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Orthogonal sets

A set of vectors {u1, u2, . . . , up} in Rn is said to be an orthogonal set
if each pair of distinct vectors from the set is orthogonal, that is
ui · uj = 0 whenever i 6= j .

Theorem 4: If S = {u1, . . . , up} is an orthogonal set of nonzero
vectors in Rn, then S is linearly independent and hence is a basis for
the subspace spanned by S .
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Proof of Theorem 4

PF. Let c1u1 + . . .+ cpup = 0 for some scalars c1, . . . , cp.

Then we have

0 = 0 · u1 = (c1u1 + . . .+ cpup) · u1
= (c1u1) · u1 + . . .+ (cpup) · u1
= c1(u1 · u1) + . . .+ cp(up · u1) = c1(u1 · u1)

because u1 is orthogonal to u2, . . . , up.

Since u1 is nonzero, u1 · u1 is not zero and so c1 = 0.

Similarly, c2, . . . , cp must be zero.

Thus S is linearly independent.
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Orthogonal basis

An orthogonal basis for a subspace W of Rn is a basis for W that is
also an orthogonal set.

Theorem 5: Let {u1, . . . , up} be an orthogonal basis for a subspace
W of Rn. For each y in W , the weights in the linear combination
y = c1u1 + . . .+ cpup are given by cj =

y ·uj
uj ·uj for j = 1, . . . , p.

PF. The orthogonality of {u1, . . . , up} shows that

y · u1 = (c1u1 + . . .+ cpup) · u1 = c1(u1 · u1)

Since u1 · u1 is not zero, the equation above can be solved for c1.

To find cj , we can similarly compute y · uj and solve for cj .
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Orthogonal projection

Given a nonzero vector u in Rn, consider the problem of decomposing
a vector y in Rn into the sum of two vectors, one a multiplier of u
and the other orthogonal to u.

We wish to write y = ŷ + z , where ŷ = αu for some scalar α and z is
some vector orthogonal to u.

Given any scalar α, let z = y − αu. Then y − ŷ is orthogonal to u if
and only if 0 = (y − αu) · u = y · u − αu · u.

That is, y = ŷ + z with z orthogonal to u if and only if α = y ·u
u·u and

ŷ = y ·u
u·uu.
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The vector ŷ is called the orthogonal projection of y onto u, and the
vector z is called the component of y orthogonal to u.

If c is any nonzero scalar and if u is replaced by cu in the definition of
ŷ , then the orthogonal projection of y onto cu is exactly the same as
the orthogonal projection of y onto u.

Hence this projection is determined by the subspace L spanned by u
(the line through u and 0).

Sometimes ŷ is denoted by projLy and is called the orthogonal
projection of y onto L.

That is,

ŷ = projLy =
y · u
u · u

u
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The vector ŷ is called the orthogonal projection of y onto u, and the
vector z is called the component of y orthogonal to u.

If c is any nonzero scalar and if u is replaced by cu in the definition of
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ŷ = projLy =
y · u
u · u

u

Gexin Yu gyu@wm.edu Section 6.2-6.3 Orthogonal sets and orthogonal projections



Example

Ex. Let y = [7 6]T and u = [4 2]T . Find the orthogonal projection of y
onto u. Then write y as the sum of two orthogonal vectors, one in
Span{u} and one orthogonal to u.

Sol. Compute y · u = 40 and u · u = 20.

The orthogonal projection of y onto u is ŷ = y ·u
u·uu = 2u = [8 4]T .

And the component of y orthogonal to u is
y − ŷ = [7 6]T − [8 4]T = [−1 2]T .

That is, [7 6] = [8 4] + [−1 2].
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Orthonormal sets

A set {u1, . . . , up} is an orthonormal set if it is an orthogonal set of
unit vectors.

If W is the subspace spanned by such a set, then {u1, . . . , up} is an
orthonormal basis for W , since the set is automatically linearly
independent, by Theorem 4.

The simplest example of an orthonormal set is the standard basis
{e1, . . . , en} for Rn.

Any nonempty subset of {e1, · · · , en} is orthonormal, too
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Orthonormal columns of a matrix

Theorem 6: an n ×m matrix U has orthonormal columns if and only
if UTU = I .

PF. To simplify notation, we suppose U has only three columns,
U = [u1 u2 u2].

Then

UTU =

uT1uT2
uT3

 [u1 u2 u3] =

uT1 u1 uT1 u2 uT1 u3
uT2 u1 uT2 u2 uT2 u3
uT3 u1 uT3 u2 uT3 u3


The columns of U are orthogonal if and only if uTi uj = 0 for i 6= j .

The columns of U all have unit length if and only if uTi ui = 1 for
i = 1, 2, 3.

From above conditions, the theorem follows immediately.
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Orthonormal sets

Theorem 7: Let U be an m × n matrix with orthonormal columns,
and let x and y be in Rn. Then

I ||Ux || = ||x ||
I (Ux) · (Uy) = x · y
I (Ux) · (Uy) = 0 if and only if x · y = 0.

The above properties say that the linear mapping x → Ux preserves
lengths and orthogonality.
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The orthogonal projection of a point in R2 onto a line through the
origin has an important analogue in Rn.

Given a vector y and a subspace W in Rn, there is a vector ŷ in W
such that (1) ŷ is the unique vector in W for which y − ŷ is
orthogonal to W , and (2) ŷ is the unique vector in W closest to y .

These two properties of ŷ provide the key to finding the least-squares
solutions of linear systems.
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Theorem 8: Let W be a subspace of Rn. Then each y in Rn can be
written uniquely in the form y = ŷ + z , where ŷ is in W and z is in
W⊥.

