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Echelon Form

A rectangular matrix is in echelon form (or row echelon form) if it has
the following three properties:

I All nonzero rows are above any rows of all zeros.
I Each leading entry of a row is in a column to the right of the leading

entry of the row above it.
I All entries in a column below a leading entry are zeros.


3 −2 2 1 0
0 2 4 −4 4
0 0 0 −3 3
0 0 0 0 0


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If a matrix in echelon form satisfies the following additional
conditions, then it is in reduced echelon form (or reduced row echelon
form):

I The leading entry in each nonzero row is 1.
I Each leading 1 is the only nonzero entry in its column.


1 0 2 0 1/3
0 1 2 0 0
0 0 0 1 −1
0 0 0 0 0



An echelon matrix (respectively, reduced echelon matrix) is one that
is in echelon form (respectively, reduced echelon form.)
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Any nonzero matrix may be row reduced (i.e., transformed by
elementary row operations) into more than one matrix in echelon
form, using different sequences of row operations.

However, the reduced echelon form one obtains from a matrix is
unique.
Theorem (Uniqueness of the Reduced Echelon Form) Each matrix is
row equivalent to one and only one reduced echelon matrix.
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Pivot Postiion

If a matrix A is row equivalent to an echelon matrix U, we call U an
echelon form (or row echelon form) of A; if U is in reduced echelon
form, we call U the reduced echelon form of A.

A pivot position in a matrix A is a location in A that corresponds to a
leading 1 in the reduced echelon form of A. A pivot column is a
column of A that contains a pivot position.

1 0 2 0 1/3
0 1 2 0 0
0 0 0 1 −1
0 0 0 0 0
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Example: Row reduce the matrix A below to echelon form, and locate
the pivot positions and pivot columns of A.

0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7




1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 −5 0
0 0 0 0 0


The pivot columns are C1, C2, C4, and the pivot positions are
positions (1,1), (2, 2), and (3, 4).
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Row Redution Algorithm

Example: Apply elementary row operations to transform the following
matrix first into echelon form and then into reduced echelon form.0 3 −6 6 4 −5

3 −7 8 −5 8 9
3 −9 12 −9 6 15



STEP 1: Begin with the leftmost nonzero column. This is a pivot
column. The pivot position is at the top.

STEP 2: Select a nonzero entry in the pivot column as a pivot. If
necessary, interchange rows to move this entry into the pivot position.
(interchange R1 and R3)

STEP 3: Use row replacement operations to create zeros in all
positions below the pivot.
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Row Redution Algorithm

STEP 4: Cover the row containing the pivot position, and cover all
rows, if any, above it. Apply steps 1–3 to the submatrix that remains.
Repeat the process until there are no more nonzero rows to modify.

STEP 5: Beginning with the rightmost pivot and working upward and
to the left, create zeros above each pivot. If a pivot is not 1, make it
1 by a scaling operation.

The combination of steps 1–4 is called the forward phase of the row
reduction algorithm. Step 5, which produces the unique reduced
echelon form, is called the backward phase.
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Solutions to Linear Systems

The row reduction algorithm leads to an explicit description of the
solution set of a linear system when the algorithm is applied to the
augmented matrix of the system.

Suppose that the augmented matrix of a linear system has been
changed into the equivalent reduced echelon form.1 0 −5 1

0 1 1 4
0 0 0 0


There are 3 variables because the augmented matrix has four columns.

The variables x1 and x2 corresponding to pivot columns in the matrix
are called basic variables. The other variable, x3, is called a free
variable.
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Solutions to Linear Systems

Whenever a system is consistent, the solution set can be described
explicitly by solving the reduced system of equations for the basic
variables in terms of the free variables.

This operation is possible because the reduced echelon form places
each basic variable in one and only one equation.

In the above example, solve the first and second equations for x1 and
x2, we have x1 = 1 + 5x3, x2 = 4 − x3 and x3 is free.

Each different choice of x3 determines a (different) solution of the
system, and every solution of the system is determined by a choice of
x3.
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Parametric Descriptions of Solution Sets

The description above is a parametric description of solutions sets in
which the free variables act as parameters.

Solving a system amounts to finding a parametric description of the
solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution
set has many parametric descriptions.

For example, in the above problem, we may take x2 as free variables,
and write x1 and x3 in terms of x2:

x1 = 21 − 5x2, x3 = 4 − x2 and x2 is free.

When a system is inconsistent, the solution set is empty, even when
the system has free variables. In this case, the solution set has no
parametric representation.
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Existence and Uniqueness Theorem

Theorem (Existence and Uniqueness Theorem) A linear system is
consistent if and only if the rightmost column of the augmented
matrix is not a pivot column, i.e., if and only if an echelon form of the
augmented matrix has no row of the form [0 . . . 0b] with b nonzero.

If a linear system is consistent, then the solution set contains either
(i) a unique solution, when there are no free variables, or (ii) infinitely
many solutions, when there is at least on free variable.

Gexin Yu gyu@wm.edu Section 1.2 Row Reduction and Echelon Forms



Existence and Uniqueness Theorem

Theorem (Existence and Uniqueness Theorem) A linear system is
consistent if and only if the rightmost column of the augmented
matrix is not a pivot column, i.e., if and only if an echelon form of the
augmented matrix has no row of the form [0 . . . 0b] with b nonzero.

If a linear system is consistent, then the solution set contains either
(i) a unique solution, when there are no free variables, or (ii) infinitely
many solutions, when there is at least on free variable.

Gexin Yu gyu@wm.edu Section 1.2 Row Reduction and Echelon Forms



Using Row Reduction to Solve a Linear System

1 Write the augmented matrix of the system.

2 Use the row reduction algorithm to obtain an equivalent augmented
matrix in echelon form. Decide whether the system is consistent. If
there is no solution, stop; otherwise, go to the next step.

3 Continue row reduction to obtain the reduced echelon form.

4 Write the system of equations corresponding to the matrix obtained
in step 3.

5 Rewrite each nonzero equation from step 4 so that its one basic
variable is expressed in terms of any free variables appearing in the
equation.
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Using Row Reduction to Solve a Linear System—Example

Ex: find the general solution of the system

x1 − 2x2 − x3 + 3x4 = 0

−2x1 + 4x2 + 5x3 − 5x4 = 3

3x1 − 6x2 − 6x3 + 8x4 = 2
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