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Orthogonal sets

o A set of vectors {u1, up,...,up} in R" is said to be an orthogonal set
if each pair of distinct vectors from the set is orthogonal, that is
ui - uj = 0 whenever j # j.
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Orthogonal sets

o A set of vectors {u1, up,...,up} in R" is said to be an orthogonal set
if each pair of distinct vectors from the set is orthogonal, that is
ui - uj = 0 whenever j # j.

@ Theorem 4: If S = {u1,...,up} is an orthog
vectors in R”, then S is linearly independent and hence Ts-a-basis for

the subspace spanned by S. L2\ ——
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Proof of Theorem 4

PF. Let ciuis + ...+ cpup = 0 for some scalars cy, .. ., Cp.
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Proof of Theo 4

PF. Let ciuis + ...+ cpup = 0 for some scalars cy, .. ., Cp.
@ Then we have

O:0-u1:(Clu1+...+cpup)-u1
:(C1U1)~U1+...+(Cpup)'ul

=c(ur-wm)+...+cp(up-u) =cr(ur - ur)

because uy is orthogonal to wup, ..., up.
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Proof of Theorem 4

PF. Let ciuis + ...+ cpup = 0 for some scalars cy, .. ., Cp.
@ Then we have

O:0-u1:(Clu1+...+cpup)-u1
:(C1U1)~U1+...+(Cpup)'ul

=ca(u-u)+... +cp(up - u) = aaur - )
because uy is orthogonal to wup, ..., up.

@ Since uy is nonzero, uq - U7 is not zero and so ¢; = 0.
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Proof of Theorem 4

PF. Let ciuis + ...+ cpup = 0 for some scalars cy, .. ., Cp.
@ Then we have

O:0-u1:(Clu1+...+cpup)-u1
:(C1U1)~U1+...+(Cpup)'ul

=c(ur-wm)+...+cp(up- ) =cr(ur - u1)
because uy is orthogonal to wup, ..., up.
@ Since uy is nonzero, uq - U7 is not zero and so ¢; = 0.

e Similarly, c, ..., c, must be zero.
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Proof of Theo 4

PF. Let ciuis + ...+ cpup = 0 for some scalars cy, .. ., Cp.
@ Then we have

O:0-u1:(Clu1+...+cpup)-u1
:(C1U1)~U1+...+(Cpup)'ul

=c(ur-wm)+...+cp(up- ) =cr(ur - u1)
because uy is orthogonal to wup, ..., up.
@ Since uy is nonzero, uq - U7 is not zero and so ¢; = 0.
e Similarly, c, ..., c, must be zero.

@ Thus S is linearly independent.
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Orthogonal basis

@ An orthogonal basis for a subspace W of R” is a basis for W that is
also an orthogonal set.

N (o) [0 seader
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Orthogonal basis

@ An orthogonal basis for a subspace W of R” is a basis for W that is
also an orthogonal set.

e Theorem 5: Let {uy,...,up} be an orthogonal basis for a subspace
W of R". For each y in W, the weights in the linear combination
y = ciu1 + ...+ cpup are given by ¢; = 3”3 forj=1,...,p.
J "

~

Eemuk:{a\&(m (y')u .
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Orthogonal basis

@ An orthogonal basis for a subspace W of R” is a basis for W that is
also an orthogonal set.

e Theorem 5: Let {uy,...,up} be an orthogonal basis for a subspace
W of R". For each y in W, the weights in the linear combination

y = ciu1 + ...+ cpup are given by ¢; = YL for j=1,...,p.
J

uj-uj

PF. The orthogonality of {uy, ..., up} shows that

y-ur=(cu+...+ cpup) - ug = ci(ur - ug)
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Orthogonal basis

@ An orthogonal basis for a subspace W of R” is a basis for W that is
also an orthogonal set.

e Theorem 5: Let {uy,...,up} be an orthogonal basis for a subspace
W of R". For each y in W, the weights in the linear combination
y = ciu1 + ...+ cpup are given by ¢; = Zlg forj=1,...,p.
J "

PF. The orthogonality of {uy, ..., up} shows that
y-ur=(cu+...+ cpup) - ug = ci(ur - ug)

