CHAPTER 1 SUPPLEMENTARY EXE

- Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.
 - a. Every matrix is row equivalent to a unique matrix in echelon form.
 - b. Any system of *n* linear equations in *n* variables has at most *n* solutions.
 - c. If a system of linear equations has two different solutions, it must have infinitely many solutions.
 - d. If a system of linear equations has no free variables, then it has a unique solution.
 - e. If an augmented matrix $[A \ \mathbf{b}]$ is transformed into $[C \ \mathbf{d}]$ by elementary row operations, then the equations $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{d}$ have exactly the same solution sets.
 - f. If a system $A\mathbf{x} = \mathbf{b}$ has more than one solution, then so does the system $A\mathbf{x} = \mathbf{0}$.
 - g. If A is an $m \times n$ matrix and the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some **b**, then the columns of A span \mathbb{R}^m .
 - h. If an augmented matrix $[A \ \mathbf{b}]$ can be transformed by elementary row operations into reduced echelon form, then the equation $A\mathbf{x} = \mathbf{b}$ is consistent.
 - i. If matrices A and B are row equivalent, they have the same reduced echelon form.
 - j. The equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution if and only if there are no free variables.
 - k. If A is an $m \times n$ matrix and the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m , then A has m pivot columns.
 - 1. If an $m \times n$ matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbb{R}^m .
 - m. If an $n \times n$ matrix A has n pivot positions, then the reduced echelon form of A is the $n \times n$ identity matrix.
 - n. If 3×3 matrices A and B each have three pivot positions, then A can be transformed into B by elementary row operations.

- o. If A is an $m \times n$ matrix, if the equation $A\mathbf{x} = \mathbf{b}$ has at least two different solutions, and if the equation $A\mathbf{x} = \mathbf{c}$ is consistent, then the equation $A\mathbf{x} = \mathbf{c}$ has many solutions.
- p. If A and B are row equivalent $m \times n$ matrices and if the columns of A span \mathbb{R}^m , then so do the columns of B.
- q. If none of the vectors in the set $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ in \mathbb{R}^3 is a multiple of one of the other vectors, then S is linearly independent.
- r. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then \mathbf{u}, \mathbf{v} , and \mathbf{w} are not in \mathbb{R}^2 .
- s. In some cases, it is possible for four vectors to span \mathbb{R}^5 .
- t. If **u** and **v** are in \mathbb{R}^m , then $-\mathbf{u}$ is in Span $\{\mathbf{u}, \mathbf{v}\}$.
- u. If \mathbf{u} , \mathbf{v} , and \mathbf{w} are nonzero vectors in \mathbb{R}^2 , then \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v} .
- v. If w is a linear combination of u and v in \mathbb{R}^n , then u is a linear combination of v and w.
- w. Suppose that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are in \mathbb{R}^5 , \mathbf{v}_2 is not a multiple of \mathbf{v}_1 , and \mathbf{v}_3 is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- x. A linear transformation is a function.
- y. If A is a 6×5 matrix, the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot map \mathbb{R}^5 onto \mathbb{R}^6 .
- z. If A is an $m \times n$ matrix with m pivot columns, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is a one-to-one mapping.

CHAPTER 2 SUPPLEMENTARY EX

- 1. Assume that the matrices mentioned in the statements below have appropriate sizes. Mark each statement True or False. Justify each answer.
 - a. If A and B are $m \times n$, then both AB^T and A^TB are defined.
 - b. If AB = C and C has 2 columns, then A has 2 columns.
 - c. Left-multiplying a matrix B by a diagonal matrix A, with nonzero entries on the diagonal, scales the rows of B.
 - d. If BC = BD, then C = D.
 - e. If AC = 0, then either A = 0 or C = 0.
 - f. If A and B are $n \times n$, then $(A + B)(A B) = A^2 B^2$.
 - g. An elementary $n \times n$ matrix has either n or n + 1 nonzero entries.
 - h. The transpose of an elementary matrix is an elementary matrix.
 - i. An elementary matrix must be square.
 - j. Every square matrix is a product of elementary matrices.
 - k. If A is a 3×3 matrix with three pivot positions, there exist elementary matrices E_1, \ldots, E_p such that $E_p \cdots E_1 A = I$.
 - 1. If AB = I, then A is invertible.
 - m. If A and B are square and invertible, then AB is invertible, and $(AB)^{-1} = A^{-1}B^{-1}$.
 - n. If AB = BA and if A is invertible, then $A^{-1}B = BA^{-1}$.
 - o. If A is invertible and if $r \neq 0$, then $(rA)^{-1} = rA^{-1}$.
 - p. If A is a 3 × 3 matrix and the equation $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ has a unique solution, then A is invertible.

CHAPTER 3 SUPPLEMENTARY EXE

- Mark each statement True or False. Justify each answer. Assume that all matrices here are square.
 - a. If A is a 2×2 matrix with a zero determinant, then one column of A is a multiple of the other.
 - b. If two rows of a 3×3 matrix A are the same, then $\det A = 0$.
 - c. If A is a 3×3 matrix, then det $5A = 5 \det A$.
 - d. If A and B are $n \times n$ matrices, with det A = 2 and det B = 3, then det(A + B) = 5.
 - e. If A is $n \times n$ and det A = 2, then det $A^3 = 6$.
 - f. If B is produced by interchanging two rows of A, then $\det B = \det A$.
 - g. If B is produced by multiplying row 3 of A by 5, then $\det B = 5 \cdot \det A$.
 - h. If B is formed by adding to one row of A a linear combination of the other rows, then $\det B = \det A$.
 - i. $\det A^T = -\det A$.
 - j. $\det(-A) = -\det A$.
 - k. $\det A^T A \geq 0$.
 - 1. Any system of *n* linear equations in *n* variables can be solved by Cramer's rule.
 - m. If \mathbf{u} and \mathbf{v} are in \mathbb{R}^2 and $\det[\mathbf{u} \ \mathbf{v}] = 10$, then the area of the triangle in the plane with vertices at $\mathbf{0}$, \mathbf{u} , and \mathbf{v} is 10.
 - n. If $A^3 = 0$, then det A = 0.
 - o. If A is invertible, then $\det A^{-1} = \det A$.
 - p. If A is invertible, then $(\det A)(\det A^{-1}) = 1$.