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Abstract. A graph is (d1, . . . , dk)-colorable if its vertex set can be partitioned into k nonempty

subsets so that the subgraph induced by the ith part has maximum degree at most di for each

i ∈ {1, . . . , k}. It is known that for each pair (d1, d2), there exists a planar graph with girth 4 that

is not (d1, d2)-colorable. This sparked the interest in finding the pairs (d1, d2) such that planar

graphs with girth at least 5 are (d1, d2)-colorable. Given d1 ≤ d2, it is known that planar graphs

with girth at least 5 are (d1, d2)-colorable if either d1 ≥ 2 and d1 + d2 ≥ 8 or d1 = 1 and d2 ≥ 10.

We improve an aforementioned result by providing the first pair (d1, d2) in the literature satisfying

d1 + d2 ≤ 7 where planar graphs with girth at least 5 are (d1, d2)-colorable. Namely, we prove that

planar graphs with girth at least 5 are (3, 4)-colorable.

1. Introduction

All graphs in this paper are finite and simple, which means no loops and no multiple edges.

Given a graph G, let V (G) and E(G) denote its vertex set and edge set, respectively. A graph

is (d1, . . . , dk)-colorable if its vertex set can be partitioned into k nonempty subsets so that the

subgraph induced by the ith part has maximum degree at most di for each i ∈ {1, . . . , k}. This

notion is known as improper coloring, or defective coloring, and has recently attracted much atten-

tion. Improper coloring is a relaxation of the traditional proper coloring, however, it also opens up

an opportunity to gain refined information on partitioning the graph compared to the traditional

proper coloring.

The Four Color Theorem [?, ?] states that the vertex set of a planar graph can be partitioned

into four independent sets; this means that every planar graph is (0, 0, 0, 0)-colorable since an

independent set induces a graph with maximum degree at most 0. A natural question to ask is

what happens when we try to partition the vertex set of a planar graph into fewer parts. Already in

1986, Cowen, Cowen, and Woodall [?] proved that a planar graph is (2, 2, 2)-colorable. The previous

result is sharp since Eaton and Hull [?] and independently Škrekovski [?] both acknowledged the

existence of a planar graph that is not (1, k, l)-colorable for any given k and l; for an explicit

construction see [?]. Hence, improper coloring of a planar graph with no restriction is completely

solved.

Since sparser graphs are easier to color, a natural direction of research is to consider sparse planar

graphs, and a popular sparsity condition is imposing a restriction on girth. Grötzsch’s theorem [?]

states that a planar graph with girth at least 4 is (0, 0, 0)-colorable. Therefore it only remains to

consider partitioning the vertex set of a planar graph into two parts. Moreover, since there exists a
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planar graph with girth 4 that is not (d1, d2)-colorable for each pair (d1, d2) (see [?] for an explicit

construction), there has been a considerable amount of research towards improper coloring planar

graphs with girth at least 5. For various results regarding improper coloring planar graphs with

girth at least 6 or other sparse graphs that are not necessarily planar, see [?, ?, ?, ?, ?, ?]. Similar

research has also been done for graphs on surfaces as well [?].

In this paper, we focus on planar graphs with girth at least 5. Škrekovski [?] showed that planar

graphs with girth at least 5 are (4, 4)-colorable and Borodin and Kostochka [?] proved a result that

implies planar graphs with girth at least 5 are (2, 6)-colorable. Answering a question by Raspaud,

Choi and Raspaud [?] proved that planar graphs with girth at least 5 are (3, 5)-colorable. Recently,

Choi et al. [?] proved that planar graphs with girth at least 5 are (1, 10)-colorable, which answered

a question by Montassier and Ochem [?] in the affirmative. By a construction of Borodin et al. [?],

it is also known that planar graphs with girth at least 5 (even 6) are not necessarily (0, d)-colorable

for an arbitrary d. As a conclusion, there are only finitely many pairs (d1, d2) that are unknown for

which planar graphs with girth at least 5 are (d1, d2)-colorable. To sum up, all previous knowledge

about improper coloring planar graphs with girth at least 5 are the following:

Theorem 1.1. Given d1 ≤ d2, planar graphs with girth at least 5 are (d1, d2)-colorable if

(1) d1 ≥ 2 and d1 + d2 ≥ 8 [?, ?, ?]

(2) d1 = 1 and d2 ≥ 10 [?]

In this paper, we prove the following theorem, which reveals the first pair (d1, d2) satisfying

d1 + d2 ≤ 7 where planar graphs with girth at least 5 are (d1, d2)-colorable.
{thm:main}

Theorem 1.2. Planar graphs with girth at least 5 are (3, 4)-colorable.

The above theorem also improves the best known answer to the following question, which was

explicitly stated in [?]:

Question 1.3 ([?]). What is the minimum d32 such that planar graphs with girth at least 5 are

(3, d32)-colorable?

Since Montassier and Ochem [?] constructed a planar graph with girth 5 that is not (3, 1)-

colorable, along with Theorem 1.2, this shows that d32 ∈ {2, 3, 4}. Theorem [?] is an improvement

to the previously best known bound, which was by Choi and Raspaud [?]. It would be remarkable

to determine the exact value of d32.

Section 2 will reveal some structural properties of a minimum counterexample to Theorem 1.2.

In Section 3, we will show that a minimum counterexample to Theorem 1.2 cannot exist via

discharging, hence proving the theorem.

We end the introduction with some definitions that will be used throughout the paper. Through-

out the paper, let G be a counterexample to Theorem 1.2 with the minimum number of 3+-vertices,

and subject to that choose one with the minimum number of edges. It is easy to see that G must be

connected and there are no 1-vertices in G. From now on, given a (partially) (3, 4)-colored graph,

let i be the color of the color class where maximum degree i is allowed for i ∈ {3, 4}. We say a

vertex with color i is i-saturated if it already has i neighbors of the same color. A vertex is saturated

if it is either 3-saturated or 4-saturated.

A d-vertex, a d−-vertex, and a d+-vertex is a vertex of degree d, at most d, and at least d,

respectively. A d-neighbor of a vertex is a neighbor that is a d-vertex. A d-vertex is a poor d-

vertex (or dp-vertex) and a semi-poor d-vertex (or ds-vertex) if it has d− 1 and d− 2, respectively,
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2-neighbors; otherwise, it is called a rich vertex (or dr-vertex). A kr+-vertex is a rich k+-vertex.

Other analogous terms are defined accordingly. An edge uv is a heavy edge if both u and v are

5+-vertices, and neither u nor v is a 5p-, 5s-, or 6p-vertex.

2. Structural Lemmas

In this section, we reveal useful structural properties of G.
{lem:edge}

Lemma 2.1. Every edge xy of G has an endpoint with degree at least 5.

