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Null space of a matrix

@ In this section, we will talk about two special vector spaces related to
a matrix: null space and column space.
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Null space of a matrix

@ In this section, we will talk about two special vector spaces related to
a matrix: null space and column space.

@ The null space of an m x n matrix A, written as Nul A, is the set of
all solutions of the equation Ax = 0.
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Null space of a matrix

@ In this section, we will talk about two special vector spaces related to
a matrix: null space and column space.

@ The null space of an m x n matrix A, written as Nul A, is the set of
all solutions of the equation Ax = 0.

@ In other words, Nul A= {x € R" : Ax = 0}.
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Null space of a matrix

@ In this section, we will talk about two special vector spaces related to
a matrix: null space and column space.

The null space of an m x n matrix A, written as Nul A, is the set of
all solutions of the equation Ax = 0.

@ In other words, Nul A= {x € R" : Ax = 0}.

One may think Nul A to be the set of vectors x € R" that are mapped
into the zero vector of R™ via the linear transformation x — Ax.

Gexin Yu gyu@um.edu Section 4.2-4.3 Null space, column space, and their bases



Thm: The null space of an m x n matrix is a S}Mquivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear

quations in n unknowns is a subspace of R".) "
‘ﬁ(e Ol = xR = b S K

-“ .
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Thm: The null space of an m x n matrix is a subspace of R". (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of R".)

Proof: First of all, Nul A is a subset of R", because A has n columns.
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Thm: The null space of an m x n matrix is a subspace of R". (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of R".)

Proof: First of all, Nul A is a subset of R", because A has n columns.

@ We then need to show that Nul A satisfies the three conditions of a
subspace:
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Thm: The null space of an m x n matrix is a subspace of R". (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of R".)

Proof: First of all, Nul A is a subset of R”, because A has n columns.

@ We then need to show that Nul A satisfies the three conditions of a
subspace:

@ Oisin Nul A as A-0=0.
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Thm: The null space of an m x n matrix is a subspace of R". (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of R".)

Proof: First of all, Nul A is a subset of R", because A has n columns.

@ We then need to show that Nul A satisfies the three conditions of a
subspace:
@ Oisin Nul A as A-0=0.
@ Let u,v e Nul A. Then Au=0 and Av =0. So
A(u+v)=Au+ Av =0+ 0=0. Therefore u+ v € Nul A.
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Thm: The null space of an m x n matrix is a subspace of R". (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of R".)

Proof: First of all, Nul A is a subset of R", because A has n columns.

@ We then need to show that Nul A satisfies the three conditions of a
subspace:

@ Oisin Nul A, as A-0=0.
@ Let u,v e Nul A. Then Au=0 and Av =0. So
A(u+v)=Au+ Av =0+ 0=0. Therefore u+ v € Nul A.
©Q Let ue Nul Aand c € R. Then Au=0. So
A(cu) = ¢(Au) = ¢ -0 = 0. Therefore cu € Nul A.
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Thm: The null space of an m x n matrix is a subspace of R". (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of R".)

Proof: First of all, Nul A is a subset of R", because A has n columns.

@ We then need to show that Nul A satisfies the three conditions of a
subspace:

@ Oisin Nul A, as A-0=0.
@ Let u,v e Nul A. Then Au=0 and Av =0. So
A(u+v)=Au+ Av =0+ 0=0. Therefore u+ v € Nul A.
©Q Let ue Nul Aand c € R. Then Au=0. So
A(cu) = ¢(Au) = ¢ -0 = 0. Therefore cu € Nul A.

So Nul A'is a subspace of R".
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Thm: The null space of an m x n matrix is a subspace of R". (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of R".)

Proof: First of all, Nul A is a subset of R", because A has n columns.

@ We then need to show that Nul A satisfies the three conditions of a
subspace:
@ Oisin Nul A, as A-0=0.
@ Let u,v e Nul A. Then Au=0 and Av =0. So
A(u+v)=Au+ Av =0+ 0=0. Therefore u+ v € Nul A.
©Q Let ue Nul Aand c € R. Then Au=0. So
A(cu) = ¢(Au) = ¢ -0 = 0. Therefore cu € Nul A.

