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Dimension of a vector space

@ In the last section, we show that a vectqr space V with a basis B
containin ctors is isomorphic to @

vV — U]g 401\

Gexin Yu gyu@wm.edu Section 4.5-4.6 Dimension and rank of vector spaces



Dimension of a vector space

@ In the last section, we show that a vector space V with a basis B
containing n vectors is isomorphic to R”.

@ We will show that the number n actually only depends on the vector
space (an invariant), and is independent of the choices of the bases.
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Dimension of a vector space

@ In the last section, we show that a vector space V with a basis B
containing n vectors is isomorphic to R”.

@ We will show that the number n actually only depends on the vector
space (an invariant), and is independent of the choices of the bases.

Thm9 If a vector space V has a basis B = {b1, by, ..., by}, then any set in
V' containing more than n vectors must be linearly dependent.

Q},x A baSy (omnsd lume eomre o o VMLPS)
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Proof of Theorem 9

Pf: Let {u1,...,up} be a set in V with more than n vectors. ?> n
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Proof of Theorem 9

Pf: Let {u1,...,up} be a set in V with more than n vectors.

@ The coordinate vectors [u1]g, ..., [up]g form a linearly dependent set
in R", because there are more vectors (p) than entries (n) in each

vector.
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Proof of Theorem 9

Pf: Let {u1,...,up} be a set in V with more than n vectors.

@ The coordinate vectors [u1]g, ..., [up]g form a linearly dependent set
in R", because there are more vectors (p) than entries (n) in each

vector.
@ So there exist scalars ¢, ¢, ..., ¢p, not all zero, such that

C1[U1]B + C2[U2]B + ...+ Cp[Up]B =0
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Proof of Theorem 9

Pf: Let {u1,...,up} be a set in V with more than n vectors.

@ The coordinate vectors [u1]g, ..., [up]g form a linearly dependent set
in R", because there are more vectors (p) than entries (n) in each

vector.
@ So there exist scalars ¢, ¢, ..., ¢p, not all zero, such that

n
alu]s + fwls + ...+ cplupls =0 € IK

@ By linearity, we have

n
[C1U1—|—C2U2+...—|—Cpup]B =0 éR
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Proof of Theorem 9

Pf: Let {u1,...,up} be a set in V with more than n vectors.

@ The coordinate vectors [u1]g, ..., [up]g form a linearly dependent set
in R", because there are more vectors (p) than entries (n) in each
vector.

@ So there exist scalars ¢, ¢, ..., ¢p, not all zero, such that
C1[U1]B + C2[U2]B + ...+ Cp[Up]B =0
@ By linearity, we have
[C1U1 +oou+ ...+ Cpup]B =0
<
-~
@ It means that

C1u1+C2U2+...+Cpup:0-b1—|—0'bz—l—...—l—o'bn:
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Proof of Theorem 9

Pf: Let {u1,...,up} be a set in V with more than n vectors.

@ The coordinate vectors [u1]g, ..., [up]g form a linearly dependent set
in R", because there are more vectors (p) than entries (n) in each
vector.

@ So there exist scalars ¢, ¢, ..., ¢p, not all zero, such that
clun]lg + aw]s + ...+ cpluple =0
@ By linearity, we have
[cau + uo+ ...+ cpuplg =0
@ It means that
auit+cou+...+cup=0-by+0-bo+...+0-b,=0

e Since ¢; are not all zero, {uy, ..., up} is linearly dependent.
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@ Theorem 10: If a vector space V has a basis of n vectors, then every
basis of V must consist of exactly n vectors.

B‘ — N \LQLA’LMQ
B’L — m V%M

£\
= = M=
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@ Theorem 10: If a vector space V has a basis of n vectors, then every
basis of V must consist of exactly n vectors.

Pf: Let By be a basis of n vectors and B, be any other basis (of V).
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@ Theorem 10: If a vector space V has a basis of n vectors, then every
basis of V must consist of exactly n vectors.

Pf: Let By be a basis of n vectors and B, be any other basis (of V).

@ Since B; is a basis and B; is linearly independent, B, has no more
than n vectors, by Theorem 9.
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@ Theorem 10: If a vector space V has a basis of n vectors, then every
basis of V must consist of exactly n vectors.

Pf: Let By be a basis of n vectors and B, be any other basis (of V).

