Section 6.1 Inner Product, Length, and Orthogonality

Gexin Yu
gyulum. edu

College of William and Mary

Gexin Yu gyu@um.edu Section 6.1 Inner Product, Length, and Orthogonality



Inner product

@ If u and v are vectors in R”, then we regard u and v as n x 1 matrices.
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Inner product

@ If u and v are vectors in R”, then we regard u and v as n x 1 matrices.

@ The transpose u” is a 1 x n matrix, and the matrix product u” v is a

1 x 1 matrix, which we write as a single real number (a scalar)
without brackets.

@ The number u' v is called the inner product of v and v, and it is
written as u - v.

@ The inner product is also referred to as a dot product.
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Inner product

@ If u and v are vectors in R”, then we regard u and v as n x 1 matrices.

@ The transpose u” is a 1 x n matrix, and the matrix product u” v is a

1 x 1 matrix, which we write as a single real number (a scalar)

without brackets.
he inner product

@ The inner product is also referred to as @

@ The number u' v is called
written as u - v.

of u and v, and it is

dot produ

olfu=[uyu ... us]" andv=1[vy vo ... , then the inner
product of u and v is M' \/
-

u v=uwumvi+uw+...4+ uyv,
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Inner product

Ex.

If v and v are vectors in R”, then we regard v and v as n x 1 matrices.

T'is a 1 x n matrix, and the matrix product u” v is a

1 x 1 matrix, which we write as a single real number (a scalar)
without brackets.

The transpose u

The number uT v is called the inner product of v and v, and it is
written as u - v.

The inner product is also referred to as a dot product.

If u=1[ug o ... u)]" and v =[vi vo ... v,]7, then the inner
product of u and v is

T
u v=uwumvi+uw+...4+ uyv,

Compute u-vandv-uforu=[2 -5 —1]" andv=[32 —3]".
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Inner product

Ex.
Sol.

If v and v are vectors in R”, then we regard v and v as n x 1 matrices.

T'is a 1 x n matrix, and the matrix product u” v is a

1 x 1 matrix, which we write as a single real number (a scalar)
without brackets.

The transpose u

The number uT v is called the inner product of v and v, and it is
written as u - v.

The inner product is also referred to as a dot product.

If u=1[ug o ... u)]" and v =[vi vo ... v,]7, then the inner
product of u and v is

T
u v=uwumvi+uw+...4+ uyv,

Compute u-vandv-uforu=[2 -5 —1]" andv=[32 —3]".
u-v=v-u=(2)3)+(-5)(2) + (-1)(-3) = 1L
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Properties of Inner product

THM Let u,v and w be vectors in R”, and let ¢ be a scalar. Then
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Properties of Inner product

THM Let u,v and w be vectors in R”, and let ¢ be a scalar. Then

»u-v=v-u
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Properties of Inner product

THM Let u,v and w be vectors in R”, and let ¢ be a scalar. Then

»u-v=v-u

» (utv) - w=u-w+v-w
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Properties of Inner product

THM Let u,v and w be vectors in R”, and let ¢ be a scalar. Then

> u-v=v-u
» (utv) - w=u-w+v-w

> (cu)-v=c(u-v)=u-(cv)
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Properties of Inner product

THM Let u,v and w be vectors in R”, and let ¢ be a scalar. Then

> u-v=v-u
» (utv) - w=u-w+v-w
> (cu)-v=c(u-v)=u-(cv)
» u-u>0,and u-u=0if and only if u=0.
W
~ N 2 ‘L Q
U= - M.M:M\-rvt»-r'*“» > O

[
v

n
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Properties of Inner product

THM Let u,v and w be vectors in R”, and let ¢ be a scalar. Then

> u-v=v-u
» (utv) - w=u-w+v-w
> (cu)-v=c(u-v)=u-(cv)

» u-u>0,and u-u=0if and only if u=0.

@ A more general property is true:

(auni+ouw+...+cpup)-w=ci(ug-w)+c(uz-w)+...+cp(up-w)
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Length of a vector

@ Recall that for a point P(x,y), the length of OP is \/x? 4+ y?. And if
we let u be the vector P corresponds to, then the length of OP is

Vu-u. ut(;] \//%‘: B ? (x\\/
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Length of a vector

@ Recall that for a point P(x,y), the length of OP is \/x? 4+ y?. And if
we let u be the vector P corresponds to, then the length of OP is

Vu - u.
o The length (or thr vector v =[v va ... v,]" is defined to
be

HVH:\/V'V:\/V12—|-V22—|-...+V§
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Length of a vector

@ Recall that for a point P(x,y), the length of OP is \/x? 4+ y?. And if
we let u be the vector P corresponds to, then the length of OP is
Vu-u.

