Classification of Diabetic Retinopathy Using Feature Extraction and Statistical Learning

Ivan Echevarria

Daniel Ruhnke

Daniel Vasiliu

Daniel McGibney

February 17, 2016

Acknowledgement: This research uses the HPC resources at W&M. Many thanks to Eric Walter for his kind support.

> WILLIAM & MARY

1 Medical Background and Technical Details

2 Challenges with Feature Extraction

Medical Background and Technical Details

Section 1

Medical Background and Technical Details

Diabetic Retinopathy

[Shafqat, 2011]

- Diabetic Retinopathy is a complication that can occur in people suffering from diabetes
- If allowed to progress can cause blindness.
- Can be treated effectively, especially if detected at an early stage before symptoms are present

[American Academy of Ophthalmology]

• Classified in five stages: Not present (0), Mild Non-Proliferative (1), Moderate Non-Proliferative (2), Severe Non-Proliferative (3), Proliferative (4)

Technical Details

• Data set from Kaggle.

Technical Details

- Data set from Kaggle.
- 35,000 training images with classifications.

Technical Details

- Data set from Kaggle.
- 35,000 training images with classifications.
- We are using Python, Julia, MATLAB, and R to implement our approach along with GPU computing libraries such as OpenCV and ArrayFire.

• Optic Nerve

Optic Nerve Blood Vessels

- Optic Nerve
- Blood Vessels
- Macula

• Microaneurysms ("dots")

- Microaneurysms ("dots")
- Haemorrhages ("blots")

- Microaneurysms ("dots")
- Haemorrhages ("blots")

• Exudates

- Microaneurysms ("dots")
- Haemorrhages ("blots")

- Exudates
- Tortuosity of Blood Vessels

Proliferative DR

• Cotton Wool Spotting

Proliferative DR cont.

Neovascularisation

Section 2

Challenges with Feature Extraction

Misdiagnosed Images

Deceptive Noise

Challenges with Feature Extraction

Images with Different Transformations

Inversion

Bad Images

Section 3

Image Analysis

Example Images

Example Images

Histogram Equalization

Histogram Equalization

Histogram Equalization

[Gonzalez and Woods, 2008]

• Pixel
$$g_{i,j} = floor((L-1)\sum_{n=0}^{f_{i,j}} p_n)$$

• Where *L* is the number of intensity levels in the input image, $f_{i,j}$ is the original intensity of the pixel, and $p_n = \frac{number \ of \ pixels \ with \ intensity \ n}{total \ number \ of \ pixels}$ for n = 0, 1, ..., L - 1

Adaptive Thresholding

[Fisher, Perkins, Walker, and Wolfart, 2003]

- T = mean
- *T* is the threshold value and *mean* is the mean value of the pixels of the image

Adaptive Thresholding

[Fisher, Perkins, Walker, and Wolfart, 2003]

- T = mean
- *T* is the threshold value and *mean* is the mean value of the pixels of the image
- This threshold is computed for a neighborhood of specified size

20 / 33

Connected Components

• Once an image is in binary it can be separated into connected components

Connected Components

- Once an image is in binary it can be separated into connected components
- Difference between 4-connected and 8-connected:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Connected Components

- Once an image is in binary it can be separated into connected components
- Difference between 4-connected and 8-connected:

 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

• Eliminate noise by erasing the small connected components

Results

22 / 33

Skeletonization

[Fisher, Perkins, Walker, and Wolfart, 2003]

• Skeletonization reduces a line to a single pixel in width

Skeletonization

[Fisher, Perkins, Walker, and Wolfart, 2003]

- Skeletonization reduces a line to a single pixel in width
- thin(I, J) = I hit-and-miss(I, J)
- I is an image and J is a structuring element

Skeletonization

[Fisher, Perkins, Walker, and Wolfart, 2003]

- Skeletonization reduces a line to a single pixel in width
- thin(I, J) = I hit-and-miss(I, J)
- I is an image and J is a structuring element
- Structuring elements:

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & \\ 1 & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Results

24 / 33

Calculating Tortuosity

• Find branchpoints in the skeleton and extract discrete segments

Calculating Tortuosity

- Find branchpoints in the skeleton and extract discrete segments
- Tortuosity $= \frac{L}{C}$

Calculating Tortuosity

- Find branchpoints in the skeleton and extract discrete segments
- Tortuosity $= \frac{L}{C}$
- *L* is the length of the segment and *C* is the Euclidean distance between the endpoints