@ Since B; is a basis and B; is linearly independent, B, has no more
than n vectors, by Theorem 9.

@ Also, since By is a basis and B; is linearly independent, B, has at
least n vectors.
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@ Theorem 10: If a vector space V has a basis of n vectors, then every
basis of V must consist of exactly n vectors.

Pf: Let By be a basis of n vectors and B, be any other basis (of V).

@ Since B; is a basis and B; is linearly independent, B, has no more
than n vectors, by Theorem 9.

@ Also, since By is a basis and B; is linearly independent, B, has at
least n vectors.

@ Thus By consists of exactly n vectors.
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Dimension

Defn: If V is spanned by(a finite)set, then V is said to be finite-dimensional,
and the dimension of V_ written as dim V/, is the number of vectors in
a basis for V.
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Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V/, written as dim V/, is the number of vectors in
a basis for V.

@ The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.
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Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V/, written as dim V/, is the number of vectors in
a basis for V.

@ The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.

Ex. dimR"™ = n, as the standard basis consists of n vectors.
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Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V/, written as dim V/, is the number of vectors in
a basis for V.

@ The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.

Ex. dimR"™ = n, as the standard basis consists of n vectors.

Ex. dimP3 = 4, as {1,t,t? t3} is a standard basis.
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Dimension

Defn:

Ex.

Ex.
Ex.

If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V/, written as dim V/, is the number of vectors in
a basis for V.

The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.

dimR™ = n, as the standard basis consists of n vectors.
dimP3 = 4, as {1,t,t?, t3} is a standard basis.

the subspaces of R3 can be classified by its dimensions:
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Dimension

Defn:

Ex.

Ex.
Ex.

If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V/, written as dim V/, is the number of vectors in
a basis for V.

The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.

dimR™ = n, as the standard basis consists of n vectors.
dimP3 = 4, as {1,t,t?, t3} is a standard basis.

the subspaces of R3 can be classified by its dimensions:

» 0-dimension: zero subspace
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Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V/, written as dim V/, is the number of vectors in
a basis for V.

@ The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.

Ex. dimR"™ = n, as the standard basis consists of n vectors.
Ex. dimP3 = 4, as {1,t,t? t3} is a standard basis.

Ex. the subspaces of R3 can be classified by its dimensions:

» 0-dimension: zero subspace
» 1l-dimension: line passing through the origin
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Dimension

Defn:

Ex.

Ex.
Ex.

If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V/, written as dim V/, is the number of vectors in
a basis for V.

The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.

dimR™ = n, as the standard basis consists of n vectors.
dimP3 = 4, as {1,t,t?, t3} is a standard basis.

the subspaces of R3 can be classified by its dimensions:
» 0-dimension: zero subspace
» 1l-dimension: line passing through the origin
» 2-dimension: any plane passing the origin
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Dimension

Defn:

Ex.

Ex.
Ex.

If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V/, written as dim V/, is the number of vectors in
a basis for V.

The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.

dimR™ = n, as the standard basis consists of n vectors.
dimP3 = 4, as {1,t,t?, t3} is a standard basis.

the subspaces of R3 can be classified by its dimensions:

» 0-dimension: zero subspace

» 1l-dimension: line passing through the origin
» 2-dimension: any plane passing the origin

» 3-dimension: the R3.
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Ex. Find the dimension of the subspace

a—3b+6¢c
- S5a+4d |
H=/{ b9 —d ra,b,c,d € R}.
5d 4|
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Ex. Find the dimension of the subspace

a—3b+6¢
- S5a+4d |
H=/{ b9 —d ra,b,c,d € R}.
5d
Sol: Each vector in H can be written as a linear combination
a—3b+6¢ 1 -3 6 0
5a+4d |5 0 0 4|
b—2c—dl| = a 0 +b 1 +c 9 +d 1| = avy+bwvr+cvy+
5d 0 0 0 5
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Ex. Find the dimension of the subspace

a—3b+6¢
- S5a+4d |
H=/{ b9 —d ra,b,c,d € R}.
5d
Sol: Each vector in H can be written as a linear combination
a—3b+6¢ 1 -3 6 0
5a+4d |5 0 0 4|
b—2c—dl| = a 0 +b 1 +c 9 +d 1| = avy+bwvr+cvy+
5d 0 0 0 5