@ The length (or the norm) or vector v = [v; va ... v,]" is defined to
be

HVH:\/V'V:\/V12—|-V22—|-...+V§

o Sollvl[?P=v-v.
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Length of a vector

@ Recall that for a point P(x,y), the length of OP is \/x? 4+ y?. And if
we let u be the vector P corresponds to, then the length of OP is
Vu-u.

@ The length (or the norm) or vector v = [v; va ... v,]" is defined to
be

HVH:\/V'V:\/V12—|-V22—|-...+V§

o Sollvl[?P=v-v.
o Let ¢ be a scalar. Then ||cv|| = [c] ||v]].

E(:: ll C\/u 2 ( (C\l>~<w3 = m :\C\\W
= (el vl

Gexin Yu gyu@um.edu Section 6.1 Inner Product, Length, and Orthogonality



Length of a vector

@ Recall that for a point P(x,y), the length of OP is \/x? 4+ y?. And if
we let u be the vector P corresponds to, then the length of OP is

N

@ The length (or the norm) or vector v = [v; va ... v,]" is defined to
be
vl =Vv-v= \/v12+v22—|—...+v§
o Sollvl[?P=v-v.
@ Let c be a scalar. Then ||cv|| = |c] ||v]].
@ A vector whose length is 1 is called a unit vector.
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Length of a vector

@ Recall that for a point P(x,y), the length of OP is \/x? 4+ y?. And if
we let u be the vector P corresponds to, then the length of OP is

N

@ The length (or the norm) or vector v = [v; va ... v,]" is defined to
be
Wl = vV v=y 2+ Bt 2
o Sollvl[?P=v-v.
@ Let c be a scalar. Then ||cv|| = |c] ||v]].
@ A vector whose length is 1 is called a unit vector.
@ One can create a unit vector from each given vector: ﬁ This

process is called normalizing u.
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Length of a vector

Ex.

Recall that for a point P(x, y), the length of OP is \/x? + y2. And if
we let u be the vector P corresponds to, then the length of OP is
Vu-u.

The length (or the norm) or vector v = [v; va ... v,]" is defined to
be

HVH:\/V'V:\/V12—|-V22—|-...+V§

So|lv|2P=v-v.
Let ¢ be a scalar. Then ||cv|| = |c]| ||v]].
A vector whose length is 1 is called a unit vector.

One can create a unit vector from each given vector: ﬁ This

process is called normalizing u.
Let v =(1,—2,2,0). Find a unit vector u in the same direction as v.
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Length of a vector

Ex.
So

Recall that for a point P(x, y), the length of OP is \/x? + y2. And if
we let u be the vector P corresponds to, then the length of OP is
Vu-u.

The length (or the norm) or vector v = [v; va ... v,]" is defined to
be

HVH:\/V'V:\/V12—|-V22—|-...+V§

So|lv|2P=v-v.

Let ¢ be a scalar. Then ||cv|| = |c]| ||v]].

A vector whose length is 1 is called a unit vector.

One can create a unit vector from each given vector: ﬁ This
process is called normalizing u.

Let v =(1,—2,2,0). Find a unit vector u in the same direction as v.

We first find the length of v: ||v|| =+/v-v =3.
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Length of a vector

Ex.
So

Recall that for a point P(x, y), the length of OP is \/x? + y2. And if
we let u be the vector P corresponds to, then the length of OP is

N

The length (or the norm) or vector v = [v; va ... v,]" is defined to
be

Wl = vV v=y 2+ Bt 2
So|lv|2P=v-v.
Let ¢ be a scalar. Then ||cv|| = |c]| ||v]].
A vector whose length is 1 is called a unit vector.
One can create a unit vector from each given vector: ﬁ This
process is called normalizing u.
Let v =(1,—2,2,0). Find a unit vector u in the same direction as v.
We first find the length of v: ||v|| =+/v-v =3.
Then normalize v and get a unit vector: % [1/3 —2/32/30].
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@ For vectors u, v € R”, the distance between v and v, written as
dist(u,v), is the length of the vector u — v. That is,

dist(u,v) = ||u — v||. A r\?
T ( U-v

v B

™~
L
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@ For vectors u, v € R”, the distance between v and v, written as
dist(u,v), is the length of the vector u — v. That is,
dist(u,v) = ||u — v||.

Ex. Compute the distance between the vectors u = (7,1) and v = (3,2).
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Ex.

Sol.

For vectors u,v € R”, the distance between u and v, written as
dist(u,v), is the length of the vector u — v. That is,
dist(u,v) = ||u — v||.

