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Data can be

Messy (recurrent dynamics, chaos)

Noisy (measurement error, stochastity)

Sparse

High dimensional

Wednesday, February 10, 16



(Topology, Wikipedia)

Anatoly Fomenko

1967

Topological Zoo
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Euler Characteristic 

= V � E + F�

Wikipedia Wolfram

�(g) = 2� 2g
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or

Homology 

Hk(X)

⇠
=

8
<

:

Z k = 0, 2
Z2 k = 1

0 otherwise.

Hk(Sn
)

⇠
=
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Z k = 0, n
0 otherwise.

Hk(X)
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=
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Z2 k = 0, 1
0 otherwise.
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0 otherwise.
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<
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0 otherwise.
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Hk(K)

⇠
=

8
<

:

Z k = 0,
Z� Z/2Z k = 1,

0 otherwise.

or

Betti numbers 

Hk(X)

⇠
=

8
<
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Z2 k = 1

0 otherwise.
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�0 = 2
�1 = 2
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Betti numbers and 
Euler Characteristic 

Hk(K)

⇠
=

8
<
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Z k = 0,
Z� Z/2Z k = 1,

0 otherwise.

or

Hk(X)
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0 otherwise.
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population density patterns

http://www.linc.us/FloridaWidlifeCorridor_Info.html
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Project I:  Coupled-Patch Model

growth phase

N̄ij(t + 1) = f(Nij(t))

f(N) = rNe�NRicker map

dispersal phase

Nij(t + 1) = (1� d)N̄ij(t) +
d

4

X

|i�i0|+|j�j0|=1

N̄i0j0(t)

fitness parameter
Nij

dispersal parameter

(with Ben Holman)
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r

r = 22

e0

N Ricker map orbit diagram

T = ln r

Wednesday, February 10, 16



d = 0 d = 0.3

Example 1:  dispersal and smoothing

n = 100, r = 22
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d = 0
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d = 0.3

Example 1:  dispersal and smoothing
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kNk1 = 142,380

Example 2:  global extinction event

�0 = 1

�1 = 0

total abundance:

# decoupled subsystems:

# enclosed extinct regions:

t = 0
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kNk1 = 133,186

Example 2:  global extinction event

total abundance:

# decoupled subsystems:

# enclosed extinct regions:

t = 1

�0 = 222

�1 = 1,115
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kNk1 = 10,339

�1 = 0

�0 = 388

Example 2:  global extinction event

total abundance:

# decoupled subsystems:

# enclosed extinct regions:

t = 5
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kNk1 = 10

t = 10

�1 = 0

Example 2:  global extinction event

total abundance:

# decoupled subsystems:

# enclosed extinct regions:

�0 = 22
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Three scenarios

The system decouples into a few small subsystems before rebounding and re-coupling.

(r = 22, d = 0.15, e
o

= 0.2)

The system decouples into persistent subsystems.

(r = 22, d = 0.15, e
o

= 0.6)

The system decouples into subsystems but only as a transient stage prior to extinction.

(r = 22, d = 0.15, e
o

= 0.77)
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dispersal d

e
o

global extinction

topological transition

(where �0 and �1 cross)

extinction

threshold

local

Wednesday, February 10, 16



What are the effects of 
threshold choice, noise, and measurement error?
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From Homology to Persistent Homology

X⌧ := {x| f(x)  ⌧}

�1 = 2

�1 = 2

�1 = 1

• We will focus on computing the 
homology of sublevel sets      
over a continuous range of 
thresholds.

• For each generator (hole) we 
record its birth threshold    and 
death threshold   .  

• The importance of a homology 
generator (topological feature) 
is correlated to the generator’s 
lifespan (         ).

X⌧

b
d

d� b
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Persistent Homology

Persistence Diagram

birth

death

H1
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Persistent Homology

Persistence Diagram

birth

death

H1
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Persistent Homology

Persistence Diagram

birth

death

H1
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Persistent Homology

Persistence Diagram

birth

death

H1
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Adding noise

Persistence Diagram

birth

death

H1
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• Red blood cells “flicker”. 

• As red blood cells age their 
membranes lose plasticity and this 
flickering changes (as noted in 
Costa, et al).

• Membrane changes have 
implications for oxygen transport. 

• Blood banks want to know RBC 
age for this reason.

• We study the change in membrane 
structure using persistent homology. 

Project II:  Red Blood Cells and Flickering

with Jesse Berwald, Kelly Spendlove, Madalena Costa, Ary Goldberger
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Phase Contrast Microscopy of RBCs
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infinite generator

robust generators

noisy generators
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The largest feature of interest represents 
a deeper (intensity) depression in young cells.
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Initial experiments:  
Topological features change more rapidly for young cells. 
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The number of robust generators varies in a 
more complex way for young cells. 
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Is there a way to measure dynamics without passing to time 
series analysis?
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Computational topology can 
extract information from data 

that is

Messy (recurrent dynamics, chaos)

Noisy (measurement error, stochastity)

Sparse

High dimensional
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Thank you!

Martin Salgado-Flores, Liam Bench, Matthew Andriotty

students currently working on projects in dynamics and computational topology:
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