Proof. Suppose to the contrary that x and y are both 4−-vertices. Since G − xy is a graph with

fewer edges than G and the number of 3+-vertices did not increase, there is a (3, 4)-coloring ϕ of

G− xy. If either ϕ(x) 6= ϕ(y) or ϕ(x) = ϕ(y) = 4, then ϕ is also a (3, 4)-coloring of G. Otherwise,

ϕ(x) = ϕ(y) = 3, and at least one of x, y is 3-saturated in G − xy. For one 3-saturated vertex in

{x, y}, we may recolor it with the color 4, since all of its neighbors have color 3 in G. In all cases

we end up with a (3, 4)-coloring of G, which is a contradiction. �
{lem:3vx}

Lemma 2.2. There is no 3-vertex in G.

Proof. Suppose to the contrary that v is a 3-vertex of G with neighbors v1, v2, v3. By Lemma 2.1, we

know that v1, v2, v3 are 5+-vertices. Obtain a graphH fromG−v by adding paths v1u1v2, v2u2v3, v3u3v1
of length two between the neighbors of v. See Figure 1 for an illustration. Note that H is planar

and still has girth at least 5 since the pairwise distance between v1, v2, v3 did not change. Since H

has fewer 3+-vertices than G, there is a (3, 4)-coloring ϕ of H.

v

v1

v2 v3

⇒

v1

v2 v3

u2

u1 u3

Figure 1. Obtaining H from G in Lemma 2.2.{fig:3vx}

Without loss of generality, we may assume ϕ(u1) = ϕ(u2). Since each of v1, v2, v3 has a neighbor

in {u1, u2}, using the color ϕ(u1) on v gives a (3, 4)-coloring of G, which is a contradiction. �
{vertex-degree}

Lemma 2.3. If v is an 8−-vertex of G, then in every (3, 4)-coloring of G − v, v has a saturated

neighbor in G− v that cannot be recolored. In particular,

(i) if d(v) = 2, then for each i ∈ {3, 4}, v has an i-saturated (i + 2)+-neighbor u that cannot be

recolored. Moreover, if u is an 8−-vertex, then u has a j-saturated (j + 2)+-neighbor where

{i, j} = {3, 4}.
(ii) if d(v) ∈ {4, 5}, then v has a 4-saturated neighbor that is either a 9+-vertex or a 6s+-vertex.

(iii) if d(v) ∈ {6, 7, 8}, then v has a saturated neighbor that is either a 9+-vertex or a 5s+-vertex.

Proof. Since G − v is a graph with fewer edges than G and the number of 3+-vertices did not

increase, there exists a (3, 4)-coloring ϕ of G − v. Note that for each i ∈ {3, 4}, since letting

ϕ(v) = i cannot be a (3, 4)-coloring of G, v has either an i-saturated neighbor or i + 1 neighbors

with the color i. Since v is an 8−-vertex, v cannot have both four neighbors of color 3 and five
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neighbors of color 4. Let j ∈ {3, 4} such that v has at most j neighbors with color j, one of which

is j-saturated. If every j-saturated neighbor of v can be recolored, then we can color v with j, a

contradiction. Hence, v must have at least one j-saturated neighbor that cannot be recolored.

Let u be a non-recolorable j-saturated neighbor of v and let {i, j} = {3, 4}. We know u is a

(j + 2)+-vertex, since it is adjacent to v, j neighbors colored with j, and at least one neighbor

x colored with i (since u cannot be recolored with i). Moreover, if d(u) ≤ 8, then x must be

i-saturated. In particular,

(i) if d(v) = 2, then v has both a non-recolorable 3-saturated neighbor and a non-recolorable

4-saturated neighbor. For j ∈ {3, 4}, the j-saturated neighbor has degree at least j + 2, and

if its degree is at most 8, then it has an i-sautarated neighbor of degree at least i+ 2, where

{i, j} = {3, 4}.
(ii) if d(v) ∈ {4, 5}, then v must have a non-recolorable 4-saturated neighbor u. So u is either a

9+-vertex or a 6s+-vertex.

(iii) if d(v) ∈ {6, 7, 8}, then u must be either a 9+-vertex or a 5s+-vertex.

This finishes the proof of this lemma. �
{lem:6cycle}

Lemma 2.4. Let C be a 6-cycle u1u2u3u4u5u6 of G.

(a) If C contains three 2-vertices and a 5-vertex, then the other two vertices are 7+-vertices.

(b) If C contains exactly two 2-vertices, then C contains at most two 5p-vertices. Moreover,

(b1) if C contains exactly one 5p-vertex, then it contains at most two of 5s-vertices and 6p-

vertices;

(b2) if C contains two 5p-vertices, then either C = F6a (see Figure 2) or it contains neither

5s-vertices nor 6p-vertices.

(c) If C contains exactly one 2-vertex, then it contains at most one 5p-vertex. Moreover,

(c1) if C contains exactly one 5p-vertex, then it contains at most two of 5s-vertices and 6p-

vertices;

(c2) if C contains no 5p-vertices, then it contains at most four of 5s-vertices and 6p-vertices.

(d) If C contains no 2-vertex, then it contains no poor vertices and at most four 5s-vertices.

Proof. Note that by Lemma 2.1, no two 2-vertices are adjacent to each other. We will show that if

C is not one of the above, then we can obtain a (3, 4)-coloring of G, which is a contradiction.

(a): Let u1, u3, u5 be the 2-vertices and let u4 be a 5-vertex of C. By Lemma 2.3 (i), both u2
and u6 are 6+-vertices, so without loss of generality, suppose to the contrary that u6 is a 6-vertex.

Since G− u5 is a graph with fewer edges than G and the number of 3+-vertices does not increase,

there is a (3, 4)-coloring ϕ of G − u5. By Lemma 2.3 (i), we know u4 is 3-saturated and has a 4-

saturated 6+-neighbor and u6 is 4-saturated and has a 3-saturated 5+-neighbor. Hence, ϕ(u3) = 3

and ϕ(u1) = 4.

If ϕ(u2) = 3, then recolor u3 with 4 and color u5 with 3 to obtain a (3, 4)-coloring of G. If

ϕ(u2) = 4, then recolor u1 with 3 and color u5 with 4 to obtain a (3, 4)-coloring of G.

(b): Note that each 5p-vertex on C must have a 2-neighbor on C, and by Lemma 2.3 (i), each

2-vertex has at most one 5p-neighbor. So C contains at most two 5p-vertices because it has exactly

two 2-vertices.