So Nul A'is a subspace of R".

@ Note that no explicit list or description of the elements in Nul A'is
given.
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Thm: The null space of an m x n matrix is a subspace of R". (Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear
equations in n unknowns is a subspace of R".)

Proof: First of all, Nul A is a subset of R", because A has n columns.

@ We then need to show that Nul A satisfies the three conditions of a
subspace:
@ Oisin Nul A, as A-0=0.
@ Let u,v e Nul A. Then Au=0 and Av =0. So
A(u+v)=Au+ Av =0+ 0=0. Therefore u+ v € Nul A.
©Q Let ue Nul Aand c € R. Then Au=0. So
A(cu) = ¢(Au) = ¢ -0 = 0. Therefore cu € Nul A.

So Nul A'is a subspace of R".

@ Note that no explicit list or description of the elements in Nul A'is
given.

@ Solving the equation Ax = 0 amounts to producing an explicit
description of Nul A.
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Ex. Find a spanning set for the null space of the matrix
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Ex. Find a spanning set for the null space of the matrix

36 -1 1 -7
A=1{1 —2 2 3 -1
2 -4 5 8 —4

Sol: The first step is to find the general solutions of Ax =0 in terms of
free variables.
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Ex. Find a spanning set for the null space of the matrix

36 -1 1 -7
A=1{1 —2 2 3 -1
2 -4 5 8 —4

Sol: The first step is to find the general solutions of Ax =0 in terms of
free variables.

@ So we row reduce the augmented matrix to reduce echelon form:

3 6 -1 1 —7 1 =20 -1 3 0
A=11 -2 2 3 -1|—-|({0 0 1 -2 -2 O
2 -4 5 8 —4 0 0 0 0 0 O
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Ex. Find a spanning set for the null space of the matrix

36 -1 1 -7
A=1{1 —2 2 3 -1
2 -4 5 8 —4

Sol: The first step is to find the general solutions of Ax =0 in terms of
free variables.

@ So we row reduce the augmented matrix to reduce echelon form:

3 6 -1 1 —7 1 =20 -1 3 0
A=11 -2 2 3 -1|—-|({0 0 1 -2 -2 O
2 -4 5 8 —4 0 0 0 0 0 O

@ So x1 and x3 are basic variables, and x», x4, x5 are free variables. And
we have x3 = 2x5 4+ x4 — 3x5 and x3 = 2x4 + 2x5.
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@ Now we write the solution x in the vector form:

2x> + x4 — 3x5 2 1 -3
X2 1 0 0
X = 2x4 + 2x5 =x |0|4+x4 |2]|+x5 | 2 | = xou+xqv+xsw
X4 0 1 0
X5 0 0 1

Gexin Yu gyu@um.edu Section 4.2-4.3 Null space, column space, and their bases



@ Now we write the solution x in the vector form:

2x> + x4 — 3x5 2 1 -3
X2 1 0 0
X = 2x4 + 2x5 =x |0|4+x4 |2]|+x5 | 2 | = xou+xqv+xsw
X4 0 1 0
X5 0 0 1

e So Nul A= Span{u,v,w}.
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@ Now we write the solution x in the vector form:

2x> + x4 — 3x5 2 1 -3
X2 1 0 0
X = 2x4 + 2x5 =x |0|4+x4 |2]|+x5 | 2 | = xou+xqv+xsw
X4 0 1 0
X5 0 0 1

e So Nul A= Span{u,v,w}.

@ Two Remarks:
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@ Now we write the solution x in the vector form:

2x> + x4 — 3x5 2 1 -3
X2 1 0 0
X = 2x4 + 2x5 =x |0|4+x4 |2]|+x5 | 2 | = xou+xqv+xsw
X4 0 1 0
X5 0 0 1

e So Nul A= Span{u,v,w}.

