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Symmetric matrix

A symmetric matrix is a matrix A such that AT = A.

Such a matrix is necessarily square.

Its main diagonal entries are arbitrary, but its other entries occur in
pairs on opposite sides of the main diagonal.
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Theorem: If A is symmetric, then any two eigenvectors from different
eigenspaces are orthogonal.

Proof: Let v1 and v2 be eigenvectors that correspond to distinct
eigenvalues, say λ1 and λ2. We show that v1 · v2 = 0. Note that

λ1v1 · v2 = (λ1v1)T v2 = (Av1)T v2 = (vT1 AT )v2

= vT1 (AT v2) = vT1 (Av2) = vT1 (λ2v2) = λ2(vT1 v2)

= λ2v1 · v2.

It follows that (λ1 − λ2)(v1 · v2) = 0. So v1 · v2 = 0.
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Orthogonally diagonalizable matrix

An n × n matrix A is said to be orthogonally diagonzlizable if there
are orthogonal matrix P (with P−1 = PT ) and a diagonal matrix D
such that

A = PDPT = PDP−1

Such a diagonalization requires n linearly independent and orthogonal
eigenvectors.

When is this possible?

If A is orthogonally diagonalizable, then

AT = (PDPT )T = (PT )TDTPT = PDPT = A

So A should be symmetric.

Theorem: An n × n matrix A is orthogonally diagonalizable if and
only if A is symmetric.
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Example

Ex: Orthogonally diagonalize the matrix

 3 −2 4
−2 6 2
4 2 3.



First of all, its charateristic equation is det(A−λI ) = (λ− 7)2(λ+ 2).
So its eigenvalues are 7 (with multiplicity 2) and −2.

The bases for the eigenspaces are

λ = 7 : v1 =

1
0
1

 , v2 =

−1
2

1
0

 ; λ = −2 : v3 =

−1
−1

2
1


The projection of v2 onto v1 is v2·v1

v1·v1 v1, so the component of v2

orthogonal to v1 is z2 = v2 − v2·v1
v1·v1 v1 =

−1
4

1
1
4


So {v1, z2} is an orthogonal set in the eigenspace for λ = 7.
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Normalize v1 and z2 to get a orthonormal basis for the eigenspace for
λ = 7:

u1 =

1/
√

2
0

1/
√

2

 , u2 =

−1/
√

18

4/
√

18

1/
√

18



An orthonormal basis for the eigenspace for λ = −2 is

u3 =
v3
||v3||

=

−2/3
−1/3
2/3


Now {u1, u2, u3} is an orthonormal set.

Let

P = [u1 u2 u3] =


1√
2
− 1√

18
−2

3

0 4√
18

−1
3

1√
2

1√
18

2
3

 , D =

7 0 0
0 7 0
0 0 −2


then P orthogonally diagonalizes A, and A = PDPT .
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the Spectral Theorem

The set of eigenvalues of a matrix A is sometimes called the spectrum
of A.

Spectral Theorem: An n × n symmetric matrix A has the following
properties:

1 A has n real eigenvalues, counting multiplicities.

2 The dimension of the eigenspace for each eigenvalue λ equals the
multiplicity of λ as a root of the characteristic equation.

3 The eigenspaces are mutually orthogonal, in the sense that eigenvectors
corresponding to different eigenvalues are orthogonal.

4 A is orthogonally diagonalizable.
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Spectral decomposition

Suppose that A = PDP−1, where the columns of P are orthonormal
eigenvectors u1, . . . , un of A and the corresponding eigenvalues
λ1, . . . , λn are in the diagonal matrix D. Then

A =PDPT = [u1 u2 . . . un]

λ1 0 . . . 0
0 λ2 0
0 0 λn



uT1
uT2
. . .
uTn


=λ1u1u

T
1 + λ2u2u

T
2 + . . .+ λnunu

T
n

The expression A = λ1u1u
T
1 + λ2u2u

T
2 + . . .+ λnunu

T
n is called a

spectral decomposition of A, because if breaks A into pieces
determined by the spectrum (eigenvalues) of A.