(b1) Assume u1 is the unique 5p-vertex on C. By Lemma 2.3 (ii), none of u2, u6 is a 5s- or

6p-vertex. If u4 is neither a 5s-vertex nor a 6p-vertex, then C contains at most two of 5s-vertices

and 6p-vertices. If u4 is a 6p-vertex, then either u3 or u5 is 2-vertex, so again C contains at most

two of 5s-vertices and 6p-vertices. If u4 is a 5s-vertex, then by Lemma 2.3 (ii), one of u3 and u5
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must be either a 6s+-vertex or a 9+-vertex. Therefore, C contains at most two of 5s-vertices and

6p-vertices.

(b2) Now assume C contains two 5p-vertices. Observe that if u1, u4 are the two 5p-vertices on C,

then by Lemma 2.3 (ii), none of u2, u3, u5, u6 is a 5s-vertex or a 6p-vertex, as claimed. Therefore,

we may assume that u1, u3 are the two 5p-vertices on C.

Note that u2 cannot be a 2-vertex by Lemma 2.3 (i). So both u4 and u6 are 2-vertices. By

Lemma 2.3 (i) and (ii), both u2 and u5 are 6+-vertices. We may assume that u5 is a 6p-vertex, for

otherwise C contains neither 5s-verices nor 6p-vertices. Assume that C is not a special 6-face F6a,

which implies that u2 is a 6-vertex. By Lemma 2.3 (i), in a (3, 4)-coloring ϕ of G−u6, we know u1
is 3-saturated and u5 is 4-saturated and both are non-recolorable. It follows that u2 is 4-saturated,

u4 is colored with 4 and non-recolorable, and furthermore u3 is 3-saturated. Now we can recolor

u4, u3, u2, u1 with 3, 4, 3, 4 respectively, and color u6 with 3 to obtain a (3, 4)-coloring of G.

(c): Let u1 be the unique 2-vertex on C. A 5p-vertex must have a 2-neighbor on C, and by

Lemma 2.3 (i), a 2-vertex has at most one 5p-neighbor, so C contains at most one 5p-vertex.

(c1) Assume C has one 5p-vertex u2. By Lemma 2.3 (i) and (ii), u6 cannot be a 5-vertex, and u3
cannot be a 5s-vertex or a 6p-vertex. If u6 is not a 6p-vertex, then C has at most two of 5s-vertices

and 6p-vertices. If u6 is a 6p-vertex, then u4 and u5 cannot be both 5s-vertices by Lemma 2.3 (ii).

Note that either u4 or u5 cannot be 6p-vertices since C has only one 2-vertex u1.

(c2) Now assume C contains no 5p-vertices. Consider three consecutive vertices ui−1, ui, ui+1

on C. If ui is a 6p-vertex, then either ui−1 or ui+1 must be a 2-vertex. If ui is a 5s-vertex, then by

Lemma 2.3 (ii), either ui−1 or ui+1 is a 9+-vertex or a 6s+-vertex. Therefore, C contains at most

four of 5s-vertices and 6p-vertices.

(d): If C contains no 2-vertex, then it contains neither a 5p-vertex nor a 6p-vertex. By Lemma 2.3

(ii), a 5-vertex must have a 6+-neighbor, so the two 3+-neighbors of a 5s-vertex cannot be both

5s-vertices. Therefore, C contains at most four 5s-vertices. �
{lem:F2}

Lemma 2.5. If F6b is a 6-cycle with three 2-vertices and three 6p-vertices (see Figure 2), then F6b

cannot share an edge with a 5-cycle with two 2-vertices.

Proof. Let u1 . . . u6 be F6b with three 2-vertices u1, u3, u5 and three 6p-vertices. Note that two

2-vertices cannot be adjacent to each other by Lemma 2.1. Without loss of generality, suppose to

the contrary that u6u1u2v1v2 is a 5-cycle sharing an edge with C. Note that C and u6u1u2v1v2
cannot share exactly one edge. By symmetry, we may assume that v1 is a 2-vertex.

Since G−u1 is a graph with fewer edges than G and the number of 3+-vertices did not increase,

there is a (3, 4)-coloring ϕ of G − u1. By Lemma 2.3 (i), both u2 and u6 are non-recolorable and

one of u2 and u6 is 3-saturated and the other is 4-saturated.

First assume u6 is 3-saturated and u2 is 4-saturated. Since u2 is a 6-vertex, by Lemma 2.3 (i),

u2 must have exactly one 3-saturated neighbor and all other neighbors are colored with the color 4.

In particular, ϕ(v1) = 4. Also, by Lemma 2.3 (i), u6 has a 4-saturated neighbor, which must be v2.

Hence, we can recolor v1 with the color 3 and color u1 with the color 4 to obtain a (3, 4)-coloring

of G, which is a contradiction.

Now assume u6 is 4-saturated and u2 is 3-saturated. By Lemma 2.3 (i), u6 must have a 3-

saturated neighbor, which must be v2, and all other neighbors are colored with the color 4. In

particular, ϕ(u5) = 4. Also, by Lemma 2.3, we know u2 must have a 4-saturated neighbor, which is

neither u3 nor v1. If ϕ(v1) = 3, then we can recolor v1 with the color 4 and color u1 with the color

3 to obtain a (3, 4)-coloring of G, which is a contradiction. Therefore, ϕ(v1) = 4, which further
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implies that ϕ(u3) = 3. Now, if we can recolor u3 with the color 4, then we can color u1 with the

color 3 to obtain a (3, 4)-coloring of G, which is a contradiction. Hence, u4 must be 4-saturated,

and in particular ϕ(u4) = 4. Finally, we can recolor u5 with the color 3 and color u1 with 4 to

obtain a (3, 4)-coloring of G, which is a contradiction. �
{lem:5-face-1-2vtx}

Lemma 2.6. If C is a 5-cycle u1 . . . u5 with exactly one 2-vertex u1, then either

• C contains at most two of 5p-, 5s-, and 6p-vertices, or

• C is a special 5-face F5c or F5d in Figure 2.

Proof. Assume that C contains at least three 5p-, 5s-, and 6p-vertices. By symmetry, we may

assume that u3 is a 5s-vertex. Note that u2 is not a 5p-vertex, by Lemma 2.3. Let u be a 2-

neighbor of u3 that is not on C.

Case 1: Assume u4 is a 5s-vertex.

Since G− u is a graph with fewer edges than G and the number of 3+-vertices did not increase,

there is a (3, 4)-coloring ϕ of G−u. By Lemma 2.3 (ii), u3 is 3-saturated and u3 has a 4-saturated

6+-neighbor, which must be u2. In particular, ϕ(u3) = ϕ(u4) = 3 and ϕ(u2) = 4. Yet, if u2 is a

5p-vertex or a 6p-vertex, then we can recolor u2 and u3 with the color 3 and the color 4, respectively,

and color u with the color 3 to obtain a (3, 4)-coloring of G, which is a contradiction. By symmetry,

u5 is also neither a 5p-vertex nor a 6p-vertex. Therefore, if both u3 and u4 are 5s-vertices, then C

has at most two of 5p-, 5s-, and 6p-vertices.