@ Since uy - uy is not zero, the equation above can be solved for cy.
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Orthogonal basis

@ An orthogonal basis for a subspace W of R” is a basis for W that is
also an orthogonal set.

e Theorem 5: Let {uy,...,up} be an orthogonal basis for a subspace
W of R". For each y in W, the weights in the linear combination
y = ciu1 + ...+ cpup are given by ¢; = Zlg forj=1,...,p.
J "

PF. The orthogonality of {uy, ..., up} shows that
y-ur=(cu+...+ cpup) - ug = ci(ur - ug)
@ Since uy - uy is not zero, the equation above can be solved for cy.

e To find ¢j, we can similarly compute y - u; and solve for ¢;.
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Orthogonal projection

@ Given a nonzero vector u in R, consider the problem of decomposing
a vector y in R” into the sum of two vectors, one a multiplier of u
and the other orthogonal to w.
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Orthogonal projection

@ Given a nonzero vector u in R, consider the problem of decomposing
a vector y in R” into the sum of two vectors, one a multiplier of u
and the other orthogonal to w.

o We wish to write y = y + z, where y = au for some scalar a and z is
—_—
some vector orthogonal to u. -

T/( z
=ou
Finding o to makey — y
orthogonal to u.

N
2LV g um0 s

1Y
\/,u\- %u'u: 0 ol AW =\/*L4 .«)o(?%
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Orthogonal projection

@ Given a nonzero vector u in R, consider the problem of decomposing
a vector y in R” into the sum of two vectors, one a multiplier of u

and the other orthogonal to w.
o We wish to write y = y + z, where y = au for some scalar a and z is

some vector orthogonal to u.

z=y-Yy y
ot
0| § =au u

Finding o to makey — y
orthogonal to u.

@ Given any scalar a, let z=y — aqu. Then y — ¥ is orthogonal to u if

andonlyif0=(y —au) - u=y-u—au-u.
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Orthogonal projection

@ Given a nonzero vector u in R, consider the problem of decomposing
a vector y in R” into the sum of two vectors, one a multiplier of u

and the other orthogonal to w.
o We wish to write y = y + z, where y = au for some scalar a and z is

some vector orthogonal to u.
z=y-§y

e

\

o y=au u

Finding o to makey — y
orthogonal to u.

@ Given any scalar a, let z=y — aqu. Then y — ¥ is orthogonal to u if
andonlyif0=(y —au) - u=y-u—au-u.
@ Thatis, y = y + z with z orthogonal to u if and only if a = u:Z

A yu
y = EU.
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@ The vector y is called the orthogonal projection of y onto u, and the
vector z is called the component of y orthogonal to w.
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@ The vector y is called the orthogonal projection of y onto u, and the
vector z is called the component of y orthogonal to w.

@ If c is any nonzero scalar and if u is replaced by cu in the definition of
v, then the orthogonal projection of y onto cu is exactly the same as
the orthogonal projection of y onto u.
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@ The vector y is called the orthogonal projection of y onto u, and the
vector z is called the component of y orthogonal to w.

@ If c is any nonzero scalar and if u is replaced by cu in the definition of
v, then the orthogonal projection of y onto cu is exactly the same as
the orthogonal projection of y onto u.

@ Hence this projection is determined by the subspace L spanned by u
(the line through v and 0).
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@ The vector y is called the orthogonal projection of y onto u, and the
vector z is called the component of y orthogonal to w.

@ If c is any nonzero scalar and if u is replaced by cu in the definition of
v, then the orthogonal projection of y onto cu is exactly the same as
the orthogonal projection of y onto u.

@ Hence this projection is determined by the subspace L spanned by u
(the line through v and 0).

@ Sometimes y is denoted by proj; y and is called the orthogonal
projection of y onto L.
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@ The vector y is called the orthogonal projection of y onto u, and the
vector z is called the component of y orthogonal to w.

@ If c is any nonzero scalar and if u is replaced by cu in the definition of
v, then the orthogonal projection of y onto cu is exactly the same as
the orthogonal projection of y onto u.

@ Hence this projection is determined by the subspace L spanned by u
(the line through v and 0).

