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Dimension of a vector space

In the last section, we show that a vector space V with a basis B
containing n vectors is isomorphic to Rn.

We will show that the number n actually only depends on the vector
space (an invariant), and is independent of the choices of the bases.

Thm9 If a vector space V has a basis B = {b1, b2, . . . , bn}, then any set in
V containing more than n vectors must be linearly dependent.
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Proof of Theorem 9

Pf: Let {u1, . . . , up} be a set in V with more than n vectors.

The coordinate vectors [u1]B , . . . , [up]B form a linearly dependent set
in Rn, because there are more vectors (p) than entries (n) in each
vector.

So there exist scalars c1, c2, . . . , cp, not all zero, such that

c1[u1]B + c2[u2]B + . . . + cp[up]B = 0

By linearity, we have

[c1u1 + c2u2 + . . . + cpup]B = 0

It means that

c1u1 + c2u2 + . . . + cpup = 0 · b1 + 0 · b2 + . . . + 0 · bn = 0

Since ci are not all zero, {u1, . . . , up} is linearly dependent.
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Theorem 10: If a vector space V has a basis of n vectors, then every
basis of V must consist of exactly n vectors.

Pf: Let B1 be a basis of n vectors and B2 be any other basis (of V ).

Since B1 is a basis and B2 is linearly independent, B2 has no more
than n vectors, by Theorem 9.

Also, since B2 is a basis and B1 is linearly independent, B2 has at
least n vectors.

Thus B2 consists of exactly n vectors.
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Dimension

Defn: If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V , written as dimV , is the number of vectors in
a basis for V .

The dimension of the zero vector space {0} is defined to be zero. If
V is not spanned by a finite set, then V is said to be
infinite-dimensional.

Ex. dimRn = n, as the standard basis consists of n vectors.

Ex. dimP3 = 4, as {1, t, t2, t3} is a standard basis.

Ex. the subspaces of R3 can be classified by its dimensions:

I 0-dimension: zero subspace
I 1-dimension: line passing through the origin
I 2-dimension: any plane passing the origin
I 3-dimension: the R3.
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Example

Ex. Find the dimension of the subspace

H = {


a− 3b + 6c

5a + 4d
b − 2c − d

5d

 : a, b, c , d ∈ R}.

Sol: Each vector in H can be written as a linear combination
a− 3b + 6c

5a + 4d
b − 2c − d

5d

 = a


1
5
0
0

+b


−3
0
1
0

+c


6
0
−2
0

+d


0
4
−1
5

 = av1+bv2+cv3+dv4

So H = Span{v1, v2, v3, v4}.
By observation or by looking at the reduced echelon of the matrix[
v1 v2 v3 v4

]
, we see that v1, v2, v4 form a basis for H.

So dimH = 3.
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Subspaces of a finite-dimensional space

Thm11. Let H be a subspace of a finite-dimensional vector space V . Any
linearly independent set in H can be expanded (if necessary) to a
basis of H. Also H is finite-dimensional and dimH ≤ dimV .

Pf. Let S = {v1, v2, . . . , vk} be a linearly independent set in H.

If S spans H, then S is a basis for H.

Otherwise, there is some vk+1 in H that is not in Span S . But then
{v1, v2, . . . , vk , vk+1} is linearly independent, because no vector in the
set can be a linear combination of vectors that precede it.

We can continue the process of expanding S to a larger linearly
independent set in H.

As the number of elements in S cannot never exceed the dimension of
V , the process will stop, that is, at some stage, S will span H, and
we obtain a basis.

dim H ≤ dim V follows as a corollary.
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As the number of elements in S cannot never exceed the dimension of
V , the process will stop, that is, at some stage, S will span H, and
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The Basis Theorem

Thm. Let V be a p-dimensional vector space, p ≥ 1.

1 Any linearly independent set of exactly p elements in V is
automatically a basis for V .

2 Any set of exactly p elements that span V is automatically a basis for
V .

Pf. Let S be a set of linearly independent set of p elements. Then by
Theorem 11, S can be extended to a basis, which contains p
elements. So S itself must be a basis.

Now suppose S has p elements and span V . Then by the Spanning
Set Theorem, S contains a basis. But a basis contains p elements, so
S must be a basis.
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Dimension of Nul A and Col A

Thm The dimension of Nul A is the number of free variables in the
equation Ax = 0, and the dimension of Col A is the number of pivot
columns in A.

Pf. Since the pivot columns of A form a basis, the dimension of Col A is
the number of the pivot columns in A.

To see the dimension of Nul A, we suppose that Ax = 0 has k free
variables. Then each solution to Ax = 0 can be expression a linear
combination of k independent vectors, one for each free variable. So
the k vectors form a basis for Nul A.
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Example

Ex. Find the dimension of the null space and column space of

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4



Sol. Row reduce the augmented matrix [A 0] to echelon form:1 −2 2 3 −1 0
0 0 1 2 −2 0
0 0 0 0 0 0


Then there are three free variables, so dim Nul A = 3.

There are two pivot columns, so dim Col A = 2.
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Rank and Rank Theorem

The rank of a matrix A is the dimension of the column space of A.

Theorem: Let A be an m × n matrix. Then rank A + dimNul A = n.

It seems from the statement that rank of A is more than just the
dimension of column space of A...