Case 2. Assume u4 is a 6s+-vertex. Now u2 is a 5s-vertex or 6p-vertex, and u5 is a 5p-, 5s-, or

6p-vertex.

First assume u2 is a 5s-vertex. Since G−u1 is a graph with fewer edges than G and the number

of 3+-vertices did not increase, there is a (3, 4)-coloring ϕ of G − u1. By Lemma 2.3 (i), u2 must

be 3-saturated and u5 must be a 4-saturated 6p-vertex. This further implies that u4 is 3-saturated.

Note that u2 must have a 4-saturated neighbor and three neighbors of color 3. Since ϕ(u4) = 3,

we know u3 cannot be the 4-saturated neighbor of u2, so ϕ(u3) = 3. Now, since u3 has neither five

neighbors colored with the color 4 nor a 4-saturated neighbor, u3 can be recolored with 4. Now,

by recoloring u3 with the color 4 and coloring u1 with the color 3, we obtain a (3, 4)-coloring of G,

which is a contradiction.

Now assume u2 is either a 5p-vertex or a 6p-vertex. Since G − u is a graph with fewer edges

than G and the number of 3+-vertices did not increase, there is a (3, 4)-coloring ϕ of G − u. By

Lemma 2.3 (ii), u3 is 3-saturated and u3 has a 4-saturated 6+-neighbor x. If x = u2, then we can

recolor u2 with the color 3, and color u3 and u with the color 4 and 3, respectively, to obtain a

(3, 4)-coloring of G, which is a contradiction. Therefore x = u4, which implies that ϕ(u4) = 4 and

ϕ(u3) = 3. Since recoloring u3 with the color 4 must not be possible, we know that all neighbors of

u2, except u3, are colored with the color 4. In particular, ϕ(u1) = 4. This further implies that u5 is

3-saturated and non-recolorable. Now, u4 must have four neighbors colored with the color 4, and

at least one neighbor colored with the color 3 that is not on C. Hence, C is either F5c or F5d. �
{lem:7-face}

Lemma 2.7. If F is a 7-face, then one of the following is true:

• F has at most six 2-, 5p-, 5s-, or 6p-vertices;

• F has at least two (adjacent) 5s-vertices;

• F is a special 7-face F7 (see Figure 2).

Proof. Note that two 2-vertices cannot be adjacent to each other by Lemma 2.1. Suppose to the

contrary that F contains seven of 2-, 5p-, 5s-, and 6p-vertices, and at most one 5s-vertex. Without
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loss of generality, we may assume that one vertex u1 is a 5s-vertex, for otherwise, two 6p−-vertices

would be adjacent to each other, which contradicts Lemma 2.3 (ii) and (iii). All other vertices of

F are 2-vertices and 6p−-vertices.

Without loss of generality, we may assume that u2, u4, u6 are 2-vertices and u3, u5, u7 are

6p−vertices. Since u2 is a 2-vertex, by Lemma 2.3 (i), we know u3 is a 6p-vertex. Since a 5p-

vertex cannot have a 5s-neighbor by Lemma 2.3 (ii), we now u7 must be a 6p-vertex. If u5 is a

6p-vertex, then F is a special face F7.

The only remaining case is when u5 is a 5p-vertex and u3, u7 are 6p-vertices. Since G − u4 is a

graph with fewer edges than G and the number of 3+-vertices did not increase, there is a (3, 4)-

coloring ϕ of G− u4. By Lemma 2.3 (i), u3 and u5 is 3-saturated and 4-saturated, respectively. In

particular, ϕ(u3) = ϕ(u2) = 4 and ϕ(u5) = ϕ(u6) = 3. This further implies that u1 is 3-saturated

and u7 is 4-saturated. Now, recoloring u2, u1, u7 with the color 3, 4, 3, respectively, and coloring u4
with the color 4 gives a (3, 4)-coloring of G, which is a contradiction. �

3. Discharging

For each element x ∈ V (G)∪F (G), let µ(x) and µ∗(x) denote the initial charge and final charge,

respectively, of x. Let µ(x) = d(x)− 4, so by Euler’s formula,∑
x∈V (G)∪F (G)

µ(x) = −8.
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Figure 2. Special 7-face, 6-faces, and 5-faces{figure-special-6-face}

Here are the discharging rules:

(R1) Let v be a 5+-vertex. Then v gives 1
2 to each adjacent 2-vertex; moreover,

(a) If d(v) ≥ 8, then v gives 1
2 to each adjacent 5p-, 5s-, 6p-vertex and incident heavy edge.

(b) If d(v) = 7, then v first gives 1
2 to each adjacent 5p-vertex and 6p-vertex, then distributes

its remaining charge evenly to adjacent 5s-vertices and incident heavy edges.
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(c) If d(v) ∈ {5, 6}, then v distributes its remaining charge evenly to its adjacent 5p-vertices

and incident heavy edges.

(R2) A heavy edge distributes its charge evenly to the two incident faces.

(R3) Let f be a 5+-face. Then f gives 1
2 to each incident 2-vertex; moreover,

(a) If d(f) ≥ 8, then f gives 1
2 to each incident 5p-, 5s-, and 6p-vertex.

(b) Let d(f) = 7. If f 6= F7, then f first gives 1
2 to each incident 5p-vertex and 6p-vertex,

then distributes its remaining charge evenly to each incident 5s-vertex (if exists). If

f = F7, then f gives 3
8 to each incident 5s-vertex and 6p-vertex.

(c) Let d(f) = 6. If f 6= {F6a, F6b}, then f first gives 1
2 to each incident 5p-vertex and 1

4

to each incident 5s-vertex and 6p-vertex, then distributes its remaining charge evenly

to each incident 5p-, 5s-, and 6p-vertex (if exists). If f = F6a, then f gives 3
8 to each

incident 5p-vertex and 1
4 to the incident 6p-vertex. If f = F6b, then f gives 1

6 to each

incident 6p-vertex.

(d) Let d(f) = 5. If f is incident with two 2-vertices, then it distributes its charge evenly

to each incident 5p-, 5s-, and 6p-vertex (if exists). If f has at most one 2-vertex and

f 6∈ {F5a, F5b, F5c, F5d}, then f first gives 1
4 to each incident 5p-, 5s-, and 6p-vertex,

then it distributes its remaining charge evenly to each incident 5p-, 5s-, and 6p-vertex

(if exists). If f ∈ {F5a, F5b}, then it gives 1
2 to the incident 6p-vertex and its remaining

charge to the 5s-vertex. If f ∈ {F5c, F5d}, then it gives 1
4 to each incident 5p-vertex and

6p-vertex, and its remaining charge evenly to incident 5s-vertices.
{lem-face-charge}

Lemma 3.1. If f is a 5+-face, then µ∗(f) ≥ 0.