So H = Span{vy, va, v3, v4}.
msnst ]

=({(4)
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Ex. Find the dimension of the subspace

a—3b+6¢
- S5a+4d |
H=/{ b9 —d ra,b,c,d € R}.
5d
Sol: Each vector in H can be written as a linear combination
a—3b+6¢ 1 -3 6 0
5a+4d |5 0 0 4|
b—2c—d 0 +b 1 +c 9 +d 1| = avy+bwvr+cvy+
5d 0 0 0 5

So H = Span{vy, va, v3, v4}.
By observation or by looking at the reduced echelon of the matrix
[vl Vo V3 V4], we see that vq, v», v4 form a basis for H.
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Ex. Find the dimension of the subspace
a—3b+6¢

- S5a+4d |
H=/{ b9 —d ra,b,c,d € R}.

5d
Sol: Each vector in H can be written as a linear combination
a—3b+6¢ 1 -3 6 0
S5a-+4d | |5 0 0 41 _
b—2c—d 0 +b 1 +c 9 +d 1| = avy+bwvr+cvy+
5d 0 0 0 5

So H = Span{vy, va, v3, v4}.

By observation or by looking at the reduced echelon of the matrix

[vl Vo V3 V4], we see that vq, v», v4 form a basis for H.
So dimH = 3.

Gexin Yu gyu@um.edu

Section 4.5-4.6 Dimension and rank of vector spaces



Subspaces of a finite-dimensional space

hm1l. Let H be a subspace of a finite-dimensional vector space V. Any
linearly independent set in H can be expanded (if necessary) to a
basis of H. Also H is finite-dimensional and dimH < dimV'.
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Subspaces of a finite-dimensional space

hm1l. Let H be a subspace of a finite-dimensional vector space V. Any
linearly independent set in H can be expanded (if necessary) to a
basis of H. Also H is finite-dimensional and dimH < dimV'.

Pf. Let S = {v1,va,..., vk} be a linearly independent set in H.
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Subspaces of a finite-dimensional space

hm1l. Let H be a subspace of a finite-dimensional vector space V. Any
linearly independent set in H can be expanded (if necessary) to a
basis of H. Also H is finite-dimensional and dimH < dimV'.

Pf. Let S = {v1,va,..., vk} be a linearly independent set in H.
o If S spans H, then S is a basis for H.
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Subspaces of a finite-dimensional space

hm1l. Let H be a subspace of a finite-dimensional vector space V. Any
linearly independent set in H can be expanded (if necessary) to a
basis of H. Also H is finite-dimensional and dimH < dimV'.

Pf. Let S = {v1,va,..., vk} be a linearly independent set in H.
o If S spans H, then S is a basis for H.

@ Otherwise, there is some vy 11 in H that is not in Span S. But then
{v1,va,..., Vk, Vks1} is linearly independent, because no vector in the
set can be a linear combination of vectors that precede it.
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Subspaces of a finite-dimensional space

hm1l. Let H be a subspace of a finite-dimensional vector space V. Any
linearly independent set in H can be expanded (if necessary) to a
basis of H. Also H is finite-dimensional and dimH < dimV'.

Pf. Let S = {v1,va,..., vk} be a linearly independent set in H.
o If S spans H, then S is a basis for H.

@ Otherwise, there is some vy 11 in H that is not in Span S. But then
{v1,va,..., Vk, Vks1} is linearly independent, because no vector in the
set can be a linear combination of vectors that precede it.

@ We can continue the process of expanding S to a larger linearly
independent set in H.
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Subspaces of a finite-dimensional space

hm1l. Let H be a subspace of a finite-dimensional vector space V. Any
linearly independent set in H can be expanded (if necessary) to a
basis of H. Also H is finite-dimensional and dimH < dimV'.

Pf. Let S = {v1,va,..., vk} be a linearly independent set in H.
o If S spans H, then S is a basis for H.

@ Otherwise, there is some vy 11 in H that is not in Span S. But then
{v1,va,..., Vk, Vks1} is linearly independent, because no vector in the
set can be a linear combination of vectors that precede it.

@ We can continue the process of expanding S to a larger linearly
independent set in H.