Example Image

Separating RGB Channels and Equalizing the Histograms

Separating RGB Channels and Equalizing the Histograms

Separating RGB Channels and Equalizing the Histograms

Detecting Blots and Microaneurysms

• Looked at image on the HSV color model and defined slice of cylinder which would contain blood vessels and microaneurysms

- Looked at image on the HSV color model and defined slice of cylinder which would contain blood vessels and microaneurysms
- Connected components which are in this confidence interval are identified as blood vessels or microaneurysms

- Looked at image on the HSV color model and defined slice of cylinder which would contain blood vessels and microaneurysms
- Connected components which are in this confidence interval are identified as blood vessels or microaneurysms
- Calculated correlation between x and y coordinates of each connected component. Low correlation considered to be a microaneurysm

Incorporating Computational Homology

- Look at b_0 and b_1 over a range of thresholds
- Calculate Euler Characteristic $X = b_0 b_1$ and plot it.
- Count peaks as an additional variable

Statistical Learning - Logistic Regression

For logistic regression the main idea comes from population biology. If we solve the following differential equation for some initial data we get a CDF:

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right). \tag{1}$$

Let's write p(x) = Pr(y = 1|x) for the response $y = \begin{cases} 1 & \text{if Class I} \\ 2 & \text{if Class II.} \end{cases}$

If we fit the log-odds to a linear univariate model we have

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x.$$
(2)

From the log-odds, we can calculate the corresponding probability

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}.$$
 (3)

31 / 33

Maximum Likelihood

We use the maximum likelihood concept to estimate the parameters, where the likelihood equation is given by

$$L(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i)).$$
(4)

This likelihood gives the probability of the observed zeros and ones in the data. We choose β_0 and β_1 to maximize the likelihood of the observed data. Since the logarithmic function is increasing we can maximize instead

$$\frac{1}{n}\sum_{i=1}^{n}\{I(y_i=1)\log(p(x_i))+I(y_i=2)\log(1-p(x_i))\}$$
(5)

GLMNET

[Friedman, Hastie, and Tibshirani, 2009]

• When working with a binary classification have response variable $y = \{1, 2\}$ represent probabilities with predictors $Pr(y = 1|x) = \frac{1}{1+e^{-(\beta_0+x^T\beta)}}$ and $Pr(y = 2|x) = \frac{1}{1+e^{(\beta_0+x^T\beta)}} = 1 - Pr(y = 1|x)$

GLMNET

[Friedman, Hastie, and Tibshirani, 2009]

- When working with a binary classification have response variable $y = \{1, 2\}$ represent probabilities with predictors $Pr(y = 1|x) = \frac{1}{1+e^{-(\beta_0+x^T\beta)}}$ and $Pr(y = 2|x) = \frac{1}{1+e^{(\beta_0+x^T\beta)}} = 1 Pr(y = 1|x)$
- The idea is to search for $(\beta_0,\beta)\in\mathbb{R}^{p+1}$ that maximize penalized log likelihood

$$\frac{1}{n}\sum_{i=1}^{n}\{I(y_i=1)\log(p(x_i))+I(y_i=2)\log(1-p(x_i))\}-\lambda P_{\alpha}(\beta)$$
(6)

• Where $P_{lpha}(eta) = lpha * ||eta||_1 + (1-lpha) * ||eta||_2^2$

GLMNET

[Friedman, Hastie, and Tibshirani, 2009]

- When working with a binary classification have response variable $y = \{1, 2\}$ represent probabilities with predictors $Pr(y = 1|x) = \frac{1}{1+e^{-(\beta_0 + x^T \beta)}}$ and $Pr(y = 2|x) = \frac{1}{1+e^{(\beta_0 + x^T \beta)}} = 1 Pr(y = 1|x)$
- The idea is to search for $(\beta_0,\beta)\in\mathbb{R}^{p+1}$ that maximize penalized log likelihood

$$\frac{1}{n}\sum_{i=1}^{n}\{I(y_i=1)\log(p(x_i))+I(y_i=2)\log(1-p(x_i))\}-\lambda P_{\alpha}(\beta)$$
(6)

- Where $P_{lpha}(eta) = lpha * ||eta||_1 + (1-lpha) * ||eta||_2^2$
- When response variable y has K > 2 classifications, then for class ℓ $Pr(y = \ell | x) = \frac{e^{\beta_{0\ell} + x^T \beta_{\ell}}}{\sum_{k=1}^{K} e^{\beta_{0k} + x^T \beta_k}}$