Proof. If f is a 5-face, then µ(f) = 1 and f is incident with at most two 2-vertices. Clearly,

µ∗(f) ≥ 1 − 1 = 0 by (R3d) and Lemma 2.6. If f is a 7-face, then µ(f) = 3. By (R3b) and

Lemma 2.7, µ∗(f) ≥ 7 − 4 − 1
2 · 6 = 0. If f is a 8+-face, then µ∗(f) ≥ d(f) − 4 − 1

2d(f) ≥ 0 by

(R3a).

If f is a 6-face, then µ(f) = 2 and f is incident with at most three 2-vertices by Lemma 2.1.

• f has at most one incident 2-vertex.

By Lemma 2.4 (c) and (d), and (R3c), µ∗(f) ≥ 2−max{12 · 2 + 1
4 · 4, 14 · 6} = 0

• f has two incident 2-vertices.

By Lemma 2.4 (b), f has at most two incident 5p-vertices. If f has no incident 5p-vertex,

then µ∗(f) ≥ 2− 1
2 · 2− 1

4 · 4 = 0. If f has one incident 5p-vertex, then f has at most two

of 5s-vertices and 6p-vertices by Lemma 2.4 (b), so µ∗(f) ≥ 2 − 1
2 · 3 − 1

4 · 2 = 0. If f has

two incident 5p-vertices, then f is either a special face F6a or has neither 5s-vertices nor

6p-vertices. Therefore, µ∗(f) ≥ 2− 1
2 · 2− 3

8 · 2− 1
4 = 0 or µ∗(f) ≥ 2− 1

2 · 4 = 0.

• f has three incident 2-vertices.

If f is incident with a 5-vertex, then the other two vertices on f are 7+-vertices by Lemma 2.4

(a), so µ∗(f) ≥ 2 − max{12 · 4, 12 · 3 + 1
4} = 0. If f is a special face F6b in Figure 2, then

µ∗(f) ≥ 2− 1
2 · 3− 1

6 · 3 = 0. If f is not F6b, then µ∗(f) ≥ 2− 1
2 · 3− 1

4 · 2 = 0.

�

Lemma 3.2. If u is a 5p-vertex, then µ∗(u) ≥ 0.

Proof. By (R1), u gives out 4 · 12 = 2 to its adjacent 2-vertices. To show µ∗(u) ≥ 0, we need to prove

that u receives at least 1 by the discharging rules. Let N(u) = {u0, v1, v2, v3, v4} where d(u0) > 2
8



and d(vi) = 2 for i ∈ [4]. For i ∈ [4], let ui be the neighbor of vi that is not u. We assume that the

five faces incident with u are A,B,C,D,E as shown in Figure 3.

u

v4

u4

w 2

v1
u1

w 1
u0

u3

v2 v3

u2

A B

C

D

E

v5 u5

w 2
u0

w 1

u1 v1

v4

v2

u

u2
v3

u4

u3

C

BA

E

F

D

Figure 3. A 5p-vertex incident with five 5+-faces and a 6p-vertex incident with six

5+-faces. {figure-5p}

To get some idea regarding the degrees of the vertices on the five faces incident with u, we

consider a (3, 4)-coloring ϕ of G − u, which exists since the number of edges decreased and the

number of 3+-vertices did not increase. By Lemma 2.3 (ii), u0 is a 4-saturated 6+-vertex and the

four 2-neighbors of u are colored with the color 3. Since u0 is non-recolorable, if d(u0) ≤ 8, then

u0 has a 3-saturated neighbor and four neighbors of color 4. Furthermore, since no neighbor of u is

recolorable, for i ∈ [4], ui is a 4-saturated 6+-neighbor and if d(ui) ≤ 8, then ui has a 3-saturated

neighbor.

Case 1. u is incident with a special 6-face F6a.

By the ordering of the degrees of the vertices on F6a, the special 6-face must be either A or

B. Without loss of generality, assume A is a special 6-face F6a so that u1 is a 6p-vertex and u0 is

a 7s+-vertex. As both u1 and u2 are 4-saturated, and u1 is adjacent to a 3-saturated vertex, we

conclude u1 cannot be adjacent to u2. Otherwise, u1 has two 3+-neighbors, which implies u1 is not

a poor vertex. Hence, E is a 6+-face. By (R3), u gets 1
2 from E and 3

8 from A, and by (R1), u gets
1
2 from u0. So u gets at least 1 in total, as desired.

Case 2. u is not incident with a special 6-face and either A or B is a non-special 6+-face.

Note that by (R3), u receives at least 1
2 from each of its incident 6+-faces that are not special.

So we may assume that u is incident with exactly one 6+-face and four 5-faces. Without loss

of generality, assume A is a 6+-face and let B = uu0w2u4v4. Since a 3+-neighbor u3 of u4 is

4-saturated, we know u4 cannot be a 6p-vertex. Therefore, B is not a special 5-face.

(1) We may assume u0 is a 6-vertex. For otherwise, u also gets 1
2 from u0 by (R1), thus u gets

at least 1 in total.

(2) We may assume w2 is not a 2-vertex. For otherwise, as ϕ(u0) = ϕ(u4) = 4, this implies

that ϕ(w2) = 4, but now w2 can be recolored, which is a contradiction.

(3) We may assume w2 is a 5s-vertex. For otherwise, none of u0, w2, u4 is a 5p-, 5s-, or 6p-vertex,

so u receives at least 1
2 from B by (R3d), thus u get at least 1 in total.

(4) We may assume each of u3 and u2 is either a 6r+-vertex or a 9+-vertex, and u1 is either

a 6s+-vertex or 9+-vertex. For z ∈ {u3, u2, u1}, observe that each z must have either a

3-saturated neighbor or four vertices colored with the color 3.

(5) We may assume u4 is either a 8+-vertex or a 7r-vertex. It must be that ϕ(w2) = 3, for

otherwise, we can recolor w2 with the color 4 and color u with 3 to obtain a (3, 4)-coloring

of G, which is a contradiction. Now u4 must have a 3-saturated neighbor that is not w2,
9



for otherwise, we could recolor u0, w2, u4 with 3, 4, 3, respectively. This implies that u4 has

at least three 3+-neighbors, so must u4 is either a 8+-vertex or a 7r-vertex.

Now, u4u3, u3u2, u2u1 are all heavy edges. For i ∈ [4], if d(ui) ≤ 8, then it is not a 5p-, 5s-,

and 6p-vertex. Thus, by (R1), the heavy edges u4u3, u3u2, u2u1 get at least 1
3 + 1

6 , 1
6 · 2, 1

6 · 2 from

u4, u3, u2, respectively. By (R2) and (R3), u receives at least 1
2(13 + 1

6 + 1
6 · 2 + 1

6 · 2) > 1
2 from faces

C,D,E, and thus a total of 1, as desired.