@ As the number of elements in S cannot smer-exceed the dimension of
V, the process will stop, that is, at some stage, S will span H, and
we obtain a basis.
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Subspaces of a finite-dimensional space

hm1l. Let H be a subspace of a finite-dimensional vector space V. Any
linearly independent set in H can be expanded (if necessary) to a
basis of H. Also H is finite-dimensional and dimH < dimV'.

Pf. Let S = {v1,va,..., vk} be a linearly independent set in H.
o If S spans H, then S is a basis for H.

@ Otherwise, there is some vy 11 in H that is not in Span S. But then
{v1,va,..., Vk, Vks1} is linearly independent, because no vector in the
set can be a linear combination of vectors that precede it.

@ We can continue the process of expanding S to a larger linearly
independent set in H.

@ As the number of elements in S cannot never exceed the dimension of
V, the process will stop, that is, at some stage, S will span H, and
we obtain a basis.

e dim H < dim V follows as a corollary.
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The Basis Theorem

Thm. Let V be a p-dimensional vector space, p > 1.
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The Basis Theorem

Thm. Let V be a p-dimensional vector space, p > 1.
@ Any linearly independent set of exactly p elements in V is

automatically a basis for V.
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The Basis Theorem

Thm. Let V be a p-dimensional vector space, p > 1.

@ Any linearly independent set of exactly p elements in V is
automatically a basis for V.

@ Any set of exactly p elements that span V' is automatically a basis for
V.
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The Basis Theorem

Thm. Let V be a p-dimensional vector space, p > 1.
@ Any linearly independent set of exactly p elements in V is
automatically a basis for V.
@ Any set of exactly p elements that span V' is automatically a basis for
V.

Pf. Let S be a set of linearly independent set of p elements. Then by
Theorem 11, S can be extended to a basis, which contains p
elements. So S itself must be a basis.
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The Basis Theorem

Thm. Let V be a p-dimensional vector space, p > 1.
@ Any linearly independent set of exactly p elements in V is
automatically a basis for V.
@ Any set of exactly p elements that span V' is automatically a basis for
V.
Pf. Let S be a set of linearly independent set of p elements. Then by
Theorem 11, S can be extended to a basis, which contains p
elements. So S itself must be a basis.

@ Now suppose S has p elements and span V. Then by the Spanning
Set Theorem, S contains a basis. But a basis contains p elements, so
S must be a basis.
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Dimension of Nul A and Col A

Thm The dimension of Nul A is the number of free variables in the
equation Ax = 0, and the dimension of Col A is the number of pivot
columns in A.
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Dimension of Nul A and Col A

Thm The dimension of Nul A is the number of free variables in the
equation Ax = 0, and the dimension of Col A is the number of pivot
columns in A.

Pf. Since the pivot columns of A form a basis, the dimension of Col A is
the number of the pivot columns in A.
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Dimension of Nul A and Col A

Thm The dimension of Nul A is the number of free variables in the
equation Ax = 0, and the dimension of Col A is the number of pivot
columns in A.

Pf. Since the pivot columns of A form a basis, the dimension of Col A is
the number of the pivot columns in A.

To see the dimension of Nul A, we suppose that Ax = 0 has k free
variables. Then each solution to Ax = 0 can be expression a linear
combination of k independent vectors, one for each free variable. So
the k vectors form a basis for Nul A.
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Ex. Find the dimension of the null space and column space of

-3 6 -1 1 -7
A=|1 -2 2 3 -1
2 —4 5 8§ —4
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Ex. Find the dimension of the null space and column space of

-3 6 -1 1 -7
A=|1 -2 2 3 -1
2 —4 5 8§ —4

Sol. Row reduce the augmented matrix [A 0] to echelon form:
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Ex. Find the dimension of the null space and column space of

-3 6 -1 1 -7
A=|1 -2 2 3 -1
2 —4 5 8§ —4

Sol. Row reduce the augmented matrix [A 0] to echelon form:

1 -2 23 -10
0 0 12 =20
0 0 00 O O

Then there are three free variables, so dim Nul A = 3.
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Ex. Find the dimension of the null space and column space of

3 6 -1 1 -7
A=|1 -2 2 3 -1
2 -4 5 8 —4

Sol. Row reduce the augmented matrix [A 0] to echelon form:

1 -2 23 -10
0 0 12 =20
0 0 00 O O

Then there are three free variables, so dim Nul A = 3.