@ Two Remarks:

© The spanning set produced by the method in the above Example is
automatically linearly independent because the free variables are the
weights on the spanning vectors.
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@ Now we write the solution x in the vector form:

2x> + x4 — 3x5 2 1 -3
X2 1 0 0
X = 2x4 + 2x5 =x |0|4+x4 |2]|+x5 | 2 | = xou+xqv+xsw
X4 0 1 0
X5 0 0 1

e So Nul A= Span{u,v,w}.

@ Two Remarks:

© The spanning set produced by the method in the above Example is
automatically linearly independent because the free variables are the
weights on the spanning vectors.

@ When Nul A contains nonzero vectors, the number of vectors in the
spanning set for Nul A equals the number of free variables in the
equation Ax = 0.
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Column space of a matrix

@ The column space of an m x n matrix A, written as Col A, is the set
of all linear combinations of the columns of A. If
A= [al a ... a,,], then Col A = span{ai,az,...,an}.
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Column space of a matrix

@ The column space of an m x n matrix A, written as Col A, is the set
of all linear combinations of the columns of A. If
A= [al a ... a,,], then Col A = span{ai,az,...,ank

Thm: The column space of an m X n matrix is a subspace ¢f R™.
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Column space of a matrix

@ The column space of an m x n matrix A, written as Col A, is the set
of all linear combinations of the columns of A. If
A= [al a ... a,,], then Col A = span{ai,az,...,an}.

Thm: The column space of an m X n matrix is a subspace of R™.

@ A typical vector in Col A can be written as Ax for some vector x,
because the notation Ax stands for a linear combination of the
columns of A. So Col A= {b € R™: b= Ax for some x € R"}.
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Column space of a matrix

@ The column space of an m x n matrix A, written as Col A, is the set
of all linear combinations of the columns of A. If
A= [al a ... a,,], then Col A = span{ai,az,...,an}.

Thm: The column space of an m X n matrix is a subspace of R™.

@ A typical vector in Col A can be written as Ax for some vector x,
because the notation Ax stands for a linear combination of the
columns of A. So Col A= {b € R™: b= Ax for some x € R"}.

@ The notation Ax for vectors in Col A also shows that Col A is the

range of the linear transformation from x to Ax.

—
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Column space of a matrix

@ The column space of an m x n matrix A, written as Col A, is the set

Thm:

of all linear combinations of the columns of A. If
A= [al a ... a,,], then Col A = span{ai,az,...,an}.

The column space of an m X n matrix is a subspace of R™.

A typical vector in Col A can be written as Ax for some vector x,
because the notation Ax stands for a linear combination of the
columns of A. So Col A= {b € R™: b= Ax for some x € R"}.

The notation Ax for vectors in Col A also shows that Col A is the
range of the linear transformation from x to Ax.

The column space of an m x n matrix A is all of R™ if and only if the
equation Ax = b has a solution for each b € R™. .
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2 4 -2 1 _32 3
Ex: Let A=|-2 -5 7 3|, u= 1 and v = [-1/{.
3 7 -8 6 0 3
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2 4 -2 1 _32 3
Ex: Let A=|-2 -5 7 3|, u= 1 and v = [-1/{.
3 7 -8 6 0 3

%
@ Determine if uis in Nul A. Could u be in Col A? C [(<
k<

AV\W U\J(IJ\/'A\ \;\X\\C
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2 4 -2 1 _3 3
Ex: Let A=|-2 -5 7 3|, u= 1 and v = [-1/{.
3 7 -8 6 0 3

@ Determine if uis in Nul A. Could u be in Col A?
@ Determine |f v is in Col A. Could v be in Nul A?

ket
peo” vER
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2 4 -2 1 3 3
Ex: Let A=|-2 -5 7 3|, u= 1 and v=|[-1
3 7 -8 6 0 3

@ Determine if uis in Nul A. Could u be in Col A?
@ Determine if v is in Col A. Could v be in Nul A?