Case 3. u is not incident with a speical 6-face and both A and B are 5-faces.

Let A = uu0w1u1v1 and B = uu0w2u4v4.

(1) If k is the number of vertices in {w1, w2} that is either a 2-vertex or a 5s-vertex, then

d(u0) ≥ 6 + k. This is because if wi is either a 2-vertex or a 5s-vertex, then ϕ(wi) = 3,

otherwise we can recolor wi with 3 and color u with 4 to obtain a (3, 4)-coloring of G, which

is a contradiciton. The lower bound on d(u0) follows since u0 is 4-saturated and cannot be

recolored with the color 3.

(2) We may assume C,D,E are 5-faces. For otherwise, u gets at least 1
2 from an incident

6+-face by (R3). Now, if d(u0) ≥ 7, then u gets another 1
2 from u by (R1), for a total of

1. If d(u0) = 6, then neither w1 nor w2 is a 2-vertex, and both u1 and u4 are 6s+-vertices.

Since neither A nor B is a special face, by (R3), u gets at least 1
4 · 2 from A and B, for a

total of 1.

(3) We observe each of u3 and u2 is either a 9+-vertex or a 6r+-vertex. This follows since each

of u3 and u2 has two 4-saturated neighbors and is not recolorable with the color 3.

(4) Assume d(u1), d(u4) ≤ 8. For i ∈ [2], u3i−2 is a 7s+-vertex if d(wi) = 2 and is a 6s+-vertex

if d(wi) ≥ 3.

Now, u1u2, u2u3, u3u4 are all heavy edges. By (R1), u2 sends at least min
{

6−4−3· 1
2

3 ,
7−4−5· 1

2
2 , 12

}
=

1
6 to each of u1u2 and u2u3, and likewise, u3 sends at least 1

6 to each of u2u3 and u3u4.

• Assume both w1 and w2 are 2-vertices. Now, u0 is a 8+-vertex and gives 1
2 to u by (R1a).

Also, u1 and u4 is a 7s+-vertex and gives at least
7−4−5· 1

2
2 = 1

4 to the heavy edge u1u2 and

u3u4, respectively, by (R1). By (R2) and (R3), C,D,E give at least 1
2(16 · 4 + 1

4 · 2) > 1
2 to

u.

• Without loss of generality, assume w1 is a 2-vertex and w2 is a 3+-vertex. Now, u0 is a

7+-vertex and gives 1
2 to u by (R1), and the face B gives at least 1

4 to u by (R3). Also, u1

is a 7s+-vertex and gives
7−4−5· 1

2
2 = 1

4 to the heavy edge u1u2. Then u gets at least 1
2 + 1

4

from u0 and B, and at least 1
2(16 · 4 + 1

4) > 1
4 from C,D,E by (R3).

• Finally, assume that none of w1, w2 is a 2-vertex. By (R3d), each of A,B gives at least 1
4

to u, and moreover, at least 1
2 to u if neither w1 nor w2 is a 5s-vertex. Now if either w1

or w2 is a 5s-vertex, then u0 is a 7+-vertex, and thus u0 gives 1
2 to u so u gets a total of

1
4 · 2 + 1

2 ≥ 1.

Hence, u always gets at least 1, as desired. �

Lemma 3.3. If u is a 6p-vertex, then µ∗(u) ≥ 0.

Proof. The initial charge of u is 2, and by (R1c), u gives out 1
2 · 5 to its 2-neighbors. To show

µ∗(u) ≥ 0, we need to prove that u receives 1
2 by the discahrging rules.
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Let N(u) = {u0, vi : i ∈ [5]} where d(u0) > 2 and d(vi) = 2 for i ∈ [5]. For i ∈ [5], let ui be the

neighbor of vi that is not u. We assume that the six faces incident with u are A,B,C,D,E, F as

shown in Figure 3.

Since G− u is a graph with fewer edges than G and the number of 3+-vertices did not increase,

there exists a (3, 4)-coloring ϕ of G − u. By Lemma 2.3, either ϕ(vi) = 4 for i ∈ [5] and u0 is

3-saturated and non-recolorable, or at least four of vi’s are colored with 3 and u0 is 4-saturated

and non-recolorable. In the former case, ui with i ∈ [5] are 3-saturated and non-recolorable, and

in the latter case, at least four of the ui’s are 4-saturated and non-recolorable.{i-u0}
(1) d(u0) ≤ 6

By (R1), u gets 1
2 from u0 if d(u0) ≥ 7.

(2) u is not incident with a special face F6b.

If u is incident with F6b, then by Lemma 2.5, u is also incident with two faces where each

face is not a non-special 5-face with two 2-vertices. By (R3), each face that is not a 5-face

with two 2-vertices sends at least 1
4 to u, plus F6b sends 1

6 to u. Thus, u gets a total of at

least 1
2 + 1

6 .

(3) We may assume A is a 5-face with two 2-vertices.

By (R3), each face that is not a 5-face with two 2-vertices gives at least 1
4 to u, so either A

or B must be a 5-face with two 2-vertices, which we may assume to be A.

(4) B is not a 5-face with two 2-vertices, and C,D,E, F are 5-faces with two 2-vertices.

Suppose B is a 5-face with two 2-vertices, so that both w1 and w2 are 2-vertices. If u0 is

3-saturated, then both u1 and u5 are 3-saturated. So w1, w2 are colored or can be recolored

with 4. This implies that u0 is a 7+-vertex, which contradicts (1). If u0 is 4-saturated,

then either u1 or u5 is 4-saturated. Without loss of generality assume u1 is 4-saturated, so

either ϕ(w1) = 3 or w1 can be recolored with 3. This implies that u0 is a 7+-vertex, which

contradicts (1).

Now u receives at least 1
4 from B by (R3). This implies that C,D,E, F are 5-faces with

two 2-vertices, for otherwise, u receives another 1
4 to get a total of at least 1

2 .

(5) B is not a special face F7.

Without loss of generality, assume B is a special face F7, which sends 3
8 to u. This implies

that u0 is a 5s-vertex, which futher implies that u0 is 3-saturated and ui is 3-saturated for

each i ∈ [5]. By Lemma 2.3, we know ϕ(w1) = 3. If w1 is a 2-vertex, then recolor w1 and v1
with the color 4 and 3, respectively, and color u with the color 4 to obtain a (3, 4)-coloring

of G, which is a contradiction. If w1 is not a 2-vertex, then u gets at least 1
4 from A by

(R3), so u gets a total of 1
4 + 3

8 >
1
2 .{i-5Fab}

(6) B is a 6−-face. Moreover, if B is a 5-face, then it can be neither F5a nor F5b.