There are two pivot columns, so dim Col A= 2.
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Rank and Rank Theorem

@ The rank of a matrix A is the dimension of the column space of A.
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Rank and Rank Theorem

@ The rank of a matrix A is the dimension of the column space of A.

@ Theorem: Let A be an m x n matrix. Then rank A+ dim Nul A = n.
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Rank and Rank Theorem

@ The rank of a matrix A is the dimension of the column space of A.
@ Theorem: Let A be an m x n matrix. Then rank A+ dim Nul A = n.

@ |t seems from the statement that rank of A is more than just the
dimension of column space of A...
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Rank and Rank Theorem

@ The rank of a matrix A is the dimension of the column space of A.
@ Theorem: Let A be an m x n matrix. Then rank A+ dim Nul A = n.

@ |t seems from the statement that rank of A is more than just the
dimension of column space of A...

@ It is indeed true....
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@ Let A be an m x n matrix. The set of linear combinations of the row
vectors is called the row space of A and is denoted by Row A.
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@ Let A be an m x n matrix. The set of linear combinations of the row
vectors is called the row space of A and is denoted by Row A.

@ Each row has n entries, so Row A is a subspace of R”.
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@ Let A be an m x n matrix. The set of linear combinations of the row
vectors is called the row space of A and is denoted by Row A.

@ Each row has n entries, so Row A is a subspace of R”.

@ Since the rows of A are the columns of AT, we could also write
Col AT in place of Row A.
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@ Let A be an m x n matrix. The set of linear combinations of the row
vectors is called the row space of A and is denoted by Row A.

@ Each row has n entries, so Row A is a subspace of R”.

@ Since the rows of A are the columns of AT, we could also write
Col AT in place of Row A.

@ One way to study Row A is to study Col AT. But there are more
directed ways to do it!
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@ Theorem: If two matrices A and B are row equivalent, then their row
spaces are the same. If B is in echelon form, the nonzero rows of B

form a basis for the row space of A as well as for that of B

—
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@ Theorem: If two matrices A and B are row equivalent, then their row
spaces are the same. If B is in echelon form, the nonzero rows of B
form a basis for the row space of A as well as for that of B.

Pf. If B is obtained from A by row operations, the rows of B are linear
combinations of the rows of A.
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@ Theorem: If two matrices A and B are row equivalent, then their row

Pf.

spaces are the same. If B is in echelon form, the nonzero rows of B
form a basis for the row space of A as well as for that of B.

If B is obtained from A by row operations, the rows of B are linear
combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically
linear combinations of rows of A.
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@ Theorem: If two matrices A and B are row equivalent, then their row

Pf.

spaces are the same. If B is in echelon form, the nonzero rows of B
form a basis for the row space of A as well as for that of B.

If B is obtained from A by row operations, the rows of B are linear
combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically
linear combinations of rows of A.

Thus the row space of B is contained in the row space of A.
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@ Theorem: If two matrices A and B are row equivalent, then their row

Pf.

spaces are the same. If B is in echelon form, the nonzero rows of B
form a basis for the row space of A as well as for that of B.

If B is obtained from A by row operations, the rows of B are linear
combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically
linear combinations of rows of A.

Thus the row space of B is contained in the row space of A.

On the other hand, the row operations are reversible, so the same
argument shows that the row space of A is contained in the row space
of B. So the two row spaces are the same.
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@ Theorem: If two matrices A and B are row equivalent, then their row

Pf.

spaces are the same. If B is in echelon form, the nonzero rows of B
form a basis for the row space of A as well as for that of B.

If B is obtained from A by row operations, the rows of B are linear
combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically
linear combinations of rows of A.

Thus the row space of B is contained in the row space of A.

On the other hand, the row operations are reversible, so the same
argument shows that the row space of A is contained in the row space
of B. So the two row spaces are the same.

If B is in echelon form, then the nonzero rows are linearly
independent, because no nonzero row is a linearly combinations of the
nonzero row below it.
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@ Theorem: If two matrices A and B are row equivalent, then their row

Pf.

spaces are the same. If B is in echelon form, the nonzero rows of B
form a basis for the row space of A as well as for that of B.

If B is obtained from A by row operations, the rows of B are linear
combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically
linear combinations of rows of A.

Thus the row space of B is contained in the row space of A.