Sol: We compute Au and find that it is not zero, which means that v is
not a solution to Ax = 0. So v is not in Nul A.
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2 4 -2 1 3 3
Ex: Let A=|-2 -5 7 3|, u= 1 and v=|[-1
3 7 -8 6 0 3

@ Determine if uis in Nul A. Could u be in Col A?
@ Determine if v is in Col A. Could v be in Nul A?

Sol: We compute Au and find that it is not zero, which means that v is
not a solution to Ax = 0. So v is not in Nul A.

@ As u € R*, u cannot be in Col A, since Col Ais a subspace of R3.
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2 4 -2 1 _3 3
Ex: Let A=|-2 -5 7 3|, u= 1 and v = [-1/{.
3 7 -8 6 0 3

@ Determine if uis in Nul A. Could u be in Col A?
@ Determine if v is in Col A. Could v be in Nul A?

Sol: We compute Au and find that it is not zero, which means that v is
not a solution to Ax = 0. So v is not in Nul A.

@ As u € R*, u cannot be in Col A, since Col Ais a subspace of R3.
@ Toseeif visin Col A, we row reduce [A v] to an echelon form:

2 4 21 3 2 4 -2 1 3
A v]=|-2 -5 7 3 1| > |0 1 -5 —4 -2
3 7 -86 3 00 0 17 1
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2 4 -2 1 _32 3
Ex: Let A=|-2 -5 7 3|, u= 1 and v = [-1/{.
3 7 -8 6 0 3

@ Determine if uis in Nul A. Could u be in Col A?
@ Determine if v is in Col A. Could v be in Nul A?

Sol: We compute Au and find that it is not zero, which means that v is
not a solution to Ax = 0. So v is not in Nul A.

@ As u € R*, u cannot be in Col A, since Col Ais a subspace of R3.
@ Toseeif visin Col A, we row reduce [A v] to an echelon form:

2 4 21 3 2 4 -2 1 3
A v]=|-2 -5 7 3 1| > |0 1 -5 —4 -2
3 7 -86 3 00 0 17 1

@ The equation Ax = v is consistent. So v is in Col A.
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2 4 -2 1 _32 3
Ex: Let A=|-2 -5 7 3|, u= 1 and v = [-1/{.
3 7 -8 6 0 3

@ Determine if uis in Nul A. Could u be in Col A?
@ Determine if v is in Col A. Could v be in Nul A?

Sol: We compute Au and find that it is not zero, which means that v is
not a solution to Ax = 0. So v is not in Nul A.

@ As u € R*, u cannot be in Col A, since Col Ais a subspace of R3.
@ Toseeif visin Col A, we row reduce [A v] to an echelon form:

2 4 21 3 2 4 -2 1 3
A v]=|-2 -5 7 3 1| > |0 1 -5 —4 -2
3 7 -86 3 00 0 17 1

@ The equation Ax = v is consistent. So v is in Col A.
@ As v € R3, v cannot be in Nul A, which is a subspace of R%.
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Kernel and range of a linear transformation

@ Let T be a linear transformation from V to W.

T-(V"('V\’:’T[V‘\ "'T(\ﬂ
T( ) = CT/\A)
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Kernel and range of a linear transformation

@ Let T be a linear transformation from V to W.

@ The kernel (or null space) of such a T is the set of all u in V such
that T(u) = 0 (the zero vector in W).
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Kernel and range of a linear transformation

@ Let T be a linear transformation from V to W.

@ The kernel (or null space) of such a T is the set of all u in V such
that T(u) = 0 (the zero vector in W).

@ The range of T is the set of all vectors in W of the form T(x) for
some x in V.
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Kernel and range of a linear transformation

@ Let T be a linear transformation from V to W.

@ The kernel (or null space) of such a T is the set of all u in V such
that T(u) = 0 (the zero vector in W).

@ The range of T is the set of all vectors in W of the form T(x) for
some x in V.

@ The kernel of T is a subspace of V, and the range of T is a subspace
of -
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Ex. Let V the vector space of all real-valued functions f on [a, b] which
are differentiable and whose derivatives are continuous functions on
[a, b], and let W be the vector space of continuous functions on
[a, b]. Let D : V — W be the transformation so that D(f) = f'.
—_—
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Ex. Let V the vector space of all real-valued functions f on [a, b] which
are differentiable and whose derivatives are continuous functions on
[a, b], and let W be the vector space of continuous functions on
[a, b]. Let D : V — W be the transformation so that D(f) = f'.

