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Diabetic Retinopathy

[Shafqat, 2011]

@ Diabetic Retinopathy is a complication that can occur in people
suffering from diabetes

o If allowed to progress can cause blindness.

@ Can be treated effectively, especially if detected at an early stage
before symptoms are present

[American Academy of Ophthalmology]

o Classified in five stages: Not present (0), Mild Non-Proliferative (1),

Moderate Non-Proliferative (2), Severe Non-Proliferative (3),
Proliferative (4)
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@ Data set from Kaggle.

@ 35,000 training images with classifications.
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Medical Background and Technical Details

Technical Details

@ Data set from Kaggle.
@ 35,000 training images with classifications.

@ We are using Python, Julia, MATLAB, and R to implement our
approach along with GPU computing libraries such as OpenCV and
ArrayFire.
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Characteristics of the Retina
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Characteristics of the Retina

@ Optic Nerve
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Characteristics of the Retina

@ Optic Nerve
@ Blood Vessels
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Characteristics of the Retina

@ Optic Nerve
@ Blood Vessels
@ Macula
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Medical Background Technical Details
Symptoms

@ Microaneurysms (" dots") e Exudates

@ Haemorrhages (" blots") o Tortuosity of Blood Vessels



Proliferative DR

o Cotton Wool Spotting
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Proliferative DR cont.

@ Neovascularisation
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Challenges with Feature Extraction

Misdiagnosed Images




Challenges with Feature Extraction

Deceptive Noise
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Challenges with Feature Extraction

Images with Different Transformations

@ Inversion @ Scale
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Challenges with Feature Extraction

Bad Images




Image Analysis
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Image Analysis
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Image Analysis

Example Images
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Image Analysis

Histogram Equalization
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Image Analysis

Histogram Equalization

[Gonzalez and Woods, 2008]

o Pixel g = floor((L — 1) 3>/ py)
@ Where L is the number of intensity levels in the input image,
fi j is the original intensity of the pixel,

__ number of pixels with intensity n _ -
and Pn = total number of pixels for n = O’ ]" ] L 1
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Results
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Adaptive Thresholding

[Fisher, Perkins, Walker, and Wolfart, 2003]
@ T = mean

@ T is the threshold value and mean is the mean value of the pixels of
the image
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Adaptive Thresholding

[Fisher, Perkins, Walker, and Wolfart, 2003]
@ T = mean

@ T is the threshold value and mean is the mean value of the pixels of
the image

@ This threshold is computed for a neighborhood of specified size
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Image Analysis

Connected Components

@ Once an image is in binary it can be separated into connected
components
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Image Analysis

Connected Components

@ Once an image is in binary it can be separated into connected

components

@ Difference between 4-connected and 8-connected:
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Image Analysis

Connected Components

@ Once an image is in binary it can be separated into connected
components

@ Difference between 4-connected and 8-connected:

0 1 0]
111
0 1 0]
11 1]
111
11 1]

@ Eliminate noise by erasing the small connected components
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Image Analysis

Skeletonization

[Fisher, Perkins, Walker, and Wolfart, 2003]

@ Skeletonization reduces a line to a single pixel in width
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Image Analysis

Skeletonization

[Fisher, Perkins, Walker, and Wolfart, 2003]
@ Skeletonization reduces a line to a single pixel in width
e thin(l,J) = | — hit—=and-miss(l, J)

@ [ is an image and J is a structuring element
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Image Analysis

Skeletonization

[Fisher, Perkins, Walker, and Wolfart, 2003]
@ Skeletonization reduces a line to a single pixel in width
e thin(l,J) = | — hit—=and-miss(l, J)
@ [ is an image and J is a structuring element

@ Structuring elements:
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Results
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Calculating Tortuosity

@ Find branchpoints in the skeleton and extract discrete segments
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Calculating Tortuosity

@ Find branchpoints in the skeleton and extract discrete segments

o Tortuosity = %
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Image Analysis