On the other hand, the row operations are reversible, so the same
argument shows that the row space of A is contained in the row space
of B. So the two row spaces are the same.

If B is in echelon form, then the nonzero rows are linearly
independent, because no nonzero row is a linearly combinations of the
nonzero row below it.

Thus the nonzero rows of B form a basis of the row space of B and A.
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Ex. Find bases for the row space, column space, and the null space of the

matrix
-2 -5 8 0 -17
A 1 3 -5 1 5
3 11 —-19 7 1
1 7 —-13 5 -3
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Ex. Find bases for the row space, column space, and the null space of the

matrix
-2 -5 8 0 -—-17
A 1 3 -5 1 5
3 11 -19 7 1
1 7 -13 5 -3
Sol. We first row reduce A to B (echelon form):

-2 -5 8 0 -17 )3 -5 1 571&
|1 3 -5 1 5 0(D-—2 2 -7/
A=13 11 107 1] 7loo 0o CDnlckt

1 7 -13 5 -3 00 0 0 O

T~ T
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Ex.

Sol.

Find bases for the row space, column space, and the null space of the
matrix

-2 =5 8 0 -—17

A 1 3 -5 1 5

3 11 —-19 7 1

1 7 -—-13 5 -3

We first row reduce A to B (echelon form):
-2 =5 8 0 -—17 1 3 -5 1 5
1 3 -5 1 5 o1 -2 2 -7
A=l3 11 —197 1| 7loo o -4 20| 8B

1 7 -13 5 -3 0 0 O 0 0

By the theorem, the basis for row space of A is the first three rows of
B: {(1,3,-5,1,5),(0,1,-2,2,-7),(0,0,0, —4,20)}.
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@ The pivot columns of B (thus A) are the the first, second and fourth
columns. So a basis for column space of A is the first, second, and
fourth columns of A:
{(-2,-5,8,0,-17)7,(1,3,-5,1,5)7,(1,7,-13,5,-3) T }.
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@ The pivot columns of B (thus A) are the the first, second and fourth
columns. So a basis for column space of A is the first, second, and

fourth columns of A:

{(-2,-5,8,0,-17)7,(1,3,-5,1,5)",(1,7,-13,5,-3) T }.

@ To find a basis for null space of A, we write the solution set of

Ax = 0 in terms of Tree variables (x3 and x3):

X] = —X3 — X5, Xp = 2x3 — 3X5, X4 = bxs. -
S(( «>‘y'\(g -k" "K} Tzf "{'
Y b) S|~
e\ x|z X - ey | E] o [ X :
'e - §x °
Xy X¢ /
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@ The pivot columns of B (thus A) are the the first, second and fourth
columns. So a basis for column space of A is the first, second, and

fourth columns of A:
{(-2,-5,8,0,-17)7,(1,3,-5,1,5)",(1,7,-13,5,-3) T }.

@ To find a basis for null space of A, we write the solution set of
Ax = 0 in terms of free variables (x3 and xs):
X] = —X3 — X5, Xp = 2x3 — 3X5, X4 = bxs.

@ So in terms of vectors, we have
x =x3(-1,2,1,0,0)" 4+ x5(—1,-3,0,5,1)".
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@ The pivot columns of B (thus A) are the the first, second and fourth
columns. So a basis for column space of A is the first, second, and
fourth columns of A:
{(-2,-5,8,0,-17)7,(1,3,-5,1,5)7,(1,7,-13,5,-3) T }.

@ To find a basis for null space of A, we write the solution set of
Ax = 0 in terms of free variables (x3 and xs):
X] = —X3 — X5, Xp = 2x3 — 3X5, X4 = bxs.

@ So in terms of vectors, we have
x =x3(-1,2,1,0,0)" 4+ x5(—1,-3,0,5,1)".

o Therefore a basis for Nul Ais {(—1,2,1,0,0)7,(-1,-3,0,5,1)7}.
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The Rank Theorem

@ The Rank Theorem: The dimensions of the column space and the row
space of an m x n matrix A are equal. Furthermore,
rank A+dim Nul A = n.
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The Rank Theorem

@ The Rank Theorem: The dimensions of the column space and the row
space of an m x n matrix A are equal. Furthermore,
rank A+dim Nul A = n.