@ One can show D is a linear transformation.

D(f«q) = (F<1) = £ § =000 «Dy)
O(cg) (0= = t)
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Ex. Let V the vector space of all real-valued functions f on [a, b] which
are differentiable and whose derivatives are continuous functions on
[a, b], and let W be the vector space of continuous functions on
[a, b]. Let D : V — W be the transformation so that D(f) = f'.

@ One can show D is a linear transformation.

@ What is the kernel apd range of D? !
Ve D= %é\g/ b&= 0 :(((U’ CS}
Ti(,,- c.-w.sw>
W”(}D - ib(()* ‘{6\/ — \/
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Ex. Let V the vector space of all real-valued functions f on [a, b] which
are differentiable and whose derivatives are continuous functions on
[a, b], and let W be the vector space of continuous functions on
[a, b]. Let D : V — W be the transformation so that D(f) = f'.

@ One can show D is a linear transformation.
@ What is the kernel and range of D?

@ The kernal is the set of constant functions on [a, b], and the range of
D is the set W.
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Linear independent sets

@ An indexed set of vectors {vi,..., vy} in V is said to be linearly
independent if the vector equation cjvi + covo + ... + ¢pvp = 0 has
only the trivial solution ¢ = ¢ = ... = ¢, = 0.
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Linear independent sets

@ An indexed set of vectors {vi,...,vp} in/V/ issaid to be linearly
independent if the vector equation c;vg >+ ...+ cpvp =0 has
only the trivial solution ¢ = ¢ = ... = ¢, = 0.

@ Theset {vi,...,Vp} is said to be linearly dependent if the above
equation has a nontrivial solution, i.e., if there are some weights,
c1,...,Cp, not all zero, such that the equation holds. In such a case,
the equation is called a linear dependence relation among v, ..., v,.
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Linear independent sets

@ An indexed set of vectors {vi,..., vy} in V is said to be linearly
independent if the vector equation cjvi + covo + ... + ¢pvp = 0 has
only the trivial solution ¢ = ¢ = ... = ¢, = 0.

@ Theset {vi,...,Vp} is said to be linearly dependent if the above
equation has a nontrivial solution, i.e., if there are some weights,
c1,...,Cp, not all zero, such that the equation holds. In such a case,
the equation is called a linear dependence relation among v, ..., v,.

@ Theorem 4: An indexed set {vq,,v,} of two or more vectors, with
vi # 0, is linearly dependent if and only if some v; (with j > 1) is a
linear combination of the preceding vectors, vi, o, ..., vj_1.
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@ Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {b1,...,bp} in Vis a basis for H if
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@ Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {b1,...,bp} in Vis a basis for H if

© B is a linearly independent set, and
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Basis

@ Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {b1,...,bp} in Vis a basis for H if
© B is a linearly independent set, and
@ The subspace spanned by B coincides with H; that is,
H = span{b, ..., bp}.
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Basis

@ Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {b1,...,bp} in Vis a basis for H if

© B is a linearly independent set, and
@ The subspace spanned by B coincides with H; that is,
H = span{b, ..., bp}.

@ The definition of a basis applies to the case when H = V/, because
any vector space is a subspace of itself.
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Basis

@ Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {b1,...,bp} in Vis a basis for H if

© B is a linearly independent set, and
@ The subspace spanned by B coincides with H; that is,
H = span{b, ..., bp}.

@ The definition of a basis applies to the case when H = V/, because
any vector space is a subspace of itself.

@ Thus a basis of V is a linearly independent set that spans V.
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Basis

@ Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {b1,...,bp} in Vis a basis for H if

© B is a linearly independent set, and
@ The subspace spanned by B coincides with H; that is,
H = span{b, ..., bp}.

@ The definition of a basis applies to the case when H = V/, because
any vector space is a subspace of itself.

