If statement (d) is true, then each row of U contains a pivot position and there can be no pivot in the augmented column. So Ax = b has a solution for any b, and (a) is true. If (d) is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry. Then $[U \ \mathbf{d}]$ represents an *inconsistent* system. Since row operations are reversible, $[U \ \mathbf{d}]$ can be transformed into the form $[A \ \mathbf{b}]$. The new system $A\mathbf{x} = \mathbf{b}$ is also inconsistent, and (a) is false. ## PRACTICE PROBLEMS **1.** Let $$A = \begin{bmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7 \end{bmatrix}$$, $\mathbf{p} = \begin{bmatrix} 3 \\ -2 \\ 0 \\ -4 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -7 \\ 9 \\ 0 \end{bmatrix}$. It can be shown that \mathbf{p} is a solution of $A\mathbf{x} = \mathbf{b}$. Use this fact to exhibit \mathbf{b} as a specific linear combination of the columns of A. **2.** Let $$A = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}$$, $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$. Verify Theorem 5(a) in this case by computing $A(\mathbf{u} + \mathbf{v})$ and $A\mathbf{u} + A\mathbf{v}$. ## 1.4 EXERCISES Compute the products in Exercises 1-4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing Ax. If a product is undefined, explain why. 1. $$\begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$$ 2. $$\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$ $$\mathbf{2.} \quad \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$ 3. $$\begin{bmatrix} 1 & 2 \\ -3 & 1 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$ 3. $$\begin{bmatrix} 1 & 2 \\ -3 & 1 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$ 4. $\begin{bmatrix} 1 & 3 & -4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ In Exercises 5-8, use the definition of Ax to write the matrix equation as a vector equation, or vice versa. 5. $$\begin{bmatrix} 1 & 2 & -3 & 1 \\ -2 & -3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$ **6.** $$\begin{bmatrix} 2 & -3 \\ 3 & 2 \\ 8 & -5 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} -21 \\ 1 \\ -49 \\ 11 \end{bmatrix}$$ 7. $$x_1 \begin{bmatrix} 4 \\ -1 \\ 7 \\ -4 \end{bmatrix} + x_2 \begin{bmatrix} -5 \\ 3 \\ -5 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 7 \\ -8 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -8 \\ 0 \\ -7 \end{bmatrix}$$ **8.** $$z_1 \begin{bmatrix} 2 \\ -4 \end{bmatrix} + z_2 \begin{bmatrix} -1 \\ 5 \end{bmatrix} + z_3 \begin{bmatrix} -4 \\ 3 \end{bmatrix} + z_4 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$ In Exercises 9 and 10, write the system first as a vector equation and then as a matrix equation. **9.** $$5x_1 + x_2 - 3x_3 = 8$$ **10.** $4x_1 - x_2 = 8$ **10.** $$4x_1 - x_2 = 3$$ $$5x_1 + 3x_2 = 2$$ $$3x_1 - x_2 = 1$$ Given A and b in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Then solve the system and write the solution as a vector. **11.** $$A = \begin{bmatrix} 1 & 3 & -4 \\ 1 & 5 & 2 \\ -3 & -7 & 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 4 \\ 12 \end{bmatrix}$$ **12.** $$A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -4 & 2 \\ 5 & 2 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$ 13. Let $$\mathbf{u} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$$ and $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$. Is \mathbf{u} in the plane in \mathbb{R}^3 spanned by the columns of A? (See the figure.) Why or why not? **14.** Let $$\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix}$$ and $A = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A ? Why or why not? - **15.