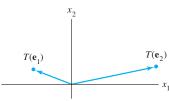
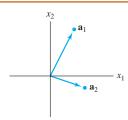
1.9 EXERCISES

In Exercises 1–10, assume that T is a linear transformation. Find the standard matrix of T.

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^4$, $T(\mathbf{e}_1) = (3, 1, 3, 1)$, and $T(\mathbf{e}_2) = (-5, 2, 0, 0)$, where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$.
- **2.** $T: \mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{e}_1) = (1,4)$, $T(\mathbf{e}_2) = (-2,9)$, and $T(\mathbf{e}_3) = (3,-8)$, where \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 are the columns of the 3×3 identity matrix.
- T: R² → R² is a vertical shear transformation that maps e₁ into e₁ − 3e₂, but leaves e₂ unchanged.
- T: R² → R² is a horizontal shear transformation that leaves e₁ unchanged and maps e₂ into e₂ + 2e₁.
- **5.** $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates points (about the origin) through $\pi/2$ radians (counterclockwise).
- **6.** $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates points (about the origin) through $-3\pi/2$ radians (clockwise).
- 7. $T: \mathbb{R}^2 \to \mathbb{R}^2$ first rotates points through $-3\pi/4$ radians (clockwise) and then reflects points through the horizontal x_1 -axis. [Hint: $T(\mathbf{e}_1) = (-1/\sqrt{2}, 1/\sqrt{2})$.]
- 8. T: R² → R² first performs a horizontal shear that transforms e₂ into e₂ + 2e₁ (leaving e₁ unchanged) and then reflects points through the line x₂ = -x₁.
- **9.** $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 -axis and then rotates points $-\pi/2$ radians.
- **10.** $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 -axis and then reflects points through the line $x_2 = x_1$.
- 11. A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the x_1 -axis and then reflects points through the x_2 -axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
- **12.** Show that the transformation in Exercise 10 is merely a rotation about the origin. What is the angle of the rotation?
- 13. Let T: R² → R² be the linear transformation such that T(e₁) and T(e₂) are the vectors shown in the figure. Using the figure, sketch the vector T(2, 1).



14. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with standard matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2]$, where \mathbf{a}_1 and \mathbf{a}_2 are shown in the figure at the top of column 2. Using the figure, draw the image of $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ under the transformation T.



In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

16.
$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x_1 - 2x_2 \\ x_1 + 4x_2 \\ x_2 \end{bmatrix}$$

In Exercises 17–20, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_1, x_2, \ldots are not vectors but are entries in vectors.

- **17.** $T(x_1, x_2, x_3, x_4) = (x_1 + 2x_2, 0, 2x_2 + x_4, x_2 x_4)$
- **18.** $T(x_1, x_2) = (x_1 + 4x_2, 0, x_1 3x_2, x_1)$
- **19.** $T(x_1, x_2, x_3) = (x_1 5x_2 + 4x_3, x_2 6x_3)$
- **20.** $T(x_1, x_2, x_3, x_4) = 3x_1 + 4x_3 2x_4$ (Notice: $T: \mathbb{R}^4 \to \mathbb{R}$)
- **21.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(x_1, x_2) = (x_1 + x_2, 4x_1 + 5x_2)$. Find **x** such that $T(\mathbf{x}) = (3.8)$.
- **22.** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation with $T(x_1, x_2) = (2x_1 x_2, -3x_1 + x_2, 2x_1 3x_2)$. Find **x** such that $T(\mathbf{x}) = (0, -1, -4)$.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- **23.** a. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
 - b. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin through an angle φ , then T is a linear transformation.
 - When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
 - d. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector \mathbf{x} in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
 - e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot be one-to-one.
- **24.** a. If A is a 4×3 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^3 onto \mathbb{R}^4 .

- b. Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix
- The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix under T.
- A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m .
- e. The standard matrix of a horizontal shear transformation from \mathbb{R}^2 to \mathbb{R}^2 has the form $\begin{bmatrix} a \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ d \end{bmatrix}$, where a and d are ± 1 .

In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.

- 25. The transformation in Exercise 17
- **26.** The transformation in Exercise 2
- 27. The transformation in Exercise 19
- 28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation T. Use the notation of Example 1 in Section 1.2.

- **29.** $T: \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one. **30.** $T: \mathbb{R}^4 \to \mathbb{R}^3$ is onto.
- **31.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: "T is one-to-one if and only if A has _____ pivot columns." Explain why the statement is true. [Hint: Look in the exercises for Section 1.7.]
- **32.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: "T maps \mathbb{R}^n onto \mathbb{R}^m if and only if A has $_$ pivot columns." Find some theorems that explain why the statement is true.

- **33.** Verify the uniqueness of A in Theorem 10. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $T(\mathbf{x}) = B\mathbf{x}$ for some $m \times n$ matrix B. Show that if A is the standard matrix for T, then A = B. [Hint: Show that A and B have the same columns.1
- **34.** Let $S: \mathbb{R}^p \to \mathbb{R}^n$ and $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations. Show that the mapping $\mathbf{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation (from \mathbb{R}^p to \mathbb{R}^m). [*Hint*: Compute $T(S(c\mathbf{u} + d\mathbf{v}))$ for \mathbf{u}, \mathbf{v} in \mathbb{R}^p and scalars c and d. Justify each step of the computation, and explain why this computation gives the desired conclusion.]
- **35.** If a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ maps \mathbb{R}^n onto \mathbb{R}^m , can you give a relation between m and n? If T is one-to-one, what can you say about m and n?
- **36.** Why is the question "Is the linear transformation T onto?" an existence question?

[M] In Exercises 37–40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40, decide if T maps \mathbb{R}^5 onto \mathbb{R}^5 . Justify your answers.

37.
$$\begin{bmatrix} -5 & 6 & -5 & -6 \\ 8 & 3 & -3 & 8 \\ 2 & 9 & 5 & -12 \\ -3 & 2 & 7 & -12 \end{bmatrix}$$
 38.
$$\begin{bmatrix} 7 & 5 & 9 & -9 \\ 5 & 6 & 4 & -4 \\ 4 & 8 & 0 & 7 \\ -6 & -6 & 6 & 5 \end{bmatrix}$$

39.
$$\begin{bmatrix} 4 & -7 & 3 & 7 & 5 \\ 6 & -8 & 5 & 12 & -8 \\ -7 & 10 & -8 & -9 & 14 \\ 3 & -5 & 4 & 2 & -6 \\ -5 & 6 & -6 & -7 & 3 \end{bmatrix}$$

40.
$$\begin{bmatrix} 14 & 15 & -7 & -5 & 4 \\ -8 & -6 & 12 & -5 & -9 \\ -5 & -6 & -4 & 9 & 8 \\ 13 & 14 & 15 & 3 & 11 \end{bmatrix}$$

SOLUTION TO PRACTICE PROBLEM

WEB

Follow what happens to e_1 and e_2 . See Fig. 5. First, e_1 is unaffected by the shear and then is reflected into $-\mathbf{e}_1$. So $T(\mathbf{e}_1) = -\mathbf{e}_1$. Second, \mathbf{e}_2 goes to $\mathbf{e}_2 - .5\mathbf{e}_1$ by the shear

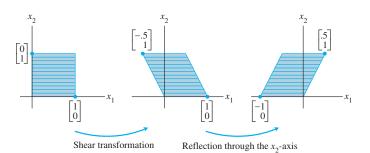


FIGURE 5 The composition of two transformations.