Compute the distance between the vectors u = (7,1) and v = (3,2).

First we get u— v = (7,1) — (3,2) = (4,-1).
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@ For vectors u, v € R”, the distance between v and v, written as
dist(u,v), is the length of the vector u — v. That is,
dist(u,v) = ||u — v||.

Ex. Compute the distance between the vectors u = (7,1) and v = (3,2).
Sol. First we get u —v = (7,1) — (3,2) = (4,-1).

o So the distance is dist(u, v) = ||u — v|| = /42 + (-1)2 = V/17.
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Angles formed by vectors in R”

@ Recall that if a triangle ABO, and let angle AOB be 6, then
AB? = AO? + BO? — 2A0 - BO cos¥f.
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Angles formed by vectors in R”

@ Recall that if a triangle ABO, and let angle AOB be 6, then
AB? = AO? + BO? — 2A0 - BO cos¥f.

o If we place the points in R? with O at origin, then we have the
following picture

(), 1)

V)
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Angles formed by vectors in R”

@ Recall that if a triangle ABO, and let angle AOB be 6, then
AB? = AO? + BO? — 2A0 - BO cos¥f.

o If we place the points in R? with O at origin, then we have the
following picture

(), 1)

V)

The angle between two vectors.

@ In other words, assume vectors u, v correspond to points A, B, then
we have ||u — v|* = |ul[> + [[v|[* = 2||u]| - [|v]| cos®
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Angles formed by vectors in R”

@ Recall that if a triangle ABO, and let angle AOB be 6, then
AB? = AO? + BO? — 2A0 - BO cos¥f.

o If we place the points in R? with O at origin, then we have the
following picture

(), 1)

V)

The angle between two vectors.
@ In other words, assume vectors u, v correspond to points A, B, then
we have [|u — v[|* = |[u]|* + [|v|[* = 2[|u]| - [|v]| cos &
@ Note that [|u—v|?=(u—Vv)-(u—Vv)=uv?+Vv>—2u-v.
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Angles formed by vectors in R”

@ Recall that if a triangle ABO, and let angle AOB be 6, then
AB? = AO? + BO? — 2A0 - BO cos¥f.

o If we place the points in R? with O at origin, then we have the
following picture

(), 1)

V)

The angle between two vectors.

@ In other words, assume vectors u, v correspond to points A, B, then
we have ||u — v|* = ||ul[> + [[v|[* = 2||u]| - [|v|| cos®

e Note that ||u — v||? = (u =u>+v2—2u-v.

o It follows that
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Angles formed by vectors in R”

@ Recall that if a triangle ABO, and let angle AOB be 6, then
AB? = AO? + BO? — 2A0 - BO cos¥f.

o If we place the points in R? with O at origin, then we have the
following picture

(), 1)

V)

The angle between two vectors.

@ In other words, assume vectors u, v correspond to points A, B, then
we have ||u — v|* = ||ul[> + [[v|[* = 2||u]| - [|v|| cos®
@ Note that [|u—v|?=(u—Vv)-(u—Vv)=uv?+Vv>—2u-v.
o It follows that
u-v

cosf = ————
[ul] {[v]]

@ We define the angle between two vectors using the above formula.

Gexin Yu gyu@um.edu Section 6.1 Inner Product, Length, and Orthogonality



Orthogonal vectors

@ Let's consider then case when the angle between two vectors is 90
degree.
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Orthogonal vectors

@ Let's consider then case when the angle between two vectors is 90
degree.

@ In this case, we have cos@ = 0. It follows that u-v = 0.
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Orthogonal vectors

@ Let's consider then case when the angle between two vectors is 90
degree. D - (IN= (,ﬂb--_,_(:f_\z
@ In this case, we have cosf = 0. It follows that u-v = 0. M'lMl

@ Two vectors u and v are orthogonal (to each other) if u-v =0.

=
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Orthogonal vectors

@ Let's consider then case when the angle between two vectors is 90
degree.

@ In this case, we have cos = 0. It follows that u-v = 0.
@ Two vectors u and v are orthogonal (to each other) if u-v =0.

o Clearly the zero vector is orthogonal to every vector in R”.
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Orthogonal vectors

@ Let's consider then case when the angle between two vectors is 90
degree.

@ In this case, we have cosf = 0. It follows that u-v = 0.
@ Two vectors u and v are orthogonal (to each other) if u-v =0.
o Clearly the zero vector is orthogonal to every vector in R”.

THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and
only if [[u + v[[* = [|u[[* + []v]|*.
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Orthogonal vectors

THM

Pf.