In fact, if {u1. . . . , up} is any orthogonal basis of W , then

ŷ =
y · u1
u1 · u1

u1 + . . .+
y · up
up · up

up and z = y − ŷ

PF. Similar to the proof of Theorem 5, we get ŷ .

To see that z = y − ŷ is in W⊥, we observe that z is orthogonal to
each uj in the basis for W , thus to every vector in W .

To show the the decomposition is unique, suppose y can also be
written as y = ŷ1 + z1, with ŷ1 in W and z1 in W⊥.

Then y = ŷ + z = ŷ1 + z1, and so ŷ − ŷ1 = z1 − z .

So vector v = ŷ − ŷ1 is in W , but also in W⊥, as z − z1 is in W⊥.

Hence v · v = 0, and implies that v = 0. So ŷ = ŷ1 and z = z1.
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PF. Similar to the proof of Theorem 5, we get ŷ .
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ŷ =
y · u1
u1 · u1

u1 + . . .+
y · up
up · up

up and z = y − ŷ
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Example

Ex. Let u1 =

 2
5
−1

 , u2 =

−2
1
1

 and y =

1
2
3

. Observe that {u1, u2} is

an orthogonal basis for W = Span{u1, u2}. Write y as the sum of a
vector in W and a vector orthogonal to W .

Sol. Let the vector in W be ŷ and the vector orthogonal to W be
z = y − ŷ .

Then

ŷ =
y · u1
u1 · u1

u1 +
y · u2
u2 · u2

u2 =
9

30

 2
5
−1

 +
3

6

−2
1
1

 =

−2/5
2

1/5



And z = y − ŷ =

 7/5
0

14/5


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Then
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Properties of orthogonal projections

If {u1, . . . , up} is an orthogonal basis for W and if y happens to be in
W , then the formula for projW y is exactly the same as the
representation of y given in Theorem 5.

In this case, projW y = y . In particular, if y is in
W = Span{u1, . . . , up}, then projW y = y .

Gexin Yu gyu@wm.edu Section 6.2-6.3 Orthogonal sets and orthogonal projections



Properties of orthogonal projections

If {u1, . . . , up} is an orthogonal basis for W and if y happens to be in
W , then the formula for projW y is exactly the same as the
representation of y given in Theorem 5.

In this case, projW y = y . In particular, if y is in
W = Span{u1, . . . , up}, then projW y = y .

Gexin Yu gyu@wm.edu Section 6.2-6.3 Orthogonal sets and orthogonal projections



The best approximation theorem

Theorem 9. Let W be a subspace of Rn, let y be any vector in Rn,
and let ŷ be the orthogonal projection of y onto W . Then ŷ is the
closest point in W to y , in the sense that ||y − ŷ || < ||y − v || for all
v in W distinct from ŷ .

The vector ŷ in Theorem 9 is called the best approximation to y by
elements of W .

The distance from y to v , given by ||y − v ||, can be regarded as the
“error’ of using v in place of y . Theorem 9 says that this error is
minimized when v = ŷ .

Inequality ||y − ŷ || < ||y − v || leads to a new proof that ŷ does not
depend on the particular orthogonal basis used to compute it.

If a different orthogonal basis for W were used to construct an
orthogonal projection of y , then this projection would also be the
closest point in W to y , namely, ŷ .
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Proof of Theorem 9

PF. Take v in W distinct from ŷ . Then ŷ − v is in W .

By the orthogonal decomposition theorem, y − ŷ is orthogonal to W .

In particular, y − ŷ is orthogonal to ŷ − v (which is in W ).

Since y − v = (y − ŷ) + (ŷ − v), the Pythagorean Theorem gives
||y − v ||2 = ||y − ŷ ||2 + ||ŷ − v ||2.

Now ||ŷ − v ||2 > 0 because ŷ − v 6= 0, and so inequality follows
immediately.

Gexin Yu gyu@wm.edu Section 6.2-6.3 Orthogonal sets and orthogonal projections



Proof of Theorem 9

PF. Take v in W distinct from ŷ . Then ŷ − v is in W .
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Since y − v = (y − ŷ) + (ŷ − v), the Pythagorean Theorem gives
||y − v ||2 = ||y − ŷ ||2 + ||ŷ − v ||2.
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Example

The distance from a point y in Rn to a subspace W is defined as the
distance from y to the nearest point in W .

Ex. Find the distance from y to W = Span{u1, u2}, where

y =

−1
−5
10

 , u1 =

 5
−2
1

 , u2 =

 1
2
−1


Sol. By the Best Approximation Theorem, the distance from y to W is

||y − ŷ ||, where ŷ = projW y .

So ŷ = 15
30u1 + −21

6 u2 =

−1
−8
4


It follows that y − ŷ = [0 3 6]T

So the distance is ||y − ŷ || =
√

(y − ŷ) · (y − ŷ) =
√

45.
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 1
2
−1


Sol. By the Best Approximation Theorem, the distance from y to W is

||y − ŷ ||, where ŷ = projW y .

So ŷ = 15
30u1 + −21

6 u2 =

−1
−8
4



It follows that y − ŷ = [0 3 6]T

So the distance is ||y − ŷ || =
√

(y − ŷ) · (y − ŷ) =
√

45.
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Properties of Orthogonormal projections

Theorem 10. If {u1, . . . , up} is an orthogonormal basis for a subspace
W of Rn, then

projW y = (y · u1)u1 + (y · u2)u2 + . . .+ (y · up)up

If U = [u1 u2 . . . up], then projW y = UUT y for all y ∈ Rn.
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