@ Thus a basis of V is a linearly independent set that spans V.
@ When H # V/, condition (2) includes the requirement that each of the

vectors by, ..., b, must belong to H, because Span{bi, ..., by}
contains by, ..., bp.
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Ex1: Let A=[a; a2 ... ap| be an invertible matrlx Then the columns of
A form a basis for R"”, because they are |j and they
span R" (by the Invertible Matrix Theorem).

—

/ Vi As=0 :—;x:AﬂJb&O
A=l = =q'L
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Ex1: Let A=[a; a2 ... ap| be an invertible matrix. Then the columns of
A form a basis for R", because they are linear independent and they
span R" (by the Invertible Matrix Theorem).

@ The converse of the above one is also true: to show a set of vectors
to be a basis of R”, we just need to show the matrix formed by taking
those vectors as columns is invertible.
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Ex1: Let A=[a; a2 ... ap| be an invertible matrix. Then the columns of
A form a basis for R", because they are linear independent and they
span R" (by the Invertible Matrix Theorem).

@ The converse of the above one is also true: to show a set of vectors
to be a basis of R”, we just need to show the matrix formed by taking
those vectors as columns is invertible.

Ex2: Let e, ep,..., e, be the columns of the n x n matrix, /,. That is,
er=[10...0",ee=[01...07,...,e,=[00 ... 1]7. The set
{e1,€ez,..., e} is called the standard basis for R".
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Ex3: Let S ={1,t,t2,...,t"}. Then S is a basis for P,, and it is called
the standard basis for P,.
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Ex3: Let S ={1,t,t2,...,t"}. Then S is a basis for P,, and it is called
the standard basis for P,.

Pf. Clearly every polynomials can be written as a linear combination of
elements in S, thus S spans P,. So we just need to show that S is
linearly independent.

€l (A kA

————

Gexin Yu gyu@um.edu Section 4.2-4.3 Null space, column space, and their bases



Ex3: Let S ={1,t,t2,...,t"}. Then S is a basis for P,, and it is called
the standard basis for P,.

Pf. Clearly every polynomials can be written as a linear combination of
elements in S, thus S spans P,. So we just need to show that S is
linearly independent.

Suppose that cg, c1, ...,y satisfy ¢ - 1+ cit + ot?> + ...+ cpt" =
The only way for a polynomial to be the zero polynomial is that the
coefficients are all zeros. So cg=¢c;=...=¢, =0.
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Ex3: Let S ={1,t,t2,...,t"}. Then S is a basis for P,, and it is called
the standard basis for P,.

Pf. Clearly every polynomials can be written as a linear combination of
elements in S, thus S spans P,. So we just need to show that S is
linearly independent.

Suppose that cg, ci, ..., C, satisfy ¢ 1+ cit + ot?> + ...+ c,t" = 0.
The only way for a polynomial to be the zero polynomial is that the
coefficients are all zeros. So cg=¢c;=...=¢, =0.

This means that S is an independent set.
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The Spanning Set Theorem

@ As you may see, a basis is an “efficient” spanning set that contains no
unnecessary vectors. The following theorem says that a basis can be
constructed from a spanning set by discarding unnecessary vectors.

Gexin Yu gyu@um.edu Section 4.2-4.3 Null space, column space, and their bases



The Spanning Set Theorem

@ As you may see, a basis is an “efficient” spanning set that contains no
unnecessary vectors. The following theorem says that a basis can be
constructed from a spanning set by discarding unnecessary vectors.

Thm: (The spanning set theorem) Let S = {vi,vp,...,vp} beasetin V
and H = Span{vi,vo,...,vp}.
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The Spanning Set Theorem

@ As you may see, a basis is an “efficient” spanning set that contains no
unnecessary vectors. The following theorem says that a basis can be
constructed from a spanning set by discarding unnecessary vectors.