Let's consider then case when the angle between two vectors is 90
degree.

In this case, we have cosf = 0. It follows that u-v = 0.
Two vectors u and v are orthogonal (to each other) if u-v = 0.
Clearly the zero vector is orthogonal to every vector in R”.

(Pythagorean Theorem) Two vectors u and v are orthogonal if and
only if [[u + v[[* = [|u[[* + []v]|*.

We observe that u and v are orthogonal if and only if the distance
between u and v is the same as the distance between v and —v.
That is, dist(u, v) = dist(u, —v).
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Orthogonal vectors

@ Let's consider then case when the angle between two vectors is 90
degree.

@ In this case, we have cosf = 0. It follows that u-v = 0.
@ Two vectors u and v are orthogonal (to each other) if u-v =0.
o Clearly the zero vector is orthogonal to every vector in R”.

THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and
only if [|u+ v|[? = ||ul[* + [|v]*.
Pf. We observe that u and v are orthogonal if and only if the distance
between u and v is the same as the distance between v and —v.
That is, dist(u, v) = dist(u, —v).
o Note that dist(u,v)?> = (u—v)-(u—v)=uv?+v?>—2u-vand
dist(u,—v) = (u+v)-(u+v)=uv?>+v2+2u-v.

Gexin Yu gyu@um.edu Section 6.1 Inner Product, Length, and Orthogonality



Orthogonal vectors

@ Let's consider then case when the angle between two vectors is 90
degree.

@ In this case, we have cos = 0. It follows that v-v =20

@ Two vectors u and v are orthogonal (to each other) if(u - v = 0.
o Clearly the zero vector is orthogonal to every vector in

THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and
only if [[u + v[[* = [|u[[* + []v]|*.
Pf. We observe that u and v are orthogonal if and only if the distance
between u and v is the same as the distance between v and —v.
That is, dist(u, v) = dist(u, —v).
o Note that dist(u,v)?> = (u—v)-(u—v)=uv?+v?>—2u-vand
dist(u,—v) = (u+v)-(u+v)=uv?>+v2+2u-v.
e So dist(u,v) = dist(usv) if and only if uv = 0.
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Orthogonal complements

@ If a vector z is orthogonal to every vector in a subspace W of R”,
then z is said to be orthogonal to W.

z 1\ 2

—_—
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Orthogonal complements

@ If a vector z is orthogonal to every vector in a subspace W of R”,
then z is said to be orthogonal to W.

@ The set of all vectors z that are orthogonal to W is called the
orthogonal complement of W and is denoted by W+ (read as “W

perp”).

WL.—; 2. 2L\
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Orthogonal complements

X*‘z/ y‘(cmx’é( M (e 40X U,
- I \ ~, ":f'
@ If a vector z is orthogonal to every vectoy in a subspace w of R", é"\{‘

then z is said to be orthogonal to W. - 0
%12

@ The set of all vectors z that are orthogonal & W is called the
orthogonal cqmpleme {O nd is denoted by W= Sread as “W
perp”). F@r\f\/{ u - .u > _Ug

%é\/\/ 2= ‘4’*"“"‘(\4 €

THM A vector x is in "W if and only if x is orthogonal to every vector in a
set that spans \{k

e\ ;)xlz'fw“ﬂzéw :
K‘A\W \/WW‘<T(7

)
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Orthogonal complements
| i \w> ] \/\/
=X X+ L\ —
W <\J> -

THM W+ |sasubspaceofR” Uﬁ,\‘\/}, Xé\’\/ UX:O
\%Q Oé\'\/ 0. U\‘O"ﬂ/v‘é"‘/

@\A\,(\,J > \M\/G\«f
\/xed - Ux=o @\&\bx U4V = Q=)

V-x =%

@ (Lé‘«/ 2 a\/\C\J'L wtv L%
O\él’\l Ve ew Ux=0 (Q\u)%'- o)==
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Orthogonal complements

THM Let A be an m x n matrix. The orthogonal complement of the row
space of A is the null space of A, and the orthogonal complement of
the column space of A is the null space of AT:

(Row A)* = Nul A (Col A)t = Nul AT

(@l@j wi ()

C,M) Not 5
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Orthogonal complements

THM Let A be an m x n matrix. The orthogonal complement of the row
space of A is the null space of A, and the orthogonal complement of
the column space of A is the null space of AT:

(Row A)* = Nul A (Col At = Nul AT

Pf. Note that x € Nul A if and only if Ax = 0. That is, x is orthogonal
to every row vector of A. So we_hive the conclusions.

(L‘ %« TN IR
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