It is indeed true....
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Row Space

Let A be an m × n matrix. The set of linear combinations of the row
vectors is called the row space of A and is denoted by Row A.

Each row has n entries, so Row A is a subspace of Rn.

Since the rows of A are the columns of AT , we could also write
Col AT in place of Row A.

One way to study Row A is to study Col AT . But there are more
directed ways to do it!

Gexin Yu gyu@wm.edu Section 4.5-4.6 Dimension and rank of vector spaces



Row Space

Let A be an m × n matrix. The set of linear combinations of the row
vectors is called the row space of A and is denoted by Row A.

Each row has n entries, so Row A is a subspace of Rn.

Since the rows of A are the columns of AT , we could also write
Col AT in place of Row A.

One way to study Row A is to study Col AT . But there are more
directed ways to do it!

Gexin Yu gyu@wm.edu Section 4.5-4.6 Dimension and rank of vector spaces



Row Space

Let A be an m × n matrix. The set of linear combinations of the row
vectors is called the row space of A and is denoted by Row A.

Each row has n entries, so Row A is a subspace of Rn.

Since the rows of A are the columns of AT , we could also write
Col AT in place of Row A.

One way to study Row A is to study Col AT . But there are more
directed ways to do it!

Gexin Yu gyu@wm.edu Section 4.5-4.6 Dimension and rank of vector spaces



Row Space

Let A be an m × n matrix. The set of linear combinations of the row
vectors is called the row space of A and is denoted by Row A.

Each row has n entries, so Row A is a subspace of Rn.

Since the rows of A are the columns of AT , we could also write
Col AT in place of Row A.

One way to study Row A is to study Col AT . But there are more
directed ways to do it!

Gexin Yu gyu@wm.edu Section 4.5-4.6 Dimension and rank of vector spaces



Theorem: If two matrices A and B are row equivalent, then their row
spaces are the same. If B is in echelon form, the nonzero rows of B
form a basis for the row space of A as well as for that of B.

Pf. If B is obtained from A by row operations, the rows of B are linear
combinations of the rows of A.

It follows that any linear combinations of rows of B are automatically
linear combinations of rows of A.

Thus the row space of B is contained in the row space of A.

On the other hand, the row operations are reversible, so the same
argument shows that the row space of A is contained in the row space
of B. So the two row spaces are the same.

If B is in echelon form, then the nonzero rows are linearly
independent, because no nonzero row is a linearly combinations of the
nonzero row below it.

Thus the nonzero rows of B form a basis of the row space of B and A.
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Example

Ex. Find bases for the row space, column space, and the null space of the
matrix

A =


−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3



Sol. We first row reduce A to B (echelon form):

A =


−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

→


1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0

 = B

By the theorem, the basis for row space of A is the first three rows of
B: {(1, 3,−5, 1, 5), (0, 1,−2, 2,−7), (0, 0, 0,−4, 20)}.
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The pivot columns of B (thus A) are the the first, second and fourth
columns. So a basis for column space of A is the first, second, and
fourth columns of A:
{(−2,−5, 8, 0,−17)T , (1, 3,−5, 1, 5)T , (1, 7,−13, 5,−3)T}.

To find a basis for null space of A, we write the solution set of
Ax = 0 in terms of free variables (x3 and x5):
x1 = −x3 − x5, x2 = 2x3 − 3x5, x4 = 5x3.

So in terms of vectors, we have
x = x3(−1, 2, 1, 0, 0)T + x5(−1,−3, 0, 5, 1)T .

Therefore a basis for Nul A is {(−1, 2, 1, 0, 0)T , (−1,−3, 0, 5, 1)T}.
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The Rank Theorem

The Rank Theorem: The dimensions of the column space and the row
space of an m × n matrix A are equal. Furthermore,
rank A + dimNul A = n.

Pf. We have showed the dimension of Col A (thus the rank of A) is the
number of pivot columns in A.

So the rank of the A is also the number of pivot positions in A, and
also the number of pivot positions in an echelon form B of A.

Furthermore, B has a nonzero row for each pivot. And these nonzero
rows form a basis for row space of B (thus A).

Thus the dimension of row space of A also equals the number of
pivots in A, which equals the rank of A.

The second part follows from rank A = dimRow A = dimCol A and
rank A + dimNul A = n.
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rows form a basis for row space of B (thus A).

Thus the dimension of row space of A also equals the number of
pivots in A, which equals the rank of A.

The second part follows from rank A = dimRow A = dimCol A and
rank A + dimNul A = n.
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Example

Ex. (a) If A is a 7× 9 matrix with a two-dimensional null space, what is
the rank of A?
(b) Could a 6× 9 matrix have a two-dimensional null space?

Sol. (a) the rank of A is 9− 2 = 7.

(b) A 6× 9 matrix cannot have a two-dimensional null space, for
otherwise, the rank of A is 9− 2 = 7, which equals the dimension of
column space, but the column space is a subspace of R6.
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Rank and the Invertible Matrix Theorem

Thm. (Invertible Matrix Theorem (continued)) let A be an n × n matrix.
Then the following statements are each equivalent tot he statement
that A is an invertible matrix.

1 the columns of A form a basis of Rn.

2 Col A = Rn

3 dimCol A = n.

4 rank A = n

5 Nul A = {0}.

6 dimNul A = 0.
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