** Let $A = \begin{bmatrix} 3 & -1 \\ -9 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Show that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for all possible \mathbf{b} , and describe the set of all \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ does have a solution. - 16. Repeat the requests from Exercise 15 with $$A = \begin{bmatrix} 1 & -2 & -1 \\ -2 & 2 & 0 \\ 4 & -1 & 3 \end{bmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$ Exercises 17-20 refer to the matrices A and B below. Make appropriate calculations that justify your answers and mention an appropriate theorem. $$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 4 & 1 & 2 \\ 0 & 1 & 3 & -4 \\ 0 & 2 & 6 & 7 \\ 2 & 9 & 5 & -7 \end{bmatrix}$$ - 17. How many rows of A contain a pivot position? Does the equation $A\mathbf{x} = \mathbf{b}$ have a solution for each \mathbf{b} in \mathbb{R}^4 ? - **18.** Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix B above? Do the columns of B span \mathbb{R}^3 ? - **19.** Can each vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix A above? Do the columns of A span \mathbb{R}^4 ? - **20.** Do the columns of *B* span \mathbb{R}^4 ? Does the equation $B\mathbf{x} = \mathbf{y}$ have a solution for each \mathbf{y} in \mathbb{R}^4 ? 21. Let $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$. Does $\{\mathbf v_1,\mathbf v_2,\mathbf v_3\}$ span $\mathbb R^4$? Why or why not? **22.** Let $$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -3 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ -2 \\ -6 \end{bmatrix}$. Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ? Why or why not? In Exercises 23 and 24, mark each statement True or False. Justify each answer. - 23. a. The equation $A\mathbf{x} = \mathbf{b}$ is referred to as a *vector equation*. - b. A vector \mathbf{b} is a linear combination of the columns of a matrix A if and only if the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution. - c. The equation Ax = b is consistent if the augmented matrix [A b] has a pivot position in every row. - d. The first entry in the product Ax is a sum of products. - e. If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^m . - f. If A is an $m \times n$ matrix and if the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^m , then A cannot have a pivot position in every row. - **24.** a. Every matrix equation $A\mathbf{x} = \mathbf{b}$ corresponds to a vector equation with the same solution set. - b. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then \mathbf{b} is in the set spanned by the columns of A. - Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x. - d. If the coefficient matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent. - e. The solution set of a linear system whose augmented matrix is $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ is the same as the solution set of $A\mathbf{x} = \mathbf{b}$, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$. - f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m . **25.** Note that $$\begin{bmatrix} 4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix}.$$ Use this fact (and no row operations) to find scalars c_1 , c_2 , c_3 such that $$\begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 4 \\ 5 \\ -6 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}.$$ **26.** Let $$\mathbf{u} = \begin{bmatrix} 7 \\ 2 \\ 5 \end{bmatrix}$$, $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$. It can be about that $2\mathbf{v} = 2\mathbf{v}$. We also this fact (and no row) shown that $2\mathbf{u} - 3\mathbf{v} - \mathbf{w} = \mathbf{0}$. Use this fact (and no row operations) to find x_1 and x_2 that satisfy the equation $$\begin{bmatrix} 7 & 3 \\ 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}.$$ 27. Rewrite the (numerical) matrix equation below in symbolic form as a vector equation, using symbols $\mathbf{v}_1, \mathbf{v}_2, \ldots$ for the vectors and c_1, c_2, \ldots for scalars. Define what each symbol represents, using the data given in the matrix equation. $$\begin{bmatrix} -3 & 5 & -4 & 9 & 7 \\ 5 & 8 & 1 & -2 & -4 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 11 \\ -11 \end{bmatrix}$$ **28.