Otherwise, u receives at least 1
2 by (R3a), (R3b), (R3d).{i-6face}

(7) B must be a 6-face.

Suppose otherwise. From above, assume B is a 5-face with at most one 2-vertex. Note that

B must have exactly one 2-vertex since v5 is a 2-vertex. By (R3), B gives u at least 1
2 if u

is the only 5p-, 5s-, or 6p-vertex on B. So consider the case when B is a 5-face with one

2-vertex v5 and at least two 5p-, 5s-, or 6p-vertices. Note that none of u0, w2, u5 can be a

6p−-vertex.

Assume u0 is 3-saturated. Then ϕ(vi) = 4 and ui is 3-saturated for i ∈ [5]. The 2-vertex

w1 is colored or can be recolored with 4. Therefore u0 is a 6s-vertex. Thus, either u5 or w2 is

a 5s-vertex. Since B is not F5a or F5b by (6), when one of u5 and w2 is a 5s-vertex, the other
11



one is a 6−-vertex. Now if w2 is a 5s-vertex, then w2 is colored or can be recolored with

4 without making w2 4-saturated, so u0 must have another 4-saturated neighbor. Thus,

d(u0) ≥ 7, which contradicts (1). If u5 is a 5s-vertex, then w2 must be the 4-saturated

neighbor of u5 and u0. Thus, we can recolor u0, u5 with 4 and w2 with 3, and color u with

3 to obtain a (3, 4)-coloring of G, which is a contradiction.

Assume u0 is 4-saturated. Then u0 is 6s+-vertex. Now, since d(u0) ≤ 6, the 2-vertex

w1 cannot be colored or recolored with 3. This implies that ϕ(w1) = 4 and ϕ(u1) = 3,

and moreover, ϕ(v1) = 4. Furthermore, for i ∈ [5] − {1}, ϕ(vi) = 3 and ui is 4-saturated.

Since u5 is 4-saturated, it is 6s+-vertex. So w2 is a 5s-vertex, and ϕ(w2) = 3 or w2 can

be recolored with 3. Again, since B is neither F5a nor F5b, we know d(u5) ≤ 6. Then w2

is the only 3-saturated neighbor of u0 and u5. So by recoloring u0, w2, u5 with 3, 4, 3, and

coloring u with 4, we obtain a (3, 4)-coloring of G, which is a contradiction. {i-2vx}
(8) If B = uu0w2w

′
2u5v5, then either w2 or w′2 is a 2-vertex.

For otherwise, B contains exactly one 2-vertex v5. Moreover, the only 6p−-vertex B contains

is u. We may assume that B contains at least three 5s-vertices, for otherwise u gets at least
6−4−0.5

3 = 0.5 from B by (R3c). Since no 5s-vertex can be adjacent to two 5s-vertex, by

Lemma 2.3, we know either w2 or w′2 is not a 5s-vertex, and both u0 and u5 are 5s-vertices.

Now, both u0 and u5 cannot be 4-saturated, thus they are both 3-saturated. Moreover,

ϕ(vi) = 4 and ϕ(ui) = 3 for i ∈ [5]. Now we can recolor w1 with 4 and color u with 3 to

obtain a (3, 4)-coloring of G, which a contradiction. {i-two5s}
(9) B contains at least two 5s-vertices.

For otherwise, B contains at most one 5s-vertex. Note that the only 6p−-vertex B contains

is u. Then by (R3c), B gives at least 6−4−0.5·2
2 = 1

2 to u.

(10) u0 must be 4-saturated.

For otherwise, u0 is 3-saturated. It follows that ϕ(vi) = 4 and ui is 3-saturated for i ∈ [5].

So ϕ(w1) = 4, and thus u0 is a 6-vertex with a 4-saturated neighbor. Now if w2 is a 2-vertex,

then it must be that ϕ(w2) = 3, otherwise we can recolor u3 with 4 and color u with 3 to

obtain a (3, 4)-coloring of G, which is a contradiction. It follows that ϕ(w′2) = 4 and w′2
cannot be recolored, thus d(w′2) ≥ 6, and therefore B contains at most one 5s-vertex, which

contradicts (9).

Thus w′2 is a 2-vertex. It follows that both w2 and u5 are 5s-vertices. Since a 3-saturated

vertex u5 must have a 4-saturated neighbor, it must be that ϕ(w′2) = 3. We can recolor w′2
with the color 4 since w2 is a 5-vertex with a neighbor u0 colored with 3. Now, recolor v5
with 3 and color u with 4 to obtain a (3, 4)-coloring of G, which is a contradiction.

Since u0 is 4-saturated and non-recolorable, by (1) we know u0 is a 6-vertex. Moreover, ϕ(w1) = 4,

which further implies that u1 is 3-saturated and non-recolorable. Therefore ϕ(v1) = 4 and for

i ∈ [5]− {1}, ϕ(vi) = 3. In particular, ϕ(v5) = 3 and u5 is 4-saturated. However, by (7), (8), and

(9), we know u5 must be a 5s-vertex, so we can recolor u5 and v5 with 3 and 4, and color u with 3

to obtain a (3, 4)-coloring of G, which is a contradiction. �

Lemma 3.4. If u is a 5s-vertex, then µ∗(u) ≥ 0.

Proof. The initial charge of u is 1, and by (R1c), u gives out 1
2 · 3 to its 2-neighbors. To show

µ∗(u) ≥ 0, we need to prove that u receives 1
2 by the discharging rules.
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Let N(u) = {x, y, v1, v2, v3} with d(x), d(y) > 2 and d(vi) = 2 and let ui be the other neighbor of

vi for i ∈ [3]. Depending on whether x, y, u are on the same face or not, we could have two different

embeddings around u (see Figure 4).

u3

u2

v2

u1

w 3

v2

w 4
x

u3

w 2

v3

w 1

(II)(I)

u

y

v1

u2

u
v1v3

u1

x y

w 1w 2

w 3 w 4

B

A

C

D

E

A
B

C D

E

Figure 4. Two possible embeddings containing 5s-vertex u with five 5-faces. {figure-5s}

Since G− v2 is a graph with fewer edges than G and the number of 3+-vertices did not increase,

there exists a (3, 4)-coloring ϕ of G − v2. By Lemma 2.3, u is 3-saturated and u2 is 4-saturated,

and both are non-recolorable. Without loss of generality, we may assume that x is 4-saturated and

ϕ(y) = ϕ(v1) = ϕ(v3) = 3. Also, u1 and u3 are 4-saturated and non-recolorable.

We may assume d(x), d(y) ≤ 7, for otherwise, u gets at least 1
2 by (R1a).

Case 1. x, y, u are not on the same face (see Figure 4 (I) for an illustration).

(1) u is not incident with a special 5-face F5b or F5c.

