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Inner product

If u and v are vectors in Rn, then we regard u and v as n× 1 matrices.

The transpose uT is a 1× n matrix, and the matrix product uT v is a
1× 1 matrix, which we write as a single real number (a scalar)
without brackets.

The number uT v is called the inner product of u and v , and it is
written as u · v .

The inner product is also referred to as a dot product.

If u = [u1 u2 . . . un]T and v = [v1 v2 . . . vn]T , then the inner
product of u and v is

uT v = u1v1 + u2v2 + . . .+ unvn

Ex. Compute u · v and v · u for u = [2 − 5 − 1]T and v = [3 2 − 3]T .

Sol. u · v = v · u = (2)(3) + (−5)(2) + (−1)(−3) = −1.
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Properties of Inner product

THM Let u, v and w be vectors in Rn, and let c be a scalar. Then

I u · v = v · u

I (u + v) · w = u · w + v · w

I (cu) · v = c(u · v) = u · (cv)

I u · u ≥ 0, and u · u = 0 if and only if u = 0.

A more general property is true:

(c1u1 +c2u2 + . . .+cpup) ·w = c1(u1 ·w) +c2(u2 ·w) + . . .+cp(up ·w)
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Length of a vector

Recall that for a point P(x , y), the length of OP is
√

x2 + y2. And if
we let u be the vector P corresponds to, then the length of OP is√
u · u.

The length (or the norm) or vector v = [v1 v2 . . . vn]T is defined to
be

||v || =
√
v · v =

√
v21 + v22 + . . .+ v2n

So ||v ||2 = v · v .

Let c be a scalar. Then ||cv || = |c | ||v ||.
A vector whose length is 1 is called a unit vector.

One can create a unit vector from each given vector: u
||u|| . This

process is called normalizing u.

Ex. Let v = (1,−2, 2, 0). Find a unit vector u in the same direction as v .

Sol We first find the length of v : ||v || =
√
v · v = 3.

Then normalize v and get a unit vector: v
||v || = [1/3 − 2/3 2/3 0].
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Distance in Rn

For vectors u, v ∈ Rn, the distance between u and v , written as
dist(u, v), is the length of the vector u − v . That is,
dist(u, v) = ||u − v ||.

Ex. Compute the distance between the vectors u = (7, 1) and v = (3, 2).

Sol. First we get u − v = (7, 1)− (3, 2) = (4,−1).

So the distance is dist(u, v) = ||u − v || =
√

42 + (−1)2 =
√

17.
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Angles formed by vectors in Rn

Recall that if a triangle ABO, and let angle AOB be θ, then
AB2 = AO2 + BO2 − 2AO · BO cos θ.

If we place the points in R2 with O at origin, then we have the
following picture

In other words, assume vectors u, v correspond to points A,B, then
we have ||u − v ||2 = ||u||2 + ||v ||2 − 2||u|| · ||v || cos θ

Note that ||u − v ||2 = (u − v) · (u − v) = u2 + v2 − 2u · v .

It follows that
cos θ =

u · v
||u|| ||v ||

We define the angle between two vectors using the above formula.
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Orthogonal vectors

Let’s consider then case when the angle between two vectors is 90
degree.

In this case, we have cos θ = 0. It follows that u · v = 0.

Two vectors u and v are orthogonal (to each other) if u · v = 0.

Clearly the zero vector is orthogonal to every vector in Rn.

THM (Pythagorean Theorem) Two vectors u and v are orthogonal if and
only if ||u + v ||2 = ||u||2 + ||v ||2.

Pf. We observe that u and v are orthogonal if and only if the distance
between u and v is the same as the distance between u and −v .
That is, dist(u, v) = dist(u,−v).

Note that dist(u, v)2 = (u − v) · (u − v) = u2 + v2 − 2u · v and
dist(u,−v) = (u + v) · (u + v) = u2 + v2 + 2u · v .

So dist(u, v) = dist(u, v) if and only if uv = 0.
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Orthogonal complements

If a vector z is orthogonal to every vector in a subspace W of Rn,
then z is said to be orthogonal to W .

The set of all vectors z that are orthogonal to W is called the
orthogonal complement of W and is denoted by W⊥ (read as “W
perp”).

THM A vector x is in W⊥ if and only if x is orthogonal to every vector in a
set that spans W .
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Orthogonal complements

THM W⊥ is a subspace of Rn.
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Orthogonal complements

THM Let A be an m × n matrix. The orthogonal complement of the row
space of A is the null space of A, and the orthogonal complement of
the column space of A is the null space of AT :

(Row A)⊥ = Nul A (Col A)⊥ = Nul AT

Pf. Note that x ∈ Nul A if and only if Ax = 0. That is, x is orthogonal
to every row vector of A. So we have the conclusions.
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