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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real

numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)
Q u+v=v+ u (commutative)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)
Q u+v=v+ u (commutative)
© (u+v)+w=u+(v+w). (associative)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)
Q u+v=v+ u (commutative)

© (u+v)+w=u+(v+w). (associative)

@ there is a zero vector 0 in V. (zero)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)

Q u+v=v+ u (commutative)

© (u+v)+w=u+(v+w). (associative)

@ there is a zero vector 0 in V. (zero)

© for each u € V, thereis —u € V so that u+ (—u) = 0. (inverse)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)

Q u+v=v+ u (commutative)

© (u+v)+w=u+(v+w). (associative)

@ there is a zero vector 0 in V. (zero)

© for each u € V, thereis —u € V so that u+ (—u) = 0. (inverse)

Q for ue V, cu e V for any c € R. (closed under scalar multiplication)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)

Q u+v=v+ u (commutative)

© (u+v)+w=u+(v+w). (associative)

@ there is a zero vector 0 in V. (zero)

© for each u € V, thereis —u € V so that u+ (—u) = 0. (inverse)

Q for ue V, cu e V for any c € R. (closed under scalar multiplication)
Q@ c(u—+ v) = cu+ cv (distributive)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)

Q u+v=v+ u (commutative)

© (u+v)+w=u+(v+w). (associative)

@ there is a zero vector 0 in V. (zero)

© for each u € V, thereis —u € V so that u+ (—u) = 0. (inverse)

Q for ue V, cu e V for any c € R. (closed under scalar multiplication)
Q@ c(u—+ v) = cu+ cv (distributive)

O (c+ d)u = cu+ du (distributive)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

Q ifu,v eV, then u+ v € V. (closed under addition)

Q u+v=v+ u (commutative)

© (u+v)+w=u+(v+w). (associative)

@ there is a zero vector 0 in V. (zero)

© for each u € V, thereis —u € V so that u+ (—u) = 0. (inverse)

Q for ue V, cu e V for any c € R. (closed under scalar multiplication)
Q@ c(u—+ v) = cu+ cv (distributive)

O (c+ d)u = cu+ du (distributive)

O c(du) = (cd)u (associative)
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@ A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u,v,w € V and ¢, d € R):

V@ if u,v eV, then u+ v € V. (closed under addition)
v @ u+v=v+u (commutative)
@ (u+v)+w=u+(v+w). (associative)
v @ there is a zero vector 0 in V. (zero)

© for each u € V, thereis —u € V so that u+ (—u) = 0. (inverse)
O forue V, cue V for any c € R. (closed under scalar multiplication)
+@ c(u+ v)=cu+ cv (distributive)
v@ (c+ d)u= cu+ du (distributive)
“/Q c(du) = (cd)u (associative) _

@ lu=u. (one) (/‘BU\ = =W

l-w ¢
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Ex1 R" is a vector space. (check the ten rules)

e
Xn wn=x\V
Koam cu
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Ex1 R" is a vector space. (check the ten rules)

Ex2 Let V be the set of all arrows (directed line segments) in
three-dimensional space, with two arrows regarded as equal if they
have the same length and point in the same direction.

/7
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Ex1 R" is a vector space. (check the ten rules)

Ex2 Let V be the set of all arrows (directed line segments) in
three-dimensional space, with two arrows regarded as equal if they
have the same length and point in the same direction.

Define addition by the Eg&elog_rin_"n’r_ul_e, and for each v € V, define
cv to be the arrow whose length is |c| times the length of v, pointing
in the same direction as v if ¢ > 0 and otherwise pointing in the
opposite direction.

=

\%
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Ex1 R" is a vector space. (check the ten rules)

Ex2 Let V be the set of all arrows (directed line segments) in
three-dimensional space, with two arrows regarded as equal if they
have the same length and point in the same direction.

Define addition by the parallelogram rule, and for each v € V, define
cv to be the arrow whose length is |c| times the length of v, pointing
in the same direction as v if ¢ > 0 and otherwise pointing in the
opposite direction.