@ Sometimes y is denoted by proj; y and is called the orthogonal
projection of y onto L.

@ That is,

-u

Ly
V= projiy = u
u-u
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Ex. Let y =[7 6]" and u = [4 2]T. Find the orthogonal projection of y
onto u. Then write y as the sum of two orthogonal vectors, one in
Span{u} and one orthogonal to u.

y
7(63\/ =Ly, E*—‘lwtzb

VIR Gyl [V

e ]
y-w= - (]
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Ex. Let y =[7 6]" and u = [4 2]T. Find the orthogonal projection of y
onto u. Then write y as the sum of two orthogonal vectors, one in
Span{u} and one orthogonal to u.

Sol. Compute y - u =40 and v - u = 20.
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Ex. Let y =[7 6]" and u = [4 2]T. Find the orthogonal projection of y
onto u. Then write y as the sum of two orthogonal vectors, one in
Span{u} and one orthogonal to u.

Sol. Compute y - u =40 and v - u = 20.

@ The orthogonal projection of y onto uis y = Z2u =2u = [8 47,
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Ex. Let y =[7 6]" and u = [4 2]T. Find the orthogonal projection of y
onto u. Then write y as the sum of two orthogonal vectors, one in
Span{u} and one orthogonal to u.

Sol. Compute y - u =40 and v - u = 20.
. . . ~ . o o T
@ The orthogonal projection of y onto u is y = ﬁu =2u=[84]".

@ And the component of y orthogonal to u is
y—g=1[16]" -84 =[-12]".
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Ex. Let y =[7 6]" and u = [4 2]T. Find the orthogonal projection of y
onto u. Then write y as the sum of two orthogonal vectors, one in
Span{u} and one orthogonal to u.

Sol. Compute y - u =40 and v - u = 20.

@ The orthogonal projection of y onto uis y = Z2u =2u = [8 47,

@ And the component of y orthogonal to u is
y—g=1[16]" -84 =[-12]".

e Thatis, [7 6] = [8 4] +[-1 2].
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rmal se

o Aset {u1,...,up} is an orthonormal set if it is an orthogonal set of
unit vectors.

Gexin Yu gyu@um.edu Section 6.2-6.3 Orthogonal sets and orthogonal projections



O ormal sets

o Aset {u1,...,up} is an orthonormal set if it is an orthogonal set of
unit vectors.

e If W is the subspace spanned by such a set, then {uy,...,up} is an
orthonormal basis for W, since the set is automatically linearly
independent, by Theorem 4.
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O ormal sets

o Aset {u1,...,up} is an orthonormal set if it is an orthogonal set of
unit vectors.

e If W is the subspace spanned by such a set, then {uy,...,up} is an
orthonormal basis for W, since the set is automatically linearly
independent, by Theorem 4.

@ The simplest example of an orthonormal set is the standard basis
{e1,...,en} for R".
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O ormal sets

o Aset {u1,...,up} is an orthonormal set if it is an orthogonal set of
unit vectors.

e If W is the subspace spanned by such a set, then {uy,...,up} is an
orthonormal basis for W, since the set is automatically linearly
independent, by Theorem 4.

@ The simplest example of an orthonormal set is the standard basis
{e1,...,en} for R".

@ Any nonempty subset of {e;,--- ,e,} is orthonormal, too
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Orthonormal columns of a matrix

@ Theorem 6: an n X m matrix U has orthonormal columns if and only
if UTU = 1.

Ts cho k. \A\’Ll,_‘ -~ U, jr\" \,_,L me/l/

SEESES
Lk yu=T
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onormal columns of a matrix

n x m matrix U has orthonormal columns_if and only

PF. To simplify notation, we suppose U has only three columns,
U= [U1 u» U2].
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@) ormal columns of a matrix

@ Theorem 6: an n X m matrix U has orthonormal columns if and only
if UTU = 1.

PF. To simplify notation, we suppose U has only three columns,
U= [U1 u» U2].

@ Then
uf uf i ufu ufus
UTU= | |[tn o w]= |uJur u]uy ufus
T T T T
U3 U3 uy U3 un U3 us
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@) normal columns of a matrix

@ Theorem 6: an n X m matrix U has orthonormal columns if and only
if UTU = 1.

