq L^{\prime}(v s), L^{\prime}(w v) \subseteq L^{\prime}(v s), L^{\prime}(x y) \subseteq L^{\prime}(p x)$ and $L^{\prime}(x z) \subseteq L^{\prime}(p x)$.
(4) $L^{\prime}(u v)=L^{\prime}(w v)$.

Proof of Claim 2. (1) We only prove that $\left|L^{\prime}(v s)\right|=4$ and the proof for the case $\left|L^{\prime}(p x)\right|=4$ is similar. Suppose otherwise that $\left|L^{\prime}(v s)\right| \geq 5$. In this case, let $T=\{s t, t p, p x, x y, x z\}$. Note that $\left|L^{\prime}(s t) \cup L^{\prime}(x y)\right| \geq 5$. For any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq S$. By Theorem 1.5 , we can assign a distinct color to each edge in T. We then properly color $u v, v w$ and $v s$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(2) Suppose otherwise that $\left|L^{\prime}(u v)\right| \geq 4$. The proofs for the cases are similar. In this case, we also let $T=\{s t, t p, p x, x y, x z\}$. Since $\left|L^{\prime}(x y) \cup L^{\prime}(s t)\right| \geq 5$, for any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq S$.

By Theorem 1.5, we can assign a distinct color to each edge in T. We now properly color $v w, v s$ and $u v$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(3) Suppose otherwise that $L^{\prime}(u v) \nsubseteq L^{\prime}(v s)$. The proofs for the other cases are similar. Let $\gamma \in L^{\prime}(u v) \backslash L^{\prime}(v s)$. Let $T=\{s t, t p, p x, x y, x z\}$. Since $\left|L^{\prime}(x y) \cup L^{\prime}(s t)\right| \geq 5$, for any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq S$. By Theorem 1.5, we can assign a distinct color to each edge in T. In particular, st is assigned color β. If $\gamma \neq \beta$, then we now color $v w$ with a color in $L^{\prime}(v w) \backslash\{\gamma, \beta\}$, properly color $v w$ and $v s$ in turn; if $\gamma=\beta$, then properly color $u v, v w$ and $v s$ in turn. In both cases, Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.
(4) Suppose otherwise that $L^{\prime}(u v) \neq L^{\prime}(w v)$. Let $\alpha \in L^{\prime}(u v) \backslash L^{\prime}(v w)$ and $\beta \in L^{\prime}(v w) \backslash L^{\prime}(u v)$. Let $T=\{s t, t p, p x, x y, x z\}$. Since $\left|L^{\prime}(x y) \cup L^{\prime}(s t)\right| \geq 5$, for any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq S$. By Theorem 1.5, we can assign a distinct color to each edge in T. In particular, st and $t p$ are assigned color γ_{1} and γ_{2}, respectively. Since $\alpha \neq \beta$, we may assume that $\alpha \neq \gamma$. Now we color vs with a color in $L^{\prime}(v s) \backslash\left\{\gamma_{1}, \gamma_{2}, \alpha\right\}$, properly color $v w$ and color $u v$ with color α. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction. By symmetry, $L^{\prime}(x y)=L^{\prime}(x z)$.

We now complete the proof of Claim 2.
By Claim 2, we assume, without loss of generality, that $L^{\prime}(u v)=L^{\prime}(w v)=\{1,2,3\}, L^{\prime}(v s)=$ $\{1,2,3,4\}, L^{\prime}(x y)=L^{\prime}(x z)=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}, L^{\prime}(p x)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$.

Since $L^{\prime}(u v) \cap L^{\prime}(p t)=\emptyset,\left|L^{\prime}(p t)\right| \geq 2$, we can pick $\gamma^{* *} \in L^{\prime}(p t)$ and $\gamma^{* *} \neq 4$. If $\gamma^{* *}=\beta_{1}$, we firstly color $t p$ with $\gamma^{* *}$, color $x y, x z$, and $p x$ with β_{2}, β_{3} and β_{4} respectively. Since $L^{\prime}(x y) \cap L^{\prime}(s t)=$ $\emptyset,\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\} \cap L^{\prime}(s t)=\emptyset$. This implies that $\gamma^{* *} \notin L^{\prime}(s t)$. Thus, we can properly color $s t, u v$, $w v, v s$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction. The proofs are similar for the cases that $\gamma^{* *}=\beta_{2}$ and $\gamma^{* *}=\beta_{3}$. If $\gamma^{* *}=\beta_{4}$, we firstly color $t p$ with $\gamma^{* *}$, color $x y, x z$,and $p x$ with β_{1}, β_{2} and β_{3} respectively. Since $L^{\prime}(x y) \cap L^{\prime}(s t)=\emptyset$, we can properly color $s t, u v, w v, v s$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction. If $\gamma^{* *} \notin\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$, then we firstly color $t p$ with $\gamma^{* *}$. Since $\gamma^{* *} \neq 4$ and $L^{\prime}(s t) \cap L^{\prime}(x y)=\emptyset$, we can properly color $s t, x y, x z, p x$ in turn. Since $L^{\prime}(u v) \cap L^{\prime}(p t)=\emptyset$, $L^{\prime}(w v) \cap L^{\prime}(p t)=\emptyset$ and $\gamma^{* *} \in L^{\prime}(p t)$, we can color $u v, w v, v s$ in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