This gives a vector space.
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Ex3 For n > 0, the set P, of polynomials of degree at most n. So P,
consists of all polynomials of the form
p(t) = ap + art + axt? + ... + a,t", where coefficients ag, ay, . . ., an
and the variable t are real numbers.
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Ex3 For n > 0, the set P, of polynomials of degree at most n. So P,
consists of all polynomials of the form
p(t) = ap + art + axt? + ... + a,t", where coefficients ag, ay, . . ., an
and the variable t are real numbers.

Let p(t) = ao + a1t + at? + ... + a,t" and

q(t) = by + byt + byt? + ... + b,t", we define addition as

(p+ q)(t) = (ap + bo) + (a1 + b1)t + (ao + b2)t?> + ... + (an + by)t"
and scalar multiplication as

(cp)(t) = cp(t) = cap + (ca1)t + (cax)t®> + ... + (can)t"

ez & &=b Ly
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Ex3 For n > 0, the set P, of polynomials of degree at most n. So P,
consists of all polynomials of the form
p(t) = ap + art + axt? + ... + a,t", where coefficients ag, ay, . . ., an
and the variable t are real numbers.

Let p(t) = ao + a1t + at? + ... + a,t" and
q(t) = bo + byt + bot? + ... + b,t", we define addition as

(p+q)(t) = (a0 + bo) + (a1 + b1)t + (a2 + b2)t* + ... + (an + by)t"
and scalar multiplication as
(cp)(t) = cp(t) = cap + (ca1)t + (cax)t®> + ... + (can)t"

This is a vector space (of polynomials of degree at most n)
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@ A subspace of a vector space V is a subset H of V that has three
properties:
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@ A subspace of a vector space V is a subset H of V that has three
properties:
@ the zero vector of Visin H
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@ A subspace of a vector space V is a subset H of V that has three
properties:
@ the zero vector of Visin H
Q ifuveH,thenu+veH.
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@ A subspace of a vector space V is a subset H of V' that has three
properties:
@ the zero vector of Visin H
Q ifuveH,thenu+veH.
Q@ ifucH, thencue H
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@ A subspace of a vector space V is a subset H of V that has three
properties:

© the zero vector of Visin H
Q ifuveH,thenu+veH.
Q@ ifucH, thencue H

e Properties (1), (2), and (3) guarantee that a subspace H of V is itself
a vector space, under the vector space operations already defined in V.
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@ A subspace of a vector space V is a subset H of V that has three
properties:
@ the zero vector of Visin H
Q ifuveH,thenu+veH.
Q@ ifucH, thencue H

e Properties (1), (2), and (3) guarantee that a subspace H of V is itself
a vector space, under the vector space operations already defined in V.

@ Every subspace is a vector space.
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@ A subspace of a vector space V is a subset H of V that has three
properties:
@ the zero vector of Visin H
Q ifuveH,thenu+veH.
Q@ ifucH, thencue H

e Properties (1), (2), and (3) guarantee that a subspace H of V is itself
a vector space, under the vector space operations already defined in V.

@ Every subspace is a vector space.

o Conversely, every vector space is a subspace (of itself and possibly of
other larger spaces).
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@ A subspace of a vector space V is a subset H of V_that has three
properties:
~ @ the zero vector of Visin H
- @ ifuveH thenu+veH.
Q@ ifucH, thencue H

e Properties (1), (2), and (3) guarantee that a subspace H of V is itself
a vector space, under the vector space operations already defined in V.

@ Every subspace is a vector space.

o Conversely, every vector space is a subspace (of itself and possibly of
other larger spaces).

@ The set consisting of only the zero vector in a vector space V is a
subspace of V/, called the zero subspace and written as {0}.
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Ex. let P be the set of all polynomials with real coefficients, with
operations in P defined as for functions. Then P is a subspace of the
space of all real-valued functions defined on R.

Gexin Yu gyu@um.edu Section 4.1 Vector Spaces



Ex. let P be the set of all polynomials with real coefficients, with
operations in P defined as for functions. Then P is a subspace of the
space of all real-valued functions defined on R.

Ex. P, is a subspace of P.
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Ex.

Ex.

