Math 412 Homework 9

your name

Due date: Nov 6, 2015

Solve the following problems. Please remember to use complete sentences and good grammar. Four points each.

- 1. (4 points) Show that there are infinite many primes of form 8k-1. (hint: consider $N = (p_1p_2...p_n)^2 2$.)
- 2. (4 points) Compute the following Legendre symbols: $\left(\frac{13}{47}\right), \left(\frac{71}{73}\right)$.
- 3. (4 points) Find all prime p so that 3 is a quadratic nonresidue modulo p.
- 4. (4 points) Suppose that p is an odd prime with $\left(\frac{n}{p}\right) = -1$, where $n = k2^m + 1$ with $1 < k < 2^m$ for some integers k and m. Show that if n is a prime then $p^{(n-1)/2} \equiv -1 \pmod{n}$.
- 5. (12 points with 4 bonus points) The 221st proof of the quadratic reciprocity) Let p and q be distinct odd primes and R be the set of integers a such that $1 \le a \le \frac{pq-1}{2}$ and (a, pq) = 1, let S be the set of integers a with $1 \le a \le \frac{pq-1}{2}$ and (a, p) = 1, and let T be the set of integers $q \cdot 1, q \cdot 2, \ldots, q \cdot \frac{p-1}{2}$. Finally, let $A = \prod_{a \in R} a$.
 - (a) Show that T is a subset of S and that R = S T.
 - (b) Use part (a) and Euler's criterion to show that $A \equiv (-1)^{\frac{q-1}{2}} \left(\frac{q}{p}\right) \pmod{p}$.
 - (c) Show that $A \equiv (-1)^{\frac{p-1}{2}} {p \choose q} \pmod{q}$ by switching the roles of p and q in parts (a) and (b).
 - (d) Use part (b) and (c) to show that $(-1)^{\frac{q-1}{2}} \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}} \left(\frac{p}{q}\right)$ if and only if $A \equiv \pm 1 \pmod{pq}$.
 - (e) Show that $A \equiv 1$ or $-1 \pmod{pq}$ if and only if $p \equiv q \equiv 1 \pmod{4}$.
 - (f) Conclude from parts (d) and (e) that $(-1)^{\frac{q-1}{2}} \begin{pmatrix} q \\ p \end{pmatrix} = (-1)^{\frac{p-1}{2}} \begin{pmatrix} p \\ q \end{pmatrix}$ if and only if $p \equiv q \equiv 1 \pmod{4}$. Deduce the law of quadratic reciprocity from this congruence.