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Null space of a matrix

In this section, we will talk about two special vector spaces related to
a matrix: null space and column space.

The null space of an m × n matrix A, written as Nul A, is the set of
all solutions of the equation Ax = 0.

In other words, Nul A = {x ∈ Rn : Ax = 0}.

One may think Nul A to be the set of vectors x ∈ Rn that are mapped
into the zero vector of Rm via the linear transformation x → Ax .
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Thm: The null space of an m × n matrix is a subspace of Rn. (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of Rn.)

Proof: First of all, Nul A is a subset of Rn, because A has n columns.

We then need to show that Nul A satisfies the three conditions of a
subspace:

1 0 is in Nul A, as A · 0 = 0.
2 Let u, v ∈ Nul A. Then Au = 0 and Av = 0. So

A(u + v) = Au + Av = 0 + 0 = 0. Therefore u + v ∈ Nul A.
3 Let u ∈ Nul A and c ∈ R. Then Au = 0. So

A(cu) = c(Au) = c · 0 = 0. Therefore cu ∈ Nul A.

So Nul A is a subspace of Rn.

Note that no explicit list or description of the elements in Nul A is
given.

Solving the equation Ax = 0 amounts to producing an explicit
description of Nul A.
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Example

Ex. Find a spanning set for the null space of the matrix

A =

3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4



Sol: The first step is to find the general solutions of Ax = 0 in terms of
free variables.

So we row reduce the augmented matrix to reduce echelon form:

A =

3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

→
1 −2 0 −1 3 0

0 0 1 −2 −2 0
0 0 0 0 0 0


So x1 and x3 are basic variables, and x2, x4, x5 are free variables. And
we have x1 = 2x2 + x4 − 3x5 and x3 = 2x4 + 2x5.
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Now we write the solution x in the vector form:

x =


2x2 + x4 − 3x5

x2
2x4 + 2x5

x4
x5

 = x2


2
1
0
0
0

+x4


1
0
2
1
0

+x5


−3
0
2
0
1

 = x2u+x4v+x5w

So Nul A = Span{u, v ,w}.

Two Remarks:

1 The spanning set produced by the method in the above Example is
automatically linearly independent because the free variables are the
weights on the spanning vectors.

2 When Nul A contains nonzero vectors, the number of vectors in the
spanning set for Nul A equals the number of free variables in the
equation Ax = 0.
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Column space of a matrix

The column space of an m × n matrix A, written as Col A, is the set
of all linear combinations of the columns of A. If
A =

[
a1 a2 . . . an

]
, then Col A = span{a1, a2, . . . , an}.

Thm: The column space of an m × n matrix is a subspace of Rm.

A typical vector in Col A can be written as Ax for some vector x ,
because the notation Ax stands for a linear combination of the
columns of A. So Col A = {b ∈ Rm : b = Ax for some x ∈ Rn}.

The notation Ax for vectors in Col A also shows that Col A is the
range of the linear transformation from x to Ax .

The column space of an m× n matrix A is all of Rm if and only if the
equation Ax = b has a solution for each b ∈ Rm. .
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Examples

Ex: Let A =

 2 4 −2 1
−2 −5 7 3
3 7 −8 6

, u =


3
−2
−1
0

 and v =

 3
−1
3

.

1 Determine if u is in Nul A. Could u be in Col A?
2 Determine if v is in Col A. Could v be in Nul A?

Sol: We compute Au and find that it is not zero, which means that u is
not a solution to Ax = 0. So u is not in Nul A.

As u ∈ R4, u cannot be in Col A, since Col A is a subspace of R3.

To see if v is in Col A, we row reduce
[
A v

]
to an echelon form:

[
A v

]
=

 2 4 −2 1 3
−2 −5 7 3 −1
3 7 −8 6 3

→
2 4 −2 1 3

0 1 −5 −4 −2
0 0 0 17 1


The equation Ax = v is consistent. So v is in Col A.

As v ∈ R3, v cannot be in Nul A, which is a subspace of R4.
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 and v =

 3
−1
3

.

1 Determine if u is in Nul A. Could u be in Col A?

2 Determine if v is in Col A. Could v be in Nul A?

Sol: We compute Au and find that it is not zero, which means that u is
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As u ∈ R4, u cannot be in Col A, since Col A is a subspace of R3.
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Kernel and range of a linear transformation

Let T be a linear transformation from V to W .

The kernel (or null space) of such a T is the set of all u in V such
that T (u) = 0 (the zero vector in W ).

The range of T is the set of all vectors in W of the form T (x) for
some x in V .

The kernel of T is a subspace of V , and the range of T is a subspace
of W .
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Example

Ex. Let V the vector space of all real-valued functions f on [a, b] which
are differentiable and whose derivatives are continuous functions on
[a, b], and let W be the vector space of continuous functions on
[a, b]. Let D : V →W be the transformation so that D(f ) = f ′.

One can show D is a linear transformation.

What is the kernel and range of D?