Ex.

let P be the set of all polynomials with real coefficients, with
operations in P defined as for functions. Then P is a subspace of the
space of all real-valued functions defined on R.

P, is a subspace of P.

The vector space R? is NOT a subspace of R3, as R? is not a subset

e =3
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Ex. let P be the set of all polynomials with real coefficients, with
operations in P defined as for functions. Then P is a subspace of the
space of all real-valued functions defined on R.

Ex. P, is a subspace of P.

Ex. The vector space R? is NOT a subspace of R3, as R? is not a subset
of R3.

Ex. The set H= {(s,t,0)7 :s,t € R} is a subset of R3. And it is a
subspace of R3. \l s
[ 4
0
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Ex. let P be the set of all polynomials with real coefficients, with
operations in P defined as for functions. Then P is a subspace of the
space of all real-valued functions defined on R.

Ex. P, is a subspace of P.

Ex. The vector space R? is NOT a subspace of R3, as R? is not a subset
of R3.

Ex. The set H= {(s,t,0)7 :s,t € R} is a subset of R3. And it is a
subspace of R3.

Ex. A plane in R3 not through the origin is not a subspace of R3.
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A subspace spanned by a set

@ As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{vy,...,v,} denotes the set of all vectors that
can be written as linear combinations of vy, ..., v,.
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A subspace spanned by a set

@ As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{vy,...,v,} denotes the set of all vectors that
can be written as linear combinations of vy, ..., v,.
Ex. Given v1 and v, in a vector space V, let H = Span{vi,v2}. Show
that H is a subspace of V.
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A subspace spanned by a set

@ As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{vy,...,v,} denotes the set of all vectors that
can be written as linear combinations of vy, ..., v,.
Ex. Given v1 and v, in a vector space V, let H = Span{vi,v2}. Show
that H is a subspace of V

w
Proof. we need to verify th@onditions:

Heoy Wisassetof U,
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A subspace spanned by a set

@ As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{vy,...,v,} denotes the set of all vectors that
can be written as linear combinations of vy, ..., v,.

Ex. Given v1 and v, in a vector space V, let H = Span{vi,v2}. Show
that H is a subspace of V.

Proof. we need to verify the three conditions:

» Zeroisin H, as 0 = Ovy + Ows.
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A subspace spanned by a set

@ As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{vy,...,v,} denotes the set of all vectors that
can be written as linear combinations of vy, ..., v,.

Ex. Given v1 and v, in a vector space V, let H = Span{vi,v2}. Show
that H is a subspace of V.

Proof. we need to verify the three conditions:

» Zeroisin H, as 0 = Ovy + Ows.

» If uyw € H, then u=s51v; + v, and w = t;v; + thv, for some
S1,5, b, € R.
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A subspace spanned by a set

@ As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{vy,...,v,} denotes the set of all vectors that
can be written as linear combinations of vy, ..., v,.

Ex. Given v1 and v, in a vector space V, let H = Span{vi,v2}. Show
that H is a subspace of V.

Proof. we need to verify the three conditions:
» Zeroisin H, as 0 = Ovy + Ows.

» If uyw € H, then u=s51v; + v, and w = t;v; + thv, for some
S1,5, b, € R.
Then u+w = (51 + t1)V1 + (52 + t2)V2 € H.

Gexin Yu gyu@um.edu Section 4.1 Vector Spaces



A subspace spanned by a set

@ As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{vy,...,v,} denotes the set of all vectors that
can be written as linear combinations of vy, ..., v,.

Ex. Given v1 and v, in a vector space V, let H = Span{vi,v2}. Show
that H is a subspace of V.

Proof. we need to verify the three conditions:

» Zeroisin H, as 0 = Ovy + Ows.

» If uyw € H, then u=s51v; + v, and w = t;v; + thv, for some
S1,5, b, € R.
Then u+w = (51 + t1)V1 + (52 + t2)V2 € H.

» For any c € R and v € H, we have cu = (cs1)vi + (cs2)wve € H.
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A subspace spanned by a set

@ As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{vy,...,v,} denotes the set of all vectors that
can be written as linear combinations of vy, ..., v,.