This is because u is adjacent to a 2-vertex on each incident face.

(2) None of B,D is a special 5-face F5a or F5d. It follows that none of B,D are special 5-faces.

By symmetry, let B be a special 5-face F5a or F5d. Then x is a 7s+-vertex, w2 is a 5s+-

vertex, and u3 is a 6p-vertex. So u1u3 6∈ E(G), and C must be a 6+-face. By (R1), u

receives at least 1
4 from x, and by (R3), u receives at least 1

4 from C.

(3) We may assume at least one of B,D is a 5-face with two 2-vertices. Furthermore, we may

assume that d(w3) = 2.

If none of B,D are 5-faces with two 2-vertices, then they are 6+-faces or 5-faces with at

most one 2-vertex, so u gets at least 1
4 from each of them by (R3).

If d(w3) > 2, then D gives at least 1
4 to u by (R3), and by what we just proved, B must

be a 5-face with two 2-vertices. So d(w2) = 2 and w2 can be recolored with 3. Then x must

be a 7+-vertex. So u gets at least 1
4 from x, thus gets at least 1

2 .

(4) d(w1) > 2 and d(w2) = 2, and moreover, A is a special 5-face.

First of all, at most one of w1 and w2 is a 2-vertex. Suppose otherwise. Then w2 can be

recolored with 3 and thus x must be a 7s+-vertex. So u receives at least 1
4 from x. On

the other hand, if A is not a 5-face, then u gets another 1
4 from A. So let A be a 5-face.

Then w1 can be recolored with 3, since ϕ(u2) = ϕ(x) = 4. Now that x is 4-saturated and

non-recolorable, x must be adjacent to other neighbors than w1, w2, u of color 3, and four

neighbors of color 4, so it is a 8+-vertex. By (R1), u gets at least 1
2 from x.

Now assume that d(w1) = 2 and d(w2) > 2. Then w1 can be recolored with 3, so x is

a 7+-vertex. By (R1), u gets at least 1
4 from u. If B is not Z, then by (R3), u gets at

least 1
4 · 2 from B well. If B is Z, then u3 is a 6p-vertex, and thus u3u1 6∈ E(G) and C is

a 6+-face, so u gets at least 1
4 from C. In either case, u gets at least 1

2 . So d(w1) > 2 and

d(w2) = 2.
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Suppose that A is not a special 5-face. Then by (R3), u gets at least 1
4 from A and we

still have d(x) ≥ 7, so by (R1) u gets at least 1
4 from x as well.

(5) A must be F5a.

For otherwise, by (1) and (4), A must be F5d. Then d(x) ≥ 7, u2 is a 6p-vertex and w1 is a

5s-vertex. So w1 is the only 3-saturated neighbor of the 6p-vertex u2. Note that d(x) ≤ 7,

for otherwise, u gets 1
2 from x by (R1). Now that w2 can be recolored with 3 and x is

4-saturated, we can recolor x,w1, u2, u with 3, 4, 3, 4, respectively, then color v2 with 4, a

contradiction.

(6) We claim that x must be a 7s-vertex and w1 must be a 6s-vertex.

For otherwise, by (R1), if x is a 7r+-vertex, then x gives at least
7−4−4· 1

2
3 = 1

3 to u and

the heavy edge xw1. By (R2) and (R3d), u gets a total 1
3 + 1

6 = 1
2 . Likewise, if w1 is a

6r+-vertex or a 7+-vertex, then w1 gives at least 6−4−3·0.5
2 = 1

4 to the heavy edge w1x; note

that x gives at least 1
4 to u and the heavy edge xw1, so u gets at least 1

2 from A and x.

Then w1 is the only 3-saturated neighbor of x and u2 is the only 4-saturated neighbor of w1.

Note that u2 is a 6p-vertex by the definition of F5a. Now we can recolor x,w1, u1 with 3, 4, 3,

respectively, and color u, v2 with 4, 3, respectively, a contradiction.

Case 2. x, y, u are in the same face, denoted by A (see for example Figure 4 (II)).

(1) u must be incident with a special 5-face F5a, F5b, F5c or F5d.

Assume that u has none of the special 5-faces. By (R3), each 6+-face or 5-face with at

most one 2-vertex gives at least 1
4 to u, in particular, A gives 1

4 to u. So all other faces are

5-faces with two 2-vertices. This implies that d(w1) = d(w2) = 2.

Recall that x and u3 are 4-saturated. Then w2 is colored or can be recolored with 3.

Note that d(x) ≤ 6, for otherwise, u gets 1
4 from x. So u,w2 are the only neighbors of x of

color 3. Now recolor x with 3 and u with 4, and we can color v2 with 3, a contradiction.

(2) none of B,E is a special 5-face.

If B or E is a special 5-face, then they only could be in {F5a, F5d}. By symmetry, assume

that B is a special 5-face. Then u3, w2, x are 6p-, 5s+- and 7s+-vertices, respectively. Since

u3 is a 6p-vertex, u3u2 6∈ E(G), so C is a 6+-face, thus u gets at least 1
4 from C by (R3c).

So u gets at least 1
2 since u gets at least 1

4 from x by (R1) at well.

(3) A cannot be a special 5-face.

Clearly, A cannot be a special 5-face F5a. So we may assume that A is a special 5-face

in {F5b, F5c, F5d}. So one of x and y is 7+-vertex, and by (R1), u receives at least 1
4 from

it. We may assume that B,E are are 5-faces with two 2-vertices (for otherwise, u receives

at least 1
4 from them). Then d(w1) = d(w2) = 2.

Now that w2 is colored or can be recolored with 3. Since u3 is 4-saturated and non-

recolorable, u3 must be a 7+-vertex. Note that u2 must be a 6r+-vertex and u1 be a

6s+-vertex. By (R1), u2 gives at least 6−4−3·0.5
3 = 1

6 to each of the heavy edges u2u3 and

u2u1, and u3 gives at least 7−4−5·0.5
2 = 1

4 to the heavy edge u2u3. So by (R2) and (R3), u

gets at least 1
2(14 + 1

6 · 2) > 1
4 from C and D. So u gets at least 1

2 .

Clearly, C,D cannot be special 5-faces, so we reach a contradiction. �

Lemma 3.5. Every vertex u ∈ V (G) has µ∗(u) ≥ 0.

Proof. We consider the cases according to the degree of u. Clearly, µ∗(u) = 2 − 4 + 4 · 12 = 0 if

d(u) = 2 by the rules. If d(u) ≥ 8, then µ∗(u) ≥ d(u) − 4 − d(u) · 12 ≥ 0. For d(u) ∈ {5, 6, 7},
14



the lemmas have shown that µ∗(u) ≥ 0. Note that d(u) 6= 3 and 4-vertices have initial and final

charges 4− 4 = 0. �
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