PF. To simplify notation, we suppose U has only three columns,
U= [U1 u» U2].

@ Then
uf uf i ufu ufus
UTU= | |[tn o w]= |uJur u]uy ufus
T T T T
U3 U3 uy U3 un U3 us

@ The columns of U are orthogonal if and only if u,-TuJ- =0 for i # j.
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PF.

onormal columns of a matrix

Theorem 6: an n X m matrix U has orthonormal columns if and only
if UTU = 1.
To simplify notation, we suppose U has only three columns,
U= [U1 u» U2].
Then
T T T T
- Ul Ul uy ul un ul us
UTU=|u] |t o us]l = |ufur ufun ufus
ud udup uduy udus
The columns of U are orthogonal if and only if u u; = 0 for i # j.

The columns of U all have unit length if and only if u,-Tu,- =1 for
i=1,23.
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PF.

onormal columns of a matrix

Theorem 6: an n X m matrix U has orthonormal columns if and only
if UTU = 1.

To simplify notation, we suppose U has only three columns,
U= [U1 u» U2].

Then
uf uf i ufu ufus
UTU= | |[tn o w]= |uJur u]uy ufus
ud ud up uf ur ud us

The columns of U are orthogonal if and only if u u; = 0 for i # j.

The columns of U all have unit length if and only if u,-Tu,- =1 for
i=1,23.

From above conditions, the theorem follows immediately.
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rmal se

@ Theorem 7: Let U be an m x n matrix with orthonormal columns,
and let x and y be in R". Then
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rmal se

@ Theorem 7: Let U be an m x n matrix with orthonormal columns,
and let x and y be in R". Then

> [1Ux]] = Ix|
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@) normal sets

@ Theorem 7: Let U be an m x n matrix with orthonormal columns,
and let x and y be in R". Then
> [|Ux][ = [[x]]
» (Ux)-(Uy)=x-y

Gexin Yu gyu@um.edu Section 6.2-6.3 Orthogonal sets and orthogonal projections



@ Theorem 7: Let U be an m x n matrix with orthonormal columns,
and let x and y be in R". Then
> [|Ux][ = [[x]]
> (Ux)-(Uy)=x-y
» (Ux)-(Uy)=0if and only if x - y = 0.
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@ Theorem 7: Let U be an m x n matrix with orthonormal columns,
and let x and y be in R". Then
> [|Ux][ = [[x]]
> (Ux)-(Uy)=x-y
» (Ux)-(Uy)=0if and only if x - y = 0.

@ The above properties say that the linear mapping x — Ux preserves
lengths and orthogonality.
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@ The orthogonal projection of a point in R? onto a line through the
origin has an important analogue in R".
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@ The orthogonal projection of a point in R? onto a line through the
origin has an important analogue in R".

@ Given a vector y and a subspace W in R", there is a vector y in W
such that (1) ¥ is the unique vector in W for which y — 7 is
orthogonal to W, and (2) y is the unique vector in W closest to y.

y

(NVAY
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@ The orthogonal projection of a point in R? onto a line through the
origin has an important analogue in R".

@ Given a vector y and a subspace W in R", there is a vector y in W
such that (1) ¥ is the unique vector in W for which y — 7 is
orthogonal to W, and (2) y is the unique vector in W closest to y.

[

@ These two properties of y provide the key to finding the least-squares
solutions of linear systems.
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@ Theorem 8: Let W be a subspace of R". Then each y in R” can be

written uniquely in the form y = y 4+ z, where y isin W and z is in
wL. <—
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@ Theorem 8: Let W be a subspace of R". Then each y in R” can be

written uniquely in the form y = y 4+ z, where y isin W and z is in
Wt

o In fact, if {uy..