Calculating Tortuosity

@ Find branchpoints in the skeleton and extract discrete segments

o Tortuosity = %

@ L is the length of the segment and C is the Euclidean distance
between the endpoints
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Separating RGB Channels and Equalizing the Histograms

27 /33



Separating RGB Channels and Equalizing the Histograms
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Image Analysis

Separating RGB Channels and Equalizing the Histograms




Image Analysis

Detecting Blots and Microaneurysms

@ Looked at image on the HSV color model and defined slice of cylinder
which would contain blood vessels and microaneurysms
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Image Analysis

Detecting Blots and Microaneurysms

~
Vv

@ Looked at image on the HSV color model and defined slice of cylinder
which would contain blood vessels and microaneurysms

@ Connected components which are in this confidence interval are
identified as blood vessels or microaneurysms
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Image Analysis

Detecting Blots and Microaneurysms

@ Looked at image on the HSV color model and defined slice of cylinder
which would contain blood vessels and microaneurysms

@ Connected components which are in this confidence interval are
identified as blood vessels or microaneurysms

@ Calculated correlation between x and y coordinates of each connected
component. Low correlation considered to be a microaneurysm
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Image Analysis

Detecting Blots and Microaneurysms
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Image Analysis

Detecting Blots and Microaneurysms




Image Analysis

Incorporating Computational Homology
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@ Look at by and by over a range of thresholds
o Calculate Euler Characteristic X = by — b; and plot it.
@ Count peaks as an additional variable
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Image Analysis

Statistical Learning - Logistic Regression

For logistic regression the main idea comes from population biology. If we
solve the following differential equation for some initial data we get a CDF:

dN N
—=rN{1—-——|. 1
dt " < K) (1)
1 if Class |
Let's write p(x) = Pr(y = 1|x) for the response y = I ass
2 if Class .
If we fit the log-odds to a linear univariate model we have
p(x)
WECR I 2
1—p(x) @)

From the log-odds, we can calculate the corresponding probability

eﬁO"’BlX
p(x) = 1+ ePothix’ (3)
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Image Analysis

Maximum Likelihood

We use the maximum likelihood concept to estimate the parameters,
where the likelihood equation is given by

L(Bo, B1) = H p(x;) H (1 — p(x7)) (4)

iryi= iryi=

This likelihood gives the probability of the observed zeros and ones in the
data. We choose [y and ;1 to maximize the likelihood of the observed
data. Since the logarithmic function is increasing we can maximize instead

- Z{’ 1)log(p(xi)) + I(yi = 2)log(1 — p(xi))} (5)
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GLMNET
[Friedman, Hastie, and Tibshirani, 2009]

@ When working with a binary classification have response variable
= {1,2} represent probabilities with predictors

Pr(y =1|x) = W and
Pr(y =2/x) = ——gmms =1 - Priy = 1x)
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GLMNET

[Friedman, Hastie, and Tibshirani, 2009]

@ When working with a binary classification have response variable
y = {1, 2} represent probabilities with predictors

Pr(y =1|x) = W and
Pr(y =2/x) = ——gmms =1 - Priy = 1x)

e The idea is to search for (3o, 3) € RPT! that maximize penalized log
likelihood

fZ{/ 1)log(p(x;)) + I(yi = 2)log(1 — p(x))} — APa(B) (6)

e Where P,(8) = ax* |81 + (1 —a) * ||8]/3
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GLMNET

[Friedman, Hastie, and Tibshirani, 2009]

@ When working with a binary classification have response variable
y = {1, 2} represent probabilities with predictors

Pr(y =1|x) = W and
Pr(y =2/x) = ——gmms =1 - Priy = 1x)

e The idea is to search for (3o, 3) € RPT! that maximize penalized log
likelihood

fZ{/ 1)log(p(x;)) + I(yi = 2)log(1 — p(x))} — APa(B) (6)

o Where Po(8) = a * [|8][1 + (1 — &) * ||B]13
@ When response variable y has K > 2 classifications, then for class ¢

503+XTBe
_ _ e
Priy = ) = 5t
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