Thm: (The spanning set theorem) Let S = {vi,vp,...,vp} beasetin V
and H = Span{vi,vo,...,vp}.
@ If one of the vectors in S—say, v,—is a linear combination of the

remaining vectors in S, then the set formed from S by removing v still
spans H.
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The Spanning Set Theorem

@ As you may see, a basis is an “efficient” spanning set that contains no
unnecessary vectors. The following theorem says that a basis can be
constructed from a spanning set by discarding unnecessary vectors.

Thm: (The spanning set theorem) Let S = {vi,vp,...,vp} beasetin V
and H = Span{vi,vo,...,vp}.
@ If one of the vectors in S—say, v,—is a linear combination of the
remaining vectors in S, then the set formed from S by removing v still
spans H.
@ If H # {0}, some subset of S is a basis for H.
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Basis for Nul A and Col A

@ From previous example, we have already known how to find basis for
Nul A: we find the free variables, and write all variables in terms of
the free variables, then find the vector from of the general solution for
Ax = 0, and we can read the basis from the vector from.

Section 4.2-4.3 Null space, column space, and their bases
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Basis for Nul A and Col A

@ From previous example, we have already known how to find basis for
Nul A: we find the free variables, and write all variables in terms of
the free variables, then find the vector from of the general solution for
Ax = 0, and we can read the basis from the vector from.

@ To find a basis for Col A, we can use the following theorem.
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Basis for Nul A and Col A

@ From previous example, we have already known how to find basis for
Nul A: we find the free variables, and write all variables in terms of
the free variables, then find the vector from of the general solution for
Ax = 0, and we can read the basis from the vector from.

@ To find a basis for Col A, we can use the following theorem.

hm 6: The pivot columns of a matrix A form a basis for Col A.

——
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Basis for Nul A and Col A

@ From previous example, we have already known how to find basis for
Nul A: we find the free variables, and write all variables in terms of
the free variables, then find the vector from of the general solution for
Ax = 0, and we can read the basis from the vector from.

@ To find a basis for Col A, we can use the following theorem.
hm 6: The pivot columns of a matrix A form a basis for Col A.

@ Warning: The pivot columns of a matrix A are evident when A has
been reduced only to echelon form, But, be careful to use the pivot
columns of A itself for the basis of Col A.
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Basis for Nul A and Col A

@ From previous example, we have already known how to find basis for

hm 6:

Nul A: we find the free variables, and write all variables in terms of
the free variables, then find the vector from of the general solution for
Ax = 0, and we can read the basis from the vector from.

To find a basis for Col A, we can use the following theorem.
The pivot columns of a matrix A form a basis for Col A.

Warning: The pivot columns of a matrix A are evident when A has
been reduced only to echelon form. But, be careful to use the pivot
columns of A itself for the basis of Col A.

Row operations can change the column space of a matrix. The
columns of an echelon form B of A are often not in the column space
of A.
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1 4 0 2 -1
3 12 1 5 5 ) )

Ex. Let A= > 8 13 2| Find a basis for Col A.
5 20 2 8 8
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1 4 0 2 -1
3 12 1 5 5 ) )

Ex. Let A= > 8 13 2| Find a basis for Col A.
5 20 2 8 8

Sol: We may first row reduce A:

—

1 4 0 2 -1 1 40 2 0
A_ 31215 5/ 1001 -10
12 8 1 3 2 0 00 0 1

5 20 2 8 8 0 OO 0O O

r 1T +~ 1T 1 4
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1 4 0 2 -1
3 12 1 5 5 ) .
Ex. Let A= > 8 13 2 . Find a basis for Col A.
5 20 2 8 8
Sol: We may first row reduce A:
1 4 0 2 -1 1 40 2 0
A 3 12 1 5 5 . 001 -1 0
12 8 1.3 2 000 0 1
5 20 2 8 8 000 0 O

@ So the pivot columns of B, thus A, are the first, third, and fifth
columns.
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1 4 0 2 -1
3 12 1 5 5 ) .
Ex. Let A= > 8 13 2 . Find a basis for Col A.
5 20 2 8 8
Sol: We may first row reduce A:
1 4 0 2 -1 1 40 2 0
A 3 12 1 5 5 . 001 -1 0
2 8 1 3 2 000 0 1
5 20 2 8 8 000 0 O
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Proof of Theorem 6

Pf. Let B be the reduced echelon form of A.

h— &
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Proof of Theorem 6

Pf. Let B be the reduced echelon form of A.