Gexin Yu gyu@um.edu
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@ Theorem 8: Let W be a subspace of R". Then each y in R” can be
written uniquely in the form y = y 4+ z, where y isin W and z is in

Wt
@ In fact, if {u....,up} is any orthogonal basis of W, then
u u
y = Yoo u+...+ Y pupandz:y—f/
Uy - Uy Up - Up

PF. Similar to the proof of Theorem 5, we get y.
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@ Theorem 8: Let W be a subspace of R". Then each y in R” can be
written uniquely in the form y = y 4+ z, where y isin W and z is in
Wt

e In fact, if {u;...., is any orthogonal basis of W, then

y - up
Up - Up

upand z=y—y

>

PF. Similar to the proof of Theorem 5, we get y.

o To see that z =y — y is in W, we observe that z is orthogonal to
each uj in t sis for W, thus to every vector in W.

WY-9)u =0
" / Ve =S =0

r - —

—( W 1'( Wt~
\} Lol
\/’V{Cc C‘\A\“uu
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@ Theorem 8: Let W be a subspace of R". Then each y in R” can be
written uniquely in the form y = y 4+ z, where y isin W and z is in
Wt

@ In fact, if {u....,up} is any orthogonal basis of W, then

y-u y-u
up+...+ P
U - up Up - Up

y = upand z=y—y

PF. Similar to the proof of Theorem 5, we get y.

o To see that z =y — y is in W, we observe that z is orthogonal to
each u; in the basis for W, thus to every vector in W.

@ To show the the decomposition is unique, suppose y can also be
written as y = yj + z1, with ¥4 in W and z; in W+,
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@ Theorem 8: Let W be a subspace of R". Then each y in R” can be
written uniquely in the form y = y 4+ z, where y isin W and z is in
Wt

@ In fact, if {u....,up} is any orthogonal basis of W, then

y-u y-u
up+...+ P
U - up Up - Up

y = upand z=y—y

PF. Similar to the proof of Theorem 5, we get y.

o To see that z =y — y is in W, we observe that z is orthogonal to
each u; in the basis for W, thus to every vector in W.

@ To show the the decomposition is unique, suppose y can also be
written as y = yj + z1, with ¥4 in W and z; in W+,

@ Theny=y4+z=y1+2z5,andsoy —y1 =21 — z. L
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@ Theorem 8: Let W be a subspace of R". Then each y in R” can be
written uniquely in the form y = y 4+ z, where y isin W and z is in
Wt

@ In fact, if {u....,up} is any orthogonal basis of W, then

y-un y - up

up+...+
U - up Up - Up

y = upand z=y—y

PF. Similar to the proof of Theorem 5, we get y.

o To see that z =y — y is in W, we observe that z is orthogonal to
each u; in the basis for W, thus to every vector in W.

@ To show the the decomposition is unique, suppose y can also be
written as y = yj + z1, with ¥4 in W and z; in W+,

@ Theny=y4+z=y1+2z1,andsoy —y1 =21 — z.

@ So vector v =y — yj is in W, but also in W=, as z — z; is in W,
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@ Theorem 8: Let W be a subspace of R". Then each y in R” can be
written uniquely in the form y = y 4+ z, where y isin W and z is in
Wt

o In fact, if

o To see that z =y — y is in W, we observe that z is orthogonal to
each u; in the basis for W, thus to every vector in W.

@ To show the the decomposition is unique, suppose y can also be
written as y = yj + z1, with ¥4 in W and z; in W+,

@ Theny=y4+z=y1+2z1,andsoy —y1 =21 — z.
@ So vector v =y — yq isin W, but also in W+, as z — z; is in W,

@ Hence v-v =0, and implies that v =0. So y =y} and z = z;.
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2 -2 1
Ex. Letuy = |5 |,up=| 1| and y = |2]|. Observe that {u1, w2} is
-1 1 3

an orthogonal basis for W = Span{uy, up}. Write y as the sum of a
vector in W and a vector orthogonal to W.

U= Ly e Ly 2\

6 Ly
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2 -2 1
Ex. Letuy = |5 |,up=| 1| and y = |2]|. Observe that {u1, w2} is
-1 1 3

an orthogonal basis for W = Span{uy, up}. Write y as the sum of a
vector in W and a vector orthogonal to W.

Sol. Let the vector in W be y and the vector orthogonal to W be
z=y—y.
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2 -2 1
Ex. Letuy = |5 |,up=| 1| and y = |2]|. Observe that {u1, w2} is
-1 1 3

an orthogonal basis for W = Span{uy, up}. Write y as the sum of a
vector in W and a vector orthogonal to W.