Each term in the decomposition is an n × n matrix of rank 1.
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Example

Ex:

A =

[
7 2
2 4

]
=

[
2√
5
− 1√

5
1√
5

2√
5

] [
8 0
0 3

][ 2√
5

1√
5

− 1√
5

2√
5

]

Then

A = 8u1u
T
1 + 3u2u

T
2 =

[
32
5

16
5

16
5

8
5

]
+

[
3
5 −6

5
−6

5
12
5

]
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Quadratic forms

A quadratic form is a function defined on Rn whose value at a vector
x in Rn can be computed by an expression of the form Q(x) = xTAx ,
where A is an n × n symmetric matrix.

The matrix A is called the matrix of the quadratic form.

Ex: let x =

(
x1
x2

)
. Compute xTAx for the following matrices:

A =

[
4 0
0 3

]
, B =

[
3 −2
−2 7

]
xTAx = 4x21 + 3x22 .

xTBx = 3x21 − 4x1x2 + 7x22 .

The term −4x1x2 is called a cross-product term.
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Change of variable in a quadratic form

If x represents a variable vector in Rn, then a change of variable is an
equation of the form x = Py , or y = P−1x , where P is an invertible
matrix and y is a new variable vector in Rn.

By make a change of variable on xTAx , we have

xTAx = (Py)TA(Py) = yTPTAPy = yT (PTAP)y

we obtain a new matrix of the quadratic form PTAP.

Since A is symmetric, there is an orthogonal matrix P such that
PTAP is a diagonal matrix D, and the quadratic form above becomes
yTDy , which contains no cross-product terms.

Theorem: Let A be an n × n symmetric matrix. Then there is an
orthogonal change of variable, x = Py , that transforms the quadratic
form xTAx into a quadratic form yTDy with no cross-product term.
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Example

Ex: Make a change of variable that transforms the quadratic form
Q(x) = x21 − 8x1x2 − 5x22 into a quadratic form with no cross-product
term.

The matrix of the given quadratic form is

A =

[
1 −4
−4 −5

]
Orthogonally diagonalize A: the eigenvalues of A are 3 and −7, and
the associated unit eigenvectors are λ = 3 : [ 2√

5
− 1√

5
]T and

λ = −7 : [ 1√
5

2√
5

]T .

Let

P =

[
2√
5

1√
5

− 1√
5

2√
5

]
,D =

[
3 0
0 −7

]
then A = PDPT and D = PTAP. Let x = Py , then

x21 − 8x1x2 − 5x22 = yTDy = 3y21 − 7y22
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The principal axes theorem

The columns of P in the theorem are called the principal axes of the
quadratic form xTAx .

The vector y is the coordinate vector of x relative to the orthonormal
basis of Rn given by these principal axes.

It can be shown that the set of all x in Rn that satisfy xTAx = c
either corresponds to an ellipse (or a circle), a hyperbola, two
intersecting lines, or a single point, or contains no points at all.

If A is a diagonal matrix, the graph is in standard position, such as
the figure below:

If A is not a diagonal matrix, the graph of equation is rotated out of
the standard position.

Finding the principal axes (determined by the eigenvectors of A)
amounts to finding a new coordinate system with respect to which
the graph is in standard position.
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Classifying quadratic forms

Definition: A quadratic form Q(x) is

I positive definite if Q(x) > 0 for all x 6= 0;
I negative definite if Q(x) < 0 for all x 6= 0;
I indefinite if Q(x) assumes both positive and negative values.

Also, Q is said to be positive semidefinite if Q(x) ≥ 0 for all x , and
negative semidefinite if Q(x) ≤ 0 for all x .

Theorem: Let A be an n × n symmetric matrix. Then a quadratic
form xTAx is:

I positive definite if and only if the eigenvalues of A are all positive,
I negative definite if and only if the eigenvalues of A are all negative, or
I indefinite if and only if A has both positive and negative eigenvalues.
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