@ The set of pivot columns of B is linearly independent, for no vector in
the set is a linear combination of the vectors that precede it.

—
D
%)

1
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Proof of Theorem 6

Pf. Let B be the reduced echelon form of A.

@ The set of pivot columns of B is linearly independent, for no vector in
the set is a linear combination of the vectors that precede it.

@ Since A is row equivalent to B, the pivot columns of A are linearly
independent as well, because any linear dependence relation among
the columns of A corresponds to a linear dependence relation among
the columns of B.
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Proof of Theorem 6

Pf. Let B be the reduced echelon form of A.

@ The set of pivot columns of B is linearly independent, for no vector in
the set is a linear combination of the vectors that precede it.

@ Since A is row equivalent to B, the pivot columns of A are linearly
independent as well, because any linear dependence relation among
the columns of A corresponds to a linear dependence relation among
the columns of B.

@ For this reason, every nonpivot column of A is a linear combination of
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Proof of Theorem 6

Pf.

Let B be the reduced echelon form of A.

The set of pivot columns of B is linearly independent, for no vector in
the set is a linear combination of the vectors that precede it.

Since A is row equivalent to B, the pivot columns of A are linearly
independent as well, because any linear dependence relation among
the columns of A corresponds to a linear dependence relation among
the columns of B.

For this reason, every nonpivot column of A is a linear combination of
the pivot columns of A.

Thus the nonpivot columns of a may be discarded from the spanning
set for Col A, by the Spanning Set Theorem.
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Proof of Theorem 6

Pf.

Let B be the reduced echelon form of A.

The set of pivot columns of B is linearly independent, for no vector in
the set is a linear combination of the vectors that precede it.

Since A is row equivalent to B, the pivot columns of A are linearly
independent as well, because any linear dependence relation among
the columns of A corresponds to a linear dependence relation among
the columns of B.

For this reason, every nonpivot column of A is a linear combination of
the pivot columns of A.

Thus the nonpivot columns of a may be discarded from the spanning
set for Col A, by the Spanning Set Theorem.

This leaves the pivot columns of A as a basis for Col A.
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Two views of basis

@ When the Spanning Set Theorem is used, the deletion of vectors from
a spanning set must stop when the set becomes linearly independent.
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Two views of basis

@ When the Spanning Set Theorem is used, the deletion of vectors from
a spanning set must stop when the set becomes linearly independent.

o If an additional vector is deleted, it will not be a linear combination of
the remaining vectors, and hence the smaller set will no longer span
V.
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Two views of basis

@ When the Spanning Set Theorem is used, the deletion of vectors from
a spanning set must stop when the set becomes linearly independent.

o If an additional vector is deleted, it will not be a linear combination of
the remaining vectors, and hence the smaller set will no longer span
V.

@ Thus a basis is a spanning set that is as small as possible.
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Two views of basis

@ When the Spanning Set Theorem is used, the deletion of vectors from
a spanning set must stop when the set becomes linearly independent.

o If an additional vector is deleted, it will not be a linear combination of
the remaining vectors, and hence the smaller set will no longer span
V.

@ Thus a basis is a spanning set that is as small as possible.

@ A basis is also a linearly independent set that is as large as possible.
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Two views of basis

@ When the Spanning Set Theorem is used, the deletion of vectors from
a spanning set must stop when the set becomes linearly independent.

o If an additional vector is deleted, it will not be a linear combination of

the remaining vectors, and hence the smaller set will no longer span
V.

@ Thus a basis is a spanning set that is as small as possible.
@ A basis is also a linearly independent set that is as large as possible.

@ If S is a basis for V, and if S is enlarged by one vector—-say,
w—-from V/, then the new set cannot be linearly independent,
because S spans V, and w is therefore a linear combination of the
elements in S.
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