Sol. Let the vector in W be y and the vector orthogonal to W be

z=y—7y.
@ Then
2 -2 —2/5
g=i i+ L= S5 421 = 2
ot ik ~1 1 1/5
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2 -2 1
Ex. Letuy = |5 |,up=| 1| and y = |2]|. Observe that {u1, w2} is
-1 1 3

an orthogonal basis for W = Span{uy, up}. Write y as the sum of a
vector in W and a vector orthogonal to W.

Sol. Let the vector in W be y and the vector orthogonal to W be

z=y—y.
@ Then
2 -2 -2/5
. . ) 3
g=i i+ L= S5 421 = 2
up - Uy up - U 1 1 1/5
7/5
e Andz=y—y= 0
14/5
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Properties of orthogonal projections

o If {u1,...,up} is an orthogonal basis for W and if y happens to be in
W, then the formula for projy y is exactly the same as the
representation of y given in Theorem 5.
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Properties of orthogonal projections

o If {u1,...,up} is an orthogonal basis for W and if y happens to be in
W, then the formula for projy y is exactly the same as the
representation of y given in Theorem 5.

@ In this case, projiyy = y. In particular, if y is in
W = Span{u1,...,up}, then projywy =y.
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The best approximation theorem

@ Theorem 9. Let W be a subspace of R”, let y be any vector in R”,
v be the orthogonal projection of y onto W. Then y is the
closest point jn W to y, in the sense that ||y — y|| < ||y — v|| for all
istinct from y.

vin

Gexin Yu gyu@um.edu Section 6.2-6.3 Orthogonal sets and orthogonal projections



The best approximation theorem

@ Theorem 9. Let W be a subspace of R”, let y be any vector in R”,
and let y be the orthogonal projection of y onto W. Then y is the
closest point in W to y, in the sense that ||y — y|| < ||y — v|| for all
v in W distinct from y.

@ The vector y in Theorem 9 is called the best approximation to y by
elements of W.
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The best approximation theorem

@ Theorem 9. Let W be a subspace of R”, let y be any vector in R”,
and let y be the orthogonal projection of y onto W. Then y is the
closest point in W to y, in the sense that ||y — y|| < ||y — v|| for all
v in W distinct from y.

@ The vector y in Theorem 9 is called the best approximation to y by
elements of W.

@ The distance from y to v, given by ||y — v||, can be regarded as the
Of using v in place of y. Theorem 9 says that this error is
minimized when v = §.
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The best approximation theorem

@ Theorem 9. Let W be a subspace of R”, let y be any vector in R”,
and let y be the orthogonal projection of y onto W. Then y is the
closest point in W to y, in the sense that ||y — y|| < ||y — v|| for all
v in W distinct from y.

@ The vector y in Theorem 9 is called the best approximation to y by
elements of W.

@ The distance from y to v, given by ||y — v||, can be regarded as the
“error’ of using v in place of y. Theorem 9 says that this error is
minimized when v = §.

e Inequality ||y — y|| < |ly — v|| leads to a new proof that y does not
depend on the particular orthogonal basis used to compute it.
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The best approximation theorem

@ Theorem 9. Let W be a subspace of R”, let y be any vector in R”,
and let y be the orthogonal projection of y onto W. Then y is the
closest point in W to y, in the sense that ||y — y|| < ||y — v|| for all
v in W distinct from y.

@ The vector y in Theorem 9 is called the best approximation to y by
elements of W.

@ The distance from y to v, given by ||y — v||, can be regarded as the
“error’ of using v in place of y. Theorem 9 says that this error is
minimized when v = §.

e Inequality ||y — y|| < |ly — v|| leads to a new proof that y does not

depend on the particular orthogonal basis used to compute it.

o If a different orthogonal basis for W were used to construct an
orthogonal projection of y, then this projection would also be the
closest point in W to y, namely, y.
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Proof of Theorem 9

PF. Take v in W distinct from y. Then y — v is in W.

w Iy —vll 3

The orthogonal projection of y
onto W is the closest pointin W to y.
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Proof of Theorem 9

PF. Take v in W distinct from y. Then y — v is in W.

w Iy —vll 3

The orthogonal projection of y
onto W is the closest pointin W to y.