Ex. Given v1 and v, in a vector space V, let H = Span{vi,v2}. Show

that H is a subspace of V,
[

Proof. we need to verify the (hree)conditions: H < V

» Zeroisin H, as 0 = Ovy + Ows.

» If uyw € H, then u=s51v; + v, and w = t;v; + thv, for some
S1,5, b, € R.
Then u+w = (51 + t1)V1 + (52 + t2)V2 € H.

» For any c € R and v € H, we have cu = (cs1)vi + (cs2)wve € H.

@ So H is a subspace of V.
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@ Theorem. If vi,..., v, are in a vector space V/, then Span{vi,...,v,}
is a subspace of V.
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@ Theorem. If vi,..., v, are in a vector space V/, then Span{vi,...,v,}
is a subspace of V.

e We call Span{vi,..., vy} the subspace spanned (or generated) by
{vi,..., v}
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@ Theorem. If vi,..., v, are in a vector space V/, then Span{vi,...,v,}
is a subspace of V.

e We call Span{vi,..., vy} the subspace spanned (or generated) by
{vi,..., v}

@ Given any subspace H of V/, a spanning (or generating) set for H is a
set {vi,...,Vvp} in H such that H = Span{v1,..., v,}.
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Ex. Let H={(a—3b,b— a, a,
vectors of the form (a — 3b,
scalars. Show that H is subspa

T.abe R}. Thatis, H is the set of all
— a,a, b)T where a and b are arbitrary
of R*.
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Ex. Let H={(a—3b,b—a,a,b)T :a,b € R}. Thatis, H is the set of all
vectors of the form (a —3b,b — a, a, b)T where a and b are arbitrary
scalars. Show that H is subspace of R*.

Proof. The vectors in H can be written as linear combinations:

a—3b 1
b—a -1

H: QYM{\/\'\/ >
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Ex. Let H={(a—3b,b—a,a,b)T :a,b € R}. Thatis, H is the set of all
vectors of the form (a —3b,b — a, a, b)T where a and b are arbitrary
scalars. Show that H is subspace of R*.

Proof. The vectors in H can be written as linear combinations:

a—3b 1 -3
b—a -1 1
a —91 +b 0
b 0 1

e So H = Span{vi, v} with vi = (1,-1,1,0)7 and v» = (-3,1,0,1)7.
Thus H is a subspace of R*.
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e For what values of h will y be in the subspace of R3 spanned by
Vi, Vo, V3 if
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e For what values of h will y be in the subspace of R3 spanned by

Vi, Vo, V3 if
1 5 -3 —4
vi=|-1l|, vnw=|-4],s=|1],y=1|3
-2 —7 0 h

Sol. let y = x3v1 + xova + x3v3 with x1, x2, x3 € R. We then have a linear
system whose argumented matrix

1 5 -3 —4 15 -3 —4
-1 -4 1 3|=]01 -2 -1
—2 -7 0 h 00 0 h-5
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e For what values of h will y be in the subspace of R3 spanned by

Vi, Vo, V3 if
1 5 -3 —4
vi=|-1l|, vnw=|-4],s=|1],y=1|3
-2 —7 0 h

Sol. let y = x3v1 + xova + x3v3 with x1, x2, x3 € R. We then have a linear
system whose argumented matrix

1 5 -3 —4 15 -3 —4
-1 -4 1 3|=]01 -2 -1
—2 -7 0 h 00 0 h-5

@ By looking at its echelon form, we see that the linear system is
consistent only if h—5 = 0.
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e For what values of h will y be in the subspace of R3 spanned by

Vi, Vo, V3 if
1 5 -3 —4
vi=|-1l|, vnw=|-4],s=|1],y=1|3
-2 —7 0 h

Sol. let y = x3v1 + xova + x3v3 with x1, x2, x3 € R. We then have a linear
system whose argumented matrix

1 5 -3 —4 15 -3 —4
-1 -4 1 3|=]01 -2 -1
—2 -7 0 h 00 0 h-5

@ By looking at its echelon form, we see that the linear system is
consistent only if h—5 = 0.

@ Soyisin Hif h=5.
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