** Let \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 , and \mathbf{v} represent vectors in \mathbb{R}^5 , and let x_1 , x_2 , and x_3 denote scalars. Write the following vector equation as a matrix equation. Identify any symbols you choose to use. $$x_1\mathbf{q}_1 + x_2\mathbf{q}_2 + x_3\mathbf{q}_3 = \mathbf{v}$$ - **29.** Construct a 3×3 matrix, not in echelon form, whose columns span \mathbb{R}^3 . Show that the matrix you construct has the desired property. - **30.** Construct a 3×3 matrix, not in echelon form, whose columns do *not* span \mathbb{R}^3 . Show that the matrix you construct has the desired property. - **31.** Let A be a 3×2 matrix. Explain why the equation $A\mathbf{x} = \mathbf{b}$ cannot be consistent for all \mathbf{b} in \mathbb{R}^3 . Generalize your argument to the case of an arbitrary A with more rows than columns. - **32.** Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. What about n vectors in \mathbb{R}^m when n is less than m? - 33. Suppose A is a 4×3 matrix and \mathbf{b} is a vector in \mathbb{R}^4 with the property that $A\mathbf{x} = \mathbf{b}$ has a unique solution. What can you say about the reduced echelon form of A? Justify your answer - **34.** Let A be a 3×4 matrix, let \mathbf{v}_1 and \mathbf{v}_2 be vectors in \mathbb{R}^3 , and let $\mathbf{w} = \mathbf{v}_1 + \mathbf{v}_2$. Suppose $\mathbf{v}_1 = A\mathbf{u}_1$ and $\mathbf{v}_2 = A\mathbf{u}_2$ for some vectors \mathbf{u}_1 and \mathbf{u}_2 in \mathbb{R}^4 . What fact allows you to conclude that the system $A\mathbf{x} = \mathbf{w}$ is consistent? (*Note:* \mathbf{u}_1 and \mathbf{u}_2 denote vectors, not scalar entries in vectors.) - **35.** Let A be a 5×3 matrix, let \mathbf{y} be a vector in \mathbb{R}^3 , and let \mathbf{z} be a vector in \mathbb{R}^5 . Suppose $A\mathbf{y} = \mathbf{z}$. What fact allows you to conclude that the system $A\mathbf{x} = 5\mathbf{z}$ is consistent? - **36.** Suppose A is a 4×4 matrix and \mathbf{b} is a vector in \mathbb{R}^4 with the property that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Explain why the columns of A must span \mathbb{R}^4 . [M] In Exercises 37–40, determine if the columns of the matrix span \mathbb{R}^4 . 37. $\begin{bmatrix} 7 & 2 & -5 & 8 \\ -5 & -3 & 4 & -9 \\ 6 & 10 & -2 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$ 38. $\begin{bmatrix} 4 & -5 & -1 & 8 \\ 3 & -7 & -4 & 2 \\ 5 & -6 & -1 & 4 \\ 9 & 1 & 10 & 7 \end{bmatrix}$ $\mathbf{39.} \begin{bmatrix} 10 & -7 & 1 & 4 & 6 \\ -8 & 4 & -6 & -10 & -3 \\ -7 & 11 & -5 & -1 & -8 \\ 3 & -1 & 10 & 12 & 12 \end{bmatrix}$ - **40.** $\begin{bmatrix} 5 & 11 & -6 & -7 & 12 \\ -7 & -3 & -4 & 6 & -9 \\ 11 & 5 & 6 & -9 & -3 \\ -3 & 4 & -7 & 2 & 7 \end{bmatrix}$ - **41.** [M] Find a column of the matrix in Exercise 39 that can be deleted and yet have the remaining matrix columns still span \mathbb{R}^4 . - **42.** [M] Find a column of the matrix in Exercise 40 that can be deleted and yet have the remaining matrix columns still span \mathbb{R}^4 . Can you delete more than one column? sg Mastering Linear Algebra Concepts: Span 1-18 WEB ## **SOLUTIONS TO PRACTICE PROBLEMS** 1. The matrix equation $$\begin{bmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 0 \\ -4 \end{bmatrix} = \begin{bmatrix} -7 \\ 9 \\ 0 \end{bmatrix}$$ is equivalent to the vector equation $$3\begin{bmatrix} 1\\ -3\\ 4 \end{bmatrix} - 2\begin{bmatrix} 5\\ 1\\ -8 \end{bmatrix} + 0\begin{bmatrix} -2\\ 9\\ -1 \end{bmatrix} - 4\begin{bmatrix} 0\\ -5\\ 7 \end{bmatrix} = \begin{bmatrix} -7\\ 9\\ 0 \end{bmatrix}$$ which expresses \mathbf{b} as a linear combination of the columns of A. 2. $$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 4 \\ -1 \end{bmatrix} + \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$ $$A(\mathbf{u} + \mathbf{v}) = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 + 20 \\ 3 + 4 \end{bmatrix} = \begin{bmatrix} 22 \\ 7 \end{bmatrix}$$ $$A\mathbf{u} + A\mathbf{v} = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$ $$= \begin{bmatrix} 3 \\ 11 \end{bmatrix} + \begin{bmatrix} 19 \\ -4 \end{bmatrix} = \begin{bmatrix} 22 \\ 7 \end{bmatrix}$$