@ By the orthogonal decomposition theorem, y — y is orthogonal to W.
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Proof of Theorem 9

PF. Take v in W distinct from y. Then y — v is in W.

w Iy —vll 3

The orthogonal projection of y
onto W is the closest pointin W to y.

@ By the orthogonal decomposition theorem, y — y is orthogonal to W.

@ In particular, y — y is orthogonal to § — v (which is in W).
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Proof of Theorem 9

PF. Take v in W distinct from y. Then y — v is in W.

w Iy —vll 3

The orthogonal projection of y
onto W is the closest pointin W to y.

@ By the orthogonal decomposition theorem, y — y is orthogonal to W.
@ In particular, y — y is orthogonal to § — v (which is in W).

@ Sincey —v = (y—y)+ (¥ — v), the Pythagorean Theorem gives
ly = vIP = Ily =9I + 119 — vI*
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Proof of Theorem 9

PF. Take v in W distinct from y. Then y — v is in W.

w Iy —vll 3

The orthogonal projection of y
onto W is the closest pointin W to y.

By the orthogonal decomposition theorem, y — y is orthogonal to W.
@ In particular, y — y is orthogonal to § — v (which is in W).

@ Sincey —v = (y—y)+ (¥ — v), the Pythagorean Theorem gives
ly = vIP = Ily =9I + 119 — vI*

Now ||y — v||> > 0 because ¥ — v # 0, and so inequality follows
immediately.
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@ The distance from a point y in R" to a subspace W is defined as the
distance from y to the nearest point in W.
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@ The distance from a point y in R" to a subspace W is defined as the
distance from y to the nearest point in W.

Ex. Find the distance from y to W = Span{u1, u2}, where

-1 5 1
y = -5 , Ul = -2 , U = 2
10 1 1
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Ex.

Sol.

The distance from a point y in R” to a subspace W is defined as the
distance from y to the nearest point in W.

Find the distance from y to W = Span{u1, u»}, where

-1 5 1
y = -5 , Ul = -2 , U = 2
10 1 -1

By the Best Approximation Theorem, the distance from y to W is
|ly = 91I, where y = projwy.
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Ex.

Sol.

The distance from a point y in R” to a subspace W is defined as the
distance from y to the nearest point in W.

Find the distance from y to W = Span{u1, u»}, where

-1 5 1
y = -5 , Ul = -2 , U = 2
10 1 -1

By the Best Approximation Theorem, the distance from y to W is
|ly = 7ll, where § = projwy.

-1
SO)’}:%U1+_THU2: -8

t 4
A .
\f—' Zw(u*)’.uq_u

Yith 1 b
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@ The distance from a point y in R" to a subspace W is defined as the
distance from y to the nearest point in W.

Ex. Find the distance from y to W = Span{u1, u2}, where

-1 5 1
y = -5 , Ul = -2 , U = 2
10 1 -1

Sol. By the Best Approximation Theorem, the distance from y to W is
|ly = 7ll, where § = projwy.
-1
° Sof/:é—gul—i-%luz: -8
4
o It follows that y — 9 =[03 6]
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@ The distance from a point y in R" to a subspace W is defined as the
distance from y to the nearest point in W.

Ex. Find the distance from y to W = Span{u1, u2}, where

-1 5 1
y = -5 , Ul = -2 , U = 2
10 1 -1

Sol. By the Best Approximation Theorem, the distance from y to W is
|ly = 7ll, where § = projwy.
-1
° Sof/:é—gul—i-%luz: -8
4
o It follows that y — 9 =[03 6]

e So the distance is ||y — 9|| = /(v = 9) - (y — 9) = V/45.
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Properties of Orthogonormal projections

@ Theorem 10. If {uy,..., up} is an orthogonormal basis for a subspace
W of R", then

projwy = (y - u)ur + (y - uip)ua + ...+ (y - up)up

If U=[u1 ua ... up], then projyyy = UUTy for all y € R".
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