Consider the final weight of x_{0}. By Lemma 2.2, x_{0} is a 3 -vertex. By Lemma 2.10, for each 4 -vertex $u \in N_{2}\left(x_{0}\right), x_{0}$ is the only one 3^{-}-vertex in $N_{2}(u)$. By (R2), $\omega^{*}\left(x_{0}\right)=3-\frac{51}{13}+3 \cdot(4-$ $\left.\frac{51}{13}\right)+9 \cdot\left(4-\frac{51}{13}\right)=51-13 \cdot \frac{51}{13}=0$, a contradiction.

3 Concluding remarks

We feel that Lemma 2.10 can be strengthened to show that the distance between 3 -vertices should be arbitrary large, implying that there is at most one 3 -vertex. But one may have an argument to show there is no 3 -vertex at all, so we do not make much more effort than Lemma 2.10 .

We do not have constructions to show the sharpness of the maximum average degrees in our theorem, and we do not believe they are sharp.

Acknowledgements

The authors would like to thank the referees for the valuable comments and suggestions which leads to improve the representation.

References

[1] L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math., 108 (1992) (1-3) 231-252.
[2] J. Bensmail, M. Bonamy, H. Hocquard, Strong edge coloring sparse graphs, Ele. Note in Discrete Math., 49 (2015) 773-778.
[3] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index, http://arxiv.org/abs/1504.02583.
[4] M. Bonamy, T. Perrett, L. Postle, Colouring Graphs with Sparse Neighbourhoods: Bounds and Applications, manuscript.
[5] D. W. Cranston, Strong edge-coloring of graphs with maximum degree 4 using 22 colors, Discrete Math.,306 (21) (2006) 2772-2778.
[6] P. DeOrsey, J. Diemunsch, M. Ferrara, N. Graber, S. G. Hartke, S. Jahanbekam, B. Lidicky, L. Nelsen, D. Stolee, E. Sullivan, On the strong chromatic index of sparse graphs, http://arxiv.org/abs/1508.03515.
[7] P. Erdős, Problems and results in combinatorial analysis and graph theory, Discrete Math., 72 (1988) (1-3) 81-92.
[8] J. L. Fouquet, J. L. Jolivet, Strong edge-colorings of graphs and applications to multi- k-gons, Ars Combin. 16A., (1983), 141-150.
[9] J. L. Fouquet, J. L. Jolivet, Strong edge-coloring of cubic planar graphs, Progress in Graph Theory, (1984), 247-264.
[10] P. Hall, On representatives of subsetes, J. Lond. Math. Soc., 10 (1935) 26-30.
[11] H. Hocquard, M. Montassier, A. Raspaud and P. Valicov, On strong edge-colouring of subcubic graphs, Discrete Appl. Math., 161 (2013) (16-17) 2467-2479.
[12] H. Hocquard and P. Valicov, Strong edge colouring of subcubic graphs, Discrete Appl. Math., 159 (2011) (15) 1650-1657.
[13] P. Horák, H. Qing and W. T. Trotter, Induced matchings in cubic graphs, J. Graph Theory, 17 (1993) (2) 151-160.
[14] M. Huang, M. Santana, and G. Yu, The strong chromatic index of graphs with maximum degree four is at most 21 , manuscript.
[15] M. Molloy and B. Reed, A bound on the strong chromatic index of a graph, J. Combin. Theory, Ser. B 69 (1997) 519-530.
[16] T. Nandagopal, T. Kim, X. Gao, V. Barghavan, Achieving MAC layer fairness in wireless packet networks, in: Proc. 6th ACM Conf. on Mobile Computing and Networking, (2000), pp. 87-98.
[17] S. Ramanathan, A unified framework and algorithm for (T/F/C) DMA channel assignment in wireless networks, in: Proc. IEEE INFOCOM, 97, (1997), pp. 900-907.

[^0]: *Supported by NSF of China (11571134).
 ${ }^{\dagger}$ Supported by NSA grant H98230-16-1-0316.