The kernal is the set of constant functions on [a, b], and the range of
D is the set W .
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Linear independent sets

An indexed set of vectors {v1, . . . , vp} in V is said to be linearly
independent if the vector equation c1v1 + c2v2 + . . . + cpvp = 0 has
only the trivial solution c1 = c2 = . . . = cp = 0.

.

The set {v1, . . . , vp} is said to be linearly dependent if the above
equation has a nontrivial solution, i.e., if there are some weights,
c1, . . . , cp, not all zero, such that the equation holds. In such a case,
the equation is called a linear dependence relation among v1, . . . , vp.

Theorem 4: An indexed set {v1, , vp} of two or more vectors, with
v1 6= 0, is linearly dependent if and only if some vj (with j > 1) is a
linear combination of the preceding vectors, v1, v2, . . . , vj−1.
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Basis

Definition: Let H be a subspace of a vector space V . An indexed set
of vectors B = {b1, . . . , bp} in V is a basis for H if

1 B is a linearly independent set, and
2 The subspace spanned by B coincides with H; that is,

H = span{b1, . . . , bp}.

The definition of a basis applies to the case when H = V , because
any vector space is a subspace of itself.

Thus a basis of V is a linearly independent set that spans V .

When H 6= V , condition (2) includes the requirement that each of the
vectors b1, . . . , bp must belong to H, because Span{b1, . . . , bp}
contains b1, . . . , bp.
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Examples

Ex1: Let A = [a1 a2 . . . an] be an invertible matrix. Then the columns of
A form a basis for Rn, because they are linear independent and they
span Rn (by the Invertible Matrix Theorem).

The converse of the above one is also true: to show a set of vectors
to be a basis of Rn, we just need to show the matrix formed by taking
those vectors as columns is invertible.

Ex2: Let e1, e2, . . . , en be the columns of the n × n matrix, In. That is,
e1 = [1 0 . . . 0]T , e2 = [0 1 . . . 0]T , . . . , en = [0 0 . . . 1]T . The set
{e1, e2, . . . , en} is called the standard basis for Rn.
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Ex3: Let S = {1, t, t2, . . . , tn}. Then S is a basis for Pn, and it is called
the standard basis for Pn.

Pf. Clearly every polynomials can be written as a linear combination of
elements in S , thus S spans Pn. So we just need to show that S is
linearly independent.

Suppose that c0, c1, . . . , cn satisfy c0 · 1 + c1t + c2t
2 + . . . + cnt

n = 0.
The only way for a polynomial to be the zero polynomial is that the
coefficients are all zeros. So c0 = c1 = . . . = cn = 0.

This means that S is an independent set.
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The Spanning Set Theorem

As you may see, a basis is an “efficient” spanning set that contains no
unnecessary vectors. The following theorem says that a basis can be
constructed from a spanning set by discarding unnecessary vectors.

Thm: (The spanning set theorem) Let S = {v1, v2, . . . , vp} be a set in V
and H = Span{v1, v2, . . . , vp}.

1 If one of the vectors in S—say, vk—is a linear combination of the
remaining vectors in S , then the set formed from S by removing vk still
spans H.

2 If H 6= {0}, some subset of S is a basis for H.
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Basis for Nul A and Col A

From previous example, we have already known how to find basis for
Nul A: we find the free variables, and write all variables in terms of
the free variables, then find the vector from of the general solution for
Ax = 0, and we can read the basis from the vector from.

To find a basis for Col A, we can use the following theorem.

Thm 6: The pivot columns of a matrix A form a basis for Col A.

Warning: The pivot columns of a matrix A are evident when A has
been reduced only to echelon form. But, be careful to use the pivot
columns of A itself for the basis of Col A.

Row operations can change the column space of a matrix. The
columns of an echelon form B of A are often not in the column space
of A.
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Example

Ex. Let A =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

. Find a basis for Col A.

Sol: We may first row reduce A:

A =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

→


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0


So the pivot columns of B, thus A, are the first, third, and fifth
columns.

Therefore a basis for Col A is the following


1
3
2
5

 ,


0
1
1
2

 ,


−1
5
2
8

.
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Proof of Theorem 6

Pf. Let B be the reduced echelon form of A.

The set of pivot columns of B is linearly independent, for no vector in
the set is a linear combination of the vectors that precede it.

Since A is row equivalent to B, the pivot columns of A are linearly
independent as well, because any linear dependence relation among
the columns of A corresponds to a linear dependence relation among
the columns of B.

For this reason, every nonpivot column of A is a linear combination of
the pivot columns of A.

Thus the nonpivot columns of a may be discarded from the spanning
set for Col A, by the Spanning Set Theorem.

This leaves the pivot columns of A as a basis for Col A.
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Two views of basis

When the Spanning Set Theorem is used, the deletion of vectors from
a spanning set must stop when the set becomes linearly independent.

If an additional vector is deleted, it will not be a linear combination of
the remaining vectors, and hence the smaller set will no longer span
V .

Thus a basis is a spanning set that is as small as possible.

A basis is also a linearly independent set that is as large as possible.

If S is a basis for V , and if S is enlarged by one vector—-say,
w—-from V , then the new set cannot be linearly independent,
because S spans V , and w is therefore a linear combination of the
elements in S .
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