Pf. We have showed the dimension of Col A (thus the rank of A) is the
number of pivot columns in A.
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The Rank Theorem

@ The Rank Theorem: The dimensions of the column space and the row
space of an m x n matrix A are equal. Furthermore,
rank A+dim Nul A = n.

Pf. We have showed the dimension of Col A (thus the rank of A) is the
number of pivot columns in A.

@ So the rank of the A is also the number of pivot positions in A, and
also the number of pivot positions in an echelon form B of A.
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The Rank Theorem

@ The Rank Theorem: The dimensions of the column space and the row
space of an m x n matrix A are equal. Furthermore,
rank A+dim Nul A = n.

Pf. We have showed the dimension of Col A (thus the rank of A) is the
number of pivot columns in A.

@ So the rank of the A is also the number of pivot positions in A, and
also the number of pivot positions in an echelon form B of A.

o Furthermore, B has a nonzero row for each pivot. And these nonzero
rows form a basis for row space of B (thus A).
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The Rank Theorem

@ The Rank Theorem: The dimensions of the column space and the row
space of an m x n matrix A are equal. Furthermore,
rank A+dim Nul A = n.

Pf. We have showed the dimension of Col A (thus the rank of A) is the
number of pivot columns in A.

@ So the rank of the A is also the number of pivot positions in A, and
also the number of pivot positions in an echelon form B of A.

o Furthermore, B has a nonzero row for each pivot. And these nonzero
rows form a basis for row space of B (thus A).

@ Thus the dimension of row space of A also equals the number of
pivots in A, which equals the rank of A.
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The Rank Theorem

Pf.

The Rank Theorem: The dimensions of the column space and the row
space of an m x n matrix A are equal. Furthermore,
rank A+dim Nul A = n.

We have showed the dimension of Col A (thus the rank of A) is the
number of pivot columns in A.

So the rank of the A is also the number of pivot positions in A, and
also the number of pivot positions in an echelon form B of A.

Furthermore, B has a nonzero row for each pivot. And these nonzero
rows form a basis for row space of B (thus A).

Thus the dimension of row space of A also equals the number of
pivots in A, which equals the rank of A.

The second part follows from rank A = dim Row A = dim Col A and
rank A+dim Nul A = n.
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Ex. (a) If Ais a 7 x 9 matrix with a two-dimensional null space, what is
the rank of A?
(b) Could a 6 x 9 matrix have a two-dimensional null space?
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Ex. (a) If Ais a 7 x 9 matrix with a two-dimensional null space, what is
the rank of A?
(b) Could a 6 x 9 matrix have a two-dimensional null space?

Sol. (a) the rank of Ais 9 —2=17.
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Ex. (a) If Ais a 7 x 9 matrix with a two-dimensional null space, what is

Sol.

the rank of A?
(b) Could a 6 x 9 matrix have a two-dimensional null space?

(a) therank of Ais9 —2=7.

(b) A 6 x 9 matrix cannot have a two-dimensional null space, for
otherwise, the rank of A is 9 — 2 =7, which equals the dimension of
column space, but the column space is a subspace of R®.
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Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an n X n matrix.
Then the following statements are each equivalent tot he statement
that A is an invertible matrix.
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Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an n X n matrix.
Then the following statements are each equivalent tot he statement
that A is an invertible matrix.

© the columns of A form a basis of R".
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Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an n X n matrix.
Then the following statements are each equivalent tot he statement
that A is an invertible matrix.

© the columns of A form a basis of R".

Q@ Col A=R"
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Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an n X n matrix.
Then the following statements are each equivalent tot he statement
that A is an invertible matrix.

© the columns of A form a basis of R".

Q@ Col A=R"

© dim Col A= n.
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Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an n X n matrix.
Then the following statements are each equivalent tot he statement
that A is an invertible matrix.

© the columns of A form a basis of R".
Q Col A=R"
© dim Col A= n.

Q rank A=n
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Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an n X n matrix.
Then the following statements are each equivalent tot he statement
that A is an invertible matrix.

© the columns of A form a basis of R".
Q@ Col A=R"

© dim Col A= n.

Q rank A=n

Q@ Nul A= {0}.
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Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an n X n matrix.
Then the following statements are each equivalent tot he statement
that A is an invertible matrix.

© the columns of A form a basis of R".
Q@ Col A=R"

© dim Col A= n.

Q rank A=n

Q@ Nul A={0}.

Q dimNul A=0.
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