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Vector Space

A vector space is a nonempty set V of objects, called vectors, with
two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below (where
u, v ,w ∈ V and c , d ∈ R):

1 if u, v ∈ V , then u + v ∈ V . (closed under addition)
2 u + v = v + u. (commutative)
3 (u + v) + w = u + (v + w). (associative)
4 there is a zero vector 0 in V . (zero)
5 for each u ∈ V , there is −u ∈ V so that u + (−u) = 0. (inverse)
6 for u ∈ V , cu ∈ V for any c ∈ R. (closed under scalar multiplication)
7 c(u + v) = cu + cv (distributive)
8 (c + d)u = cu + du (distributive)
9 c(du) = (cd)u (associative)
10 1u = u. (one)
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Examples

Ex1 Rn is a vector space. (check the ten rules)

Ex2 Let V be the set of all arrows (directed line segments) in
three-dimensional space, with two arrows regarded as equal if they
have the same length and point in the same direction.

Define addition by the parallelogram rule, and for each v ∈ V , define
cv to be the arrow whose length is |c | times the length of v , pointing
in the same direction as v if c ≥ 0 and otherwise pointing in the
opposite direction.

This gives a vector space.
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Ex3 For n ≥ 0, the set Pn of polynomials of degree at most n. So Pn

consists of all polynomials of the form
p(t) = a0 + a1t + a2t

2 + . . . + ant
n, where coefficients a0, a1, . . . , an

and the variable t are real numbers.

Let p(t) = a0 + a1t + a2t
2 + . . . + ant

n and
q(t) = b0 + b1t + b2t

2 + . . . + bnt
n, we define addition as

(p + q)(t) = (a0 + b0) + (a1 + b1)t + (a2 + b2)t2 + . . . + (an + bn)tn

and scalar multiplication as

(cp)(t) = cp(t) = ca0 + (ca1)t + (ca2)t2 + . . . + (can)tn

This is a vector space (of polynomials of degree at most n)
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Subspace

A subspace of a vector space V is a subset H of V that has three
properties:

1 the zero vector of V is in H
2 if u, v ∈ H, then u + v ∈ H.
3 if u ∈ H, then cu ∈ H

Properties (1), (2), and (3) guarantee that a subspace H of V is itself
a vector space, under the vector space operations already defined in V.

Every subspace is a vector space.

Conversely, every vector space is a subspace (of itself and possibly of
other larger spaces).

The set consisting of only the zero vector in a vector space V is a
subspace of V , called the zero subspace and written as {0}.
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Examples

Ex. let P be the set of all polynomials with real coefficients, with
operations in P defined as for functions. Then P is a subspace of the
space of all real-valued functions defined on R.

Ex. Pn is a subspace of P.

Ex. The vector space R2 is NOT a subspace of R3, as R2 is not a subset
of R3.

Ex. The set H = {(s, t, 0)T : s, t ∈ R} is a subset of R3. And it is a
subspace of R3.

Ex. A plane in R3 not through the origin is not a subspace of R3.
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A subspace spanned by a set

As the term linear combination refers to any sum of scalar multiples
of vectors, and Span{v1, . . . , vp} denotes the set of all vectors that
can be written as linear combinations of v1, . . . , vp.

Ex. Given v1 and v2 in a vector space V , let H = Span{v1, v2}. Show
that H is a subspace of V .

Proof. we need to verify the three conditions:

I Zero is in H, as 0 = 0v1 + 0v2.

I If u,w ∈ H, then u = s1v1 + s2v2 and w = t1v1 + t2v2 for some
s1, s2, t1, t2 ∈ R.
Then u + w = (s1 + t1)v1 + (s2 + t2)v2 ∈ H.

I For any c ∈ R and u ∈ H, we have cu = (cs1)v1 + (cs2)v2 ∈ H.

So H is a subspace of V .
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Ex. Given v1 and v2 in a vector space V , let H = Span{v1, v2}. Show
that H is a subspace of V .

Proof. we need to verify the three conditions:

I Zero is in H, as 0 = 0v1 + 0v2.

I If u,w ∈ H, then u = s1v1 + s2v2 and w = t1v1 + t2v2 for some
s1, s2, t1, t2 ∈ R.

Then u + w = (s1 + t1)v1 + (s2 + t2)v2 ∈ H.

I For any c ∈ R and u ∈ H, we have cu = (cs1)v1 + (cs2)v2 ∈ H.

So H is a subspace of V .
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Theorem. If v1, . . . , vp are in a vector space V , then Span{v1, . . . , vp}
is a subspace of V .

We call Span{v1, . . . , vp} the subspace spanned (or generated) by
{v1, . . . , vp}.

Given any subspace H of V , a spanning (or generating) set for H is a
set {v1, . . . , vp} in H such that H = Span{v1, . . . , vp}.
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Example

Ex. Let H = {(a− 3b, b− a, a, b)T : a, b ∈ R}. That is, H is the set of all
vectors of the form (a− 3b, b − a, a, b)T where a and b are arbitrary
scalars. Show that H is subspace of R4.

Proof. The vectors in H can be written as linear combinations:
a− 3b
b − a
a
b

 = a


1
−1
1
0

 + b


−3
1
0
1


So H = Span{v1, v2} with v1 = (1,−1, 1, 0)T and v2 = (−3, 1, 0, 1)T .
Thus H is a subspace of R4.
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Example

For what values of h will y be in the subspace of R3 spanned by
v1, v2, v3 if

v1 =

 1
−1
−2

 , v2 =

 5
−4
−7

 , v3 =

−3
1
0

 , y =

−4
3
h



Sol. let y = x1v1 + x2v2 + x3v3 with x1, x2, x3 ∈ R. We then have a linear
system whose argumented matrix 1 5 −3 −4

−1 −4 1 3
−2 −7 0 h

→
1 5 −3 −4

0 1 −2 −1
0 0 0 h − 5


By looking at its echelon form, we see that the linear system is
consistent only if h − 5 = 0